In Press

Display Method:         

Lifetime measurement for the $ {{2_1^+}}$ state in 106Cd
Jian Zhong, Ying-Jun Ma, Xiao-Guang Wu, Bao-Ji Zhu, Cong-Bo Li, Guang-Sheng Li, Yun Zheng, Qi-Ming Chen, Chuang-Ye He, Li-Tao Deng, Wen-Kui Zhou, Ke-Yan Ma, Dong Yang, Hao Guo, Jia-Qi Wang, Xian Guang, Ji Sun, Hui-Bin Sun, Shi-Peng Hu, Lin Gan, Hai-Ge Zhao, Qi Luo, Zheng-Xin Wu
Published: , doi: 10.1088/1674-1137/44/9/094001
Abstract:
The lifetime of the $2_{1}^{+}$ state in $^{106}$Cd populated via the $^{94}$Zr ($^{16}$O, 4n)$^{106}$Cd reaction has been measured with the Recoil Distance Doppler Shift technique in combination with the Differential Decay Curve Method. By subtracting the contamination in the data, the mean lifetime of the $I^{\pi}$=2$^{+}_{1}$ 633 keV state was determined as 9.9 (12) ps. The $B(E2)$ value calculated in this study is in good agreement with the experimental systematics and was compared to the shell model calculations.
Observational constraints on Rastall gravity from rotation curves of low surface brightness galaxies
Meirong Tang, Zhaoyi Xu, Jiancheng Wang
Published: , doi: 10.1088/1674-1137/44/8/085104
Abstract:
Rastall gravity is a modification of Einstein's general relativity in which the energy-momentum conservation is not satisfied and depends on the gradient of the Ricci curvature. It is currently in dispute whether Rastall gravity is equivalent to general relativity (GR). In this work, we constrain the theory using the rotation curves of low surface brightness (LSB) spiral galaxies. By fitting the rotation curves of LSB galaxies, we obtain parameter $\beta$ of the Rastall gravity. The $\beta$ values of LSB galaxies satisfy the weak energy condition (WEC) and strong energy condition (SEC). Combining the $\beta$ values of type Ia supernovae and the gravitational lensing of elliptical galaxies on Rastall gravity, we conclude that Rastall gravity may be equivalent to general relativity.
Multiple configurations of neutron stars containing quark matter
Wei Wei, Shu-Hua Yang, Ze-Han Bao, Chong Zhang, Chang Gao, Wei-Ru Fan
Published: , doi: 10.1088/1674-1137/44/9/094104
Abstract:
The main purpose of this study is to interpret the possibilities of hybrid star configurations under different phase transition paths and provide a general description of the conditions and features of the different configurations. We assume that there are two possible phase transition paths, i.e., from a nuclear phase to a 2flavor(2f)/3flavor(3f) quark phase directly, or first from a nuclear phase to a 2f quark phase, and then from that phase to a 3f quark phase sequentially. In addition, we consider Maxwell and Gibbs constructions based on the assumption of a first-order transition, which yields multiple configurations of hybrid stars: N-2f, N-3f, and N-2f-3f for a Maxwell construction, and N-2fmix-2f, N-3fmix-3f, N-2f3fmix, and N-2fmix-3f for a Gibbs construction. From the radii analysis of different hybrid star configurations with the same mass of $1.95M_\odot$, the appearance of the quark matter (from nuclear to 2f or 3f quark matter) causes a radius difference of 0.5km~2km and provides the possibility of detection by NICER in the future. However, the sequential transition from 2f to 3f quark matter is difficult to detect because the transition does not lead to too high of a change in radius (far smaller than $0.5\; {\rm{km}}$). The dependence solely on the measurements of the stellar radii to probe the equation of state of dense matter in neutron stars causes difficulties. Multi-messenger observations can help us to infer the interior of a neutron star in the future.
