In Press

Display Method:         

Accurate correction of arbitrary spin fermion quantum tunneling from non-stationary Kerr-de Sitter black hole based on corrected Lorentz dispersion relation
Bei Sha, Zhi-E Liu, Yu-Zhen Liu, Xia Tan, Jie Zhang, Shu-Zheng Yang
Published: , doi: 10.1088/1674-1137/abb4d6
Abstract:
According to a corrected dispersion relation proposed in the study on the string theory and quantum gravity theory, the Rarita-Schwinger equation was precisely modified, which resulted in the Rarita-Schwinger-Hamilton-Jacobi equation. Using this equation, the characteristics of arbitrary spin fermion quantum tunneling radiation from non-stationary Kerr-de Sitter black holes were determined. A number of accurately corrected physical quantities, such as surface gravity, chemical potential, tunneling probability, and Hawking temperature, which describe the properties of black holes, were derived. This research has enriched the research methods and enabled increased precision in black hole physics research.
Pion parton distribution function in light-front holographic QCD
Lei Chang, Khépani Raya, Xiaobin Wang
Published: , doi: 10.1088/1674-1137/abae52
Abstract:
The valence-quark distribution function of the pion has been of interest for decades; particularly, the profile it should adopt when $x\to1$ (the large-x behavior) has been the subject of a long-standing debate. In the light-front holographic QCD (LFHQCD) approach, this behavior is controlled by the so-called reparametrization function, $w_\tau(x)$, which is not fully determined from first principles. We show that, owing to the flexibility of $w_\tau(x)$, the large-x profile $u^{\pi}(x)\sim (1-x)^{2}$ can be contained within the LFHQCD formalism. This is in contrast to a previous LFHQCD study (Guy F. de Teramond et al., Phys. Rev. Lett., 120(18), 2018) in which $u^{\pi}(x)\sim (1-x)^{1}$ was found instead. Given our observations, augmented by perturbative QCD and recent lattice QCD results, we state that the large-x exponent of “2” cannot be excluded.
Constraints on anomalous quartic gauge couplings via Wγjj production at the LHC
Yu-Chen Guo, Ying-Ying Wang, Ji-Chong Yang, Chong-Xing Yue
Published:
Abstract:
Vector boson scattering at the Large Hadron Collider (LHC) is sensitive to anomalous quartic gauge couplings (aQGCs). In this study, we investigate the aQGC contribution to $ W \gamma jj$ production at the LHC with $\sqrt{s}=13$ TeV in the context of an effective field theory (EFT). The unitarity bound is applied as a cut on the energy scale of this production process, which is found to have significant suppressive effects on signals. To enhance the statistical significance, we analyze the kinematic and polarization features of the aQGC signals in detail. We find that the polarization effects induced by aQGCs are unique and can discriminate the signals from the SM backgrounds well. With the proposed event selection strategy, we obtain the constraints on the coefficients of dimension-8 operators with current luminosity. The results indicate that the process $pp \to W \gamma jj$ is powerful for searching for the $O_{M_{2,3,4,5}}$ and $O_{T_{5,6,7}}$ operators.
Observational constraints on dark matter decaying via gravity portals
Xu-Dong Sun, Ben-Zhong Dai
Published:
Abstract:
Global symmetry can guarantee the stability of dark matter particles (DMps). However, the nonminimal coupling between dark matter (DM) and gravity can break the global symmetry of DMps, which in turn leads to their decay. Under the framework of nonminimal coupling between scalar singlet dark matter (ssDM) and gravity, it is worth exploring the extent to which the symmetry of ssDM is broken. It is suggested that the total number of decay products of ssDM cannot exceed current observational constraints. Along these lines, the data obtained with satellites such as Fermi-LAT and AMS-02 suggest that the scale of ssDM global symmetry breaking can be limited. Because the mass of many promising DM candidates is likely to be in the GeV-TeV range, we determine reasonable parameters for the ssDM lifetime within this range. We find that when the mass of ssDM is around the electroweak scale (246 GeV), the corresponding 3$\sigma$ lower limit of the lifetime of ssDM is $5.3\times10^{26}$ s. Our analysis of ssDM around the electroweak scale encompasses the most abundant decay channels of all mass ranges so that the analysis of the behavior of ssDM under the influence of gravity is more comprehensive.
Thermodynamics in rotating anti-de Sitter black holes with massive scalar field in three dimensions
Bogeun Gwak
Published:
Abstract:
We investigated the tendency in the variations of CFT2 when a rotating AdS3 black hole changes because of the fluxes transferred by the scattering of a massive scalar field according to the anti-de Sitter (AdS)/conformal field theory (CFT) correspondence. The conserved quantities of the black hole are definitely constrained by the extremal condition. Moreover, the laws of thermodynamics provide a direction for the changes in the conserved quantities. Therefore, the black hole cannot be extremal under the scattering; this is naturally preferred. According to the relationship between the rotating AdS3 black hole and dual CFT2, we find that such changes in the black hole constrain the variations in the eigenstates of dual CFT2. Furthermore, the tendency in the variations is closely related to the laws of thermodynamics.
Alpha decay of heavy and super heavy nuclei with a generalized electrostatic potential
R. Budaca, A. I. Budaca
Published:
Abstract:
Half-lives of α decay for Z≥ 84 nuclei are calculated based on the WKB theory applied for a phenomenological potential barrier composed of a centrifugal contribution and a screened electrostatic interaction represented by a Hulthen potential. For favored decays, the model has a single adjustable parameter associated with the screening of the electrostatic potential. The description of half lives for unfavored decays requires an additional hindrance term. A good agreement with experimental data is obtained in all considered cases. The evolution of the screening parameter for each nucleus revealed its dependence on shell filling. The model is also used for theoretical predictions on a few nuclei with uncertain or incomplete decay information.
Anomalous ${{H\to ZZ \to 4\ell}}$ decay and its interference effects on gluon–gluon contribution at the LHC
Hua-Rong He, Xia Wan, You-Kai Wang
Published:
Abstract:
We calculate the spinor helicity amplitudes of anomalous $H\to ZZ \to 4\ell$ decay. After embedding these analytic formulas into the MCFM package, we study the interference effects between the anomalous $gg\to H\to ZZ \to 4\ell$ process and the SM processes, which are indispensable in the Higgs off-shell region. Subsequently, the constraints on the anomalous couplings are estimated using LHC experimental data.
${{X(2239)}}$ and ${{\eta(2225)}}$ as hidden-strange molecular states from ${{\Lambda}}{\bar{\Lambda}}$ interaction
Jun-Tao Zhu, Yi Liu, Dian-Yong Chen, Longyu Jiang, Jun He
Published:
Abstract:
In this work, we propose the possible assignment of the newly observed $X(2239)$, as well as $\eta(2225)$, as a molecular state from the interaction of a baryon $\Lambda$ and an antibaryon $\bar{\Lambda}$. With the help of effective Lagrangians, the $\Lambda\bar{\Lambda}$ interaction is described within the one-boson-exchange model with $\eta$, $\eta'$, $\omega$, $\phi$, and $\sigma$ exchanges considered. After inserting the potential kernel into the quasipotential Bethe-Salpeter equation, the bound states from the $\Lambda\bar{\Lambda}$ interaction can be studied by searching for the pole of the scattering amplitude. Two loosely bound states with spin parities $I^G(J^{PC})=0^+(0^{-+})$ and $0^-(1^{--})$ appear near the threshold with almost the same parameter. The $0^-(1^{--})$ state can be assigned to $X(2239)$ observed at BESIII, which is very close to the $\Lambda\bar{\Lambda}$ threshold. The scalar meson $\eta(2225)$ can be interpreted as a $0^+(0^{-+})$ state from the $\Lambda\bar{\Lambda}$ interaction. The annihilation effect is also discussed through a coupled-channel calculation plus a phenomenological optical potential. It provides large widths to two bound states produced from the $\Lambda\bar{\Lambda}$ interaction. The mass of the $1^-$ state is slightly larger than the mass of the $0^-$ state after including the annihilation effect, which is consistent with our assignment of these two states as $X(2239)$ and $\eta(2225)$, respectively. The results suggest that further investigation is required to understand the structures near the $\Lambda\bar{\Lambda}$ threshold, such as $X(2239)$, $\eta(2225)$, and $X(2175)$.
Gravitational wave imprint of new symmetry breaking
Wei Chao, Wen-Feng Cui, Huai-Ke Guo, Jing Shu
Published:
Abstract:
It is believed that there are more fundamental gauge symmetries beyond those described by the Standard Model of particle physics. The scales of these new gauge symmetries are usually too high to be reachable by particle colliders. Considering that the phase transition (PT) relating to the spontaneous breaking of new gauge symmetries to the electroweak symmetry might be strongly first order, we propose considering the stochastic gravitational waves (GW) arising from this phase transition as an indirect way of detecting these new fundamental gauge symmetries. As an illustration, we explore the possibility of detecting the stochastic GW generated from the PT of $ {\bf{B}}-{\bf{L}}$ in the space-based interferometer detectors. Our study demonstrates that the GW energy spectrum is reachable by the LISA, Tianqin, Taiji, BBO, and DECIGO experiments only for the case where the spontaneous breaking of $ {\bf{B}}-{\bf{L}}$ is triggered by at least two electroweak singlet scalars.