Effective charge from lattice QCD
Z.-F. Cui, J.-L. Zhang, D. Binosi, F. De Soto, C. Mezrag, J. Papavassiliou, C. D. Roberts, J. Rodríguez-Quintero, J. Segovia, S. Zafeiropoulos
Published: , doi: 10.1088/1674-1137/44/8/083102
Abstract:
Using lattice configurations for quantum ​​​​​chromodynamics (QCD) generated with three domain-wall fermions at a physical pion mass, we obtain a parameter-free prediction of QCD’s renormalisation-group-invariant process-independent effective charge, $\hat\alpha(k^2)$. Owing to the dynamical breaking of scale invariance, evident in the emergence of a gluon mass-scale, $m_0= 0.43(1)\;$GeV, this coupling saturates at infrared momenta: $\hat\alpha(0)/\pi=0.97(4)$. Amongst other things: $\hat\alpha(k^2)$ is almost identical to the process-dependent (PD) effective charge defined via the Bjorken sum rule; and also that PD charge which, employed in the one-loop evolution equations, delivers agreement between pion parton distribution functions computed at the hadronic scale and experiment. The diversity of unifying roles played by $\hat\alpha(k^2)$ suggests that it is a strong candidate for that object which represents the interaction strength in QCD at any given momentum scale; and its properties support a conclusion that QCD is a mathematically well-defined quantum field theory in four dimensions.
Uplifting of AdS type to quintessence-like potential induced by frozen large-scale Lorentz violation
Hanyu Zhai, Jiayin Shen, Xun Xue
Published: , doi: 10.1088/1674-1137/44/8/085101
Abstract:
The quintessence-like potential of vacuum energy can meet the requirements from both quantum gravity and the accelerating expansion of the universe. The anti-de Sitter (AdS) vacuum in string theory must be lifted to the meta-stable dS vacuum with a positive vacuum energy density to explain the accelerating expansion of the universe. Based on possible large-scale Lorentz violation, we define an effective cosmological constant that depends not only on the bare cosmological constant but also on the Lorentz violation effect. We find that the evolution of the effective cosmological constant exhibits the behavior of the quintessence potential when the bare cosmological constant originates from the string landscape, in contrast to the existence of a local minimum during evolution when the bare cosmological constant is supplied by the swampland. The critical value of the bare cosmological constant is approximately zero for the behavior transition. The frozen large-scale Lorentz violation can uplift the AdS vacua to an effective quintessence-like one in this sense.
Investigation of neutron density distribution of 208Pb nucleus when the proton density is constrained to its experimental distribution
A. R. Abdulghany
Published: , doi: 10.1088/1674-1137/44/8/084103
Abstract:
In this study, two novel improvements for the theoretical calculation of neutron distributions are presented. First, the available experimental proton distributions are used as a constraint rather than inferred from the calculation. Second, the recently proposed distribution formula, d3pF, is used for the neutron density, which is more detailed than the usual shapes, for the first time in a nuclear structure calculation. A semi-microscopic approach for binding energy calculation is considered in this study. However, the proposed improvements can be introduced to any other approach. The ground state binding energy and neutron density distribution of 208Pb nucleus are calculated by optimizing the binding energy considering three different distribution formulae. The implementation of the proposed improvements leads to qualitative and quantitative improvements in the calculation of the binding energy and neutron density distribution. The calculated binding energy agrees with the experimental value, and the calculated neutron density exhibits fluctuations within the nuclear interior, which corresponds with the predictions of self-consistent approaches.
Isospin dependence of projectile fragmentation at hundreds of MeV/u
Jun Su, Long Zhu, Chenchen Guo, Feng-Shou Zhang
Published: , doi: 10.1088/1674-1137/44/9/094105
Abstract:
By modeling the fragmentation process using a dynamic model and permitting only evaporation in the statistical code, the main features of a projectile fragmentation at 600 MeV/u were considered in our previous study [Phys. Rev. C, 98: 014610 (2018)]. In this study, we extend this to the isospin dependence of a projectile fragmentation at several hundreds of MeV/u. We searched for isospin observables related to the isospin fractionation to extract the symmetry energy, and found that at the pre-equilibrium stage of the collisions an isospin diffusion will take place and affect the isospin of the final fragments. The isospin fractionation plays a part during the fragmenting stage. Compared to the soft symmetry energy, the stiff symmetry energy provides a smaller repulsive force for neutrons and an attractive force for the protons in a neutron-rich system at a subnormal density, and hence causes a smaller isospin asymmetry of the gas phase, leaving a more neutron-rich liquid phase. An observable robust isospin is proposed to extract the slope of the symmetry energy at normal density based on the isospin dependence of the projectile fragmentation at hundreds of MeV/u.
Hadronic cross section of ${e^+e^-}$ annihilation at bottomonium energy region
Xiang-Kun Dong, Xiao-Hu Mo, Ping Wang, Chang-Zheng Yuan
Published: , doi: 10.1088/1674-1137/44/8/083001
Abstract:
The Born cross section and dressed cross section of $ e^+e^-\to b\bar{b} $ and the total hadronic cross section in $ e^+e^- $ annihilation in the bottomonium energy region are calculated based on the $ R_b $ values measured by the BaBar and Belle experiments. The data are used to calculate the vacuum polarization factors in the bottomonium energy region, and to determine the resonant parameters of the vector bottomonium(-like) states $ Y(10750) $, $ \Upsilon(5S) $, and $ \Upsilon(6S) $.
Perturbation solutions of relativistic viscous hydrodynamics forlongitudinally expanding fireballs
Ze-Fang Jiang, Duan She, C. B. Yang, Defu Hou
Published: , doi: 10.1088/1674-1137/44/9/094107
Abstract:
The solutions of the relativistic viscous hydrodynamics for longitudinally expanding fireballs are investigated with the Navier-Stokes theory and Israel-Stewart theory. The energy and the Euler conservation equations for the viscous fluid are derived in Rindler coordinates, by assuming that the longitudinal expansion effect is small. Under the perturbation assumption, an analytical perturbation solution for the Navier-Stokes approximation and numerical solutions for the Israel-Stewart approximation are presented. The temperature evolution with both shear viscous effect and longitudinal acceleration effect in the longitudinal expanding framework are presented. The specific temperature profile shows symmetric Gaussian shape in the Rindler coordinates. Further, we compare the results from the Israel-Stewart approximation with the results from the Bjorken and the Navier-Stokes approximations, in the presence of the longitudinal acceleration expansion effect. We found that the Israel-Stewart approximation gives a good description of the early stage evolutions than the Navier-Stokes theory.
Identifying hidden charm pentaquark signal from non-resonant background in electron–proton scattering
Zhi Yang, Xu Cao, Yu-Tie Liang, Jia-Jun Wu
Published: , doi: 10.1088/1674-1137/44/8/084102
Abstract:
In this study, we analyze the electroproduction of the LHCb pentaquark states with the assumption that they are resonant states. Our main concern is to investigate the final state distribution in the phase space to extract a feeble pentaquark signal from a large non-resonant background. The results indicate that the signal to background ratio will increase significantly with a proper kinematic cut, which will be beneficial for future experimental analysis.
Top quark pair production at complete NLO accuracy with NNLO+NNLL′ corrections in QCD
Michał Czakon, Andrea Ferroglia, Alexander Mitov, Davide Pagani, Andrew S. Papanastasiou, Benjamin D. Pecjak, Darren J. Scott, Ioannis Tsinikos, Xing Wang, Li Lin Yang, Marco Zaro
Published: , doi: 10.1088/1674-1137/44/8/083104
Abstract:
We describe predictions for top quark pair differential distributions at hadron colliders, by combining the next-to-next-to-leading order quantum chromodynamics calculations and next-to-leading order electroweak corrections with double resummation at the next-to-next-to-leading logarithmic accuracy of threshold logarithms and small-mass logarithms. To the best of our knowledge, this is the first study to present such a combination, which incorporates all known perturbative information. Numerical results are presented for the invariant-mass distribution, transverse-momentum distribution, and rapidity distributions.
Electron and positron spectra in three-dimensional spatial-dependent propagation model
Zhen Tian, Wei Liu, Bo Yang, Xue-Dong Fu, Hai-Bo Xu, Yu-Hua Yao, Yi-Qing Guo
Published: , doi: 10.1088/1674-1137/44/8/085102
Abstract:
The spatial-dependent propagation (SDP) model has been demonstrated to account for the spectral hardening of both primary and secondary Cosmic Rays (CRs) nuclei above about 200 GV. In this work, we further apply this model to the latest AMS-02 observations of electrons and positrons. To investigate the effect of different propagation models, both homogeneous diffusion and SDP are compared. In contrast to the homogeneous diffusion, SDP brings about harder spectra of background CRs and thus enhances background electron and positron fluxes above tens of GeV. Thereby, the SDP model could better reproduce both electron and positron energy spectra when introducing a local pulsar. The influence of the background source distribution is also investigated, where both axisymmetric and spiral distributions are compared. We find that considering the spiral distribution leads to a larger contribution of positrons for energies above multi-GeV than the axisymmetric distribution. In the SDP model, when including a spiral distribution of sources, the all-electron spectrum above TeV energies is thus naturally described. In the meantime, the estimated anisotropies in the all-electrons spectrum show that in contrary to the homogeneous diffusion model, the anisotropy under SDP is well below the observational limits set by the Fermi-LAT experiment, even when considering a local source.
QCD phase diagram at finite isospin chemical potential and temperature in an IR-improved soft-wall AdS/QCD model
Xuanmin Cao, Hui Liu, Danning Li, Guanning Ou
Published: , doi: 10.1088/1674-1137/44/8/083106
Abstract:
We study the phase transition between the pion condensed phase and normal phase, as well as chiral phase transition in a two flavor (${\cal{N}}_f=2$) IR- improved soft-wall AdS/QCD model at finite isospin chemical potential $\mu_I$ and temperature T. By self-consistently solving the equations of motion, we obtain the phase diagram in the plane of $\mu_I$ and T. The pion condensation appears together with a massless Nambu-Goldstone boson $m_{\pi_1}(T_c, \mu_I^c)=0$, which is very likely to be a second-order phase transition with mean-field critical exponents in the small $\mu_I$ region. When $T=0$, the critical isospin chemical potential approximates to vacuum pion mass $\mu_I^c \approx m_0$. The pion condensed phase exists in an arched area, and the boundary of the chiral crossover intersects the pion condensed phase at a tri-critical point. Qualitatively, the results are in good agreement with previous studies on lattice simulations and model calculations.
Heavy flavor dissociation in framework of multi-body Dirac equations
Shuzhe Shi, Jiaxing Zhao, Pengfei Zhuang
Published: , doi: 10.1088/1674-1137/44/8/084101
Abstract:
We study heavy flavor properties at finite temperature in the framework of a relativistic potential model. Using an improved method to solve the three-body Dirac equation, we determine a universal set of model parameters for both mesons and baryons by fitting heavy flavor masses in vacuum. Taking heavy quark potential from lattice QCD simulations in hot medium, we systematically calculate heavy flavor binding energies and averaged sizes as functions of the temperature. The meson and baryons are separately sequentially dissociated in the quark-gluon plasma, and the mesons can survive at higher temperatures owing to the stronger potential between quark-antiquark pairs than that between quark-quark pairs.
Expected LHAASO sensitivity to decaying dark matter signatures from dwarf galaxies gamma-ray emission
Dong-Ze He, Xiao-Jun Bi, Su-Jie Lin, Peng-Fei Yin, Xin Zhang
Published: , doi: 10.1088/1674-1137/44/8/085001
Abstract:
As a next-generation complex extensive air shower array with a large field of view, the large high altitude air shower observatory (LHAASO) is very sensitive to the very-high-energy gamma rays from ~300 GeV to 1 PeV and may thus serve as an important probe for the heavy dark matter (DM) particles. In this study, we make a forecast for the LHAASO sensitivities to the gamma-ray signatures resulting from DM decay in dwarf spheroidal satellite galaxies (dSphs) within the LHAASO field of view. Both individual and combined limits for 19 dSphs incorporating the uncertainties of the DM density profile are explored. Owing to the large effective area and strong capability of the photon-proton discrimination, we find that LHASSSO is sensitive to the signatures from decaying DM particles above ${\cal{O}}(1)$ TeV. The LHAASO sensitivity to the DM decay lifetime reaches ${\cal{O}} (10^{26}) \sim {\cal{O}} (10^{28})$ s for several decay channels at the DM mass scale from 1 TeV to 100 TeV.
Radiative decay of ${{\Xi_b(6227)}}$ in a hadronic molecule picture
HongQiang Zhu, Yin Huang
Published: , doi: 10.1088/1674-1137/44/8/083101
Abstract:
The baryon $\Xi_b(6227)$ with the quantum number $J^P=1/2^{-}$ is considered as a molecular state composed of a $\Sigma_b$ baryon and $\bar{K}$ meson. The partial decay widths of the $\Sigma_b\bar{K}$ molecular state into $\Xi_b\gamma$ and $\Xi_b^{'}\gamma$ final states through hadronic loops are evaluated with the help of the effective Lagrangians. The partial widths for the $\Xi_b(6227)\to\gamma\Xi_b$ and $\Xi_b(6227)\to\gamma\Xi^{'}_b$ transitions are evaluated at 1.50–1.02 KeV and 17.56–24.91 KeV, respectively, which may be accessible for the LHCb. Based on our results, we argue that an experimental determination of the radiative decay width of $\Xi_b(6227)$ is important for the understanding of its intrinsic properties.