Fine tuning problem of the cosmological constant in a generalized Randall-Sundrum model
Guang-Zhen Kang, De-Sheng Zhang, Li Jun, Hong-Shi Zong
Published:
Abstract:
To solve the cosmological constant fine tuning problem, we investigate an $(n+1)$-dimensional generalized Randall-Sundrum brane world scenario with two $(n-1)$-branes instead of two 3-branes. Adopting an anisotropic metric ansatz, we obtain the positive effective cosmological constant $\Omega_{\rm eff}$ of order $10^{-124}$ and only require a solution $\simeq50-80$. Meanwhile, both the visible and hidden branes are stable because their tensions are positive. Therefore, the fine tuning problem can be solved quite well. Furthermore, the Hubble parameter $H_{1}(z)$ as a function of redshift $z$ is in good agreement with the cosmic chronometers dataset. The evolution of the universe naturally shifts from deceleration to acceleration. This suggests that the evolution of the universe is intrinsically an extra-dimensional phenomenon. It can be regarded as a dynamic model of dark energy that is driven by the evolution of the extra dimensions on the brane.
Finite particle number description of neutron matter using the unitary correlation operator and high-momentum pair methods
Niu Wan, Takayuki Myo, Chang Xu, Hiroshi Toki, Hisashi Horiuchi, Mengjiao Lyu
Published:
Abstract:
Using bare Argonne V4' (AV4'), V6' (AV6'), and V8' (AV8') nucleon–nucleon ($NN$) interactions, the nuclear equations of state (EOSs) for neutron matter are calculated with the unitary correlation operator and high-momentum pair methods. Neutron matter is described using a finite particle number approach with magic number $N=66$ under a periodic boundary condition. The central short-range correlation originating from the short-range repulsion in the $NN$ interaction is treated by the unitary correlation operator method (UCOM), and the tensor correlation and spin-orbit effects are described by the two-particle two-hole (2p2h) excitations of nucleon pairs, where the two nucleons with a large relative momentum are regarded as a high-momentum (HM) pair. With increasing 2p2h configurations, the total energy per particle of the neutron matter is well-converged under this UCOM+HM framework. Comparing the results calculated with AV4', AV6', and AV8' $NN$ interactions, we demonstrates the effects of the short-range correlation, tensor correlation, and spin-orbit coupling on the density dependence of the total energy per particle of neutron matter. Moreover, the contribution of each Hamiltonian component to the total energy per particle is discussed. The EOSs of neutron matter calculated within the present UCOM+HM framework agree with the calculations of six microscopic many-body theories, especially the auxiliary field-diffusion Monte Carlo calculations.
Gauge dependence of the perturbative QCD predictions under the momentum-space subtraction scheme
Jun Zeng, Xing-Gang Wu, Xu-Chang Zheng, Jian-Ming Shen
Published: , doi: 10.1088/1674-1137/abae4e
Abstract:
The momentum-space subtraction (MOM) scheme is one of the most frequently used renormalization schemes in perturbative QCD (pQCD) theory. In this paper, we discuss in detail the gauge dependence of the pQCD predictions obtained under the MOM scheme. Conventionally, a renormalization scale ambiguity exists for the fixed-order pQCD predictions; this assigns an arbitrary range and error for the fixed-order pQCD prediction and makes the discussions on the issue of the gauge dependence much more involved. The principle of maximum conformality (PMC) adopts the renormalization group equation to determine the magnitude of the coupling constant; hence, it determines the effective momentum flow of the process, which is independent of the choice of renormalization scale. Thus, no renormalization scale ambiguity exists in PMC predictions. To focus our attention on the MOM scheme's gauge dependence, we first apply the PMC to deal with the pQCD series. As an explicit example, we adopt the Higgs boson decay width $ \Gamma(H\to gg) $ up to its five-loop QCD contribution, to demonstrate the behavior of the gauge dependence before and after applying the PMC. Interaction vertices are chosen to define five different MOM schemes: mMOM, MOMh, MOMq, MOMg, and MOMgg. Under these MOM schemes, we obtain $ \Gamma(H \to gg)|^{\rm{mMOM}}_{\rm{PMC}} =$$ 332.8{^{+11.6}_{-3.7}}\pm7.3\; \rm{KeV} $, $ \Gamma(H \to gg)|^{\rm{MOMh}}_{\rm{PMC}} = 332.8{^{+27.5}_{-34.6}}\pm7.3\; \rm{KeV} $, $ \Gamma(H \to gg)|^{\rm{MOMq}}_{\rm{PMC}} = 332.9{^{+27.4}_{-34.7}}\pm 7.3\; \rm{KeV} $, $ \Gamma(H \to gg)|^{\rm{MOMg}}_{\rm{PMC}} = 332.7{^{+27.5}_{-34.6}}\pm7.3\; \rm{KeV} $, and $ \Gamma(H \to gg)|^{\rm{MOMgg}}_{\rm{PMC}} = 337.9{^{+1.2}_{-1.7}}\pm 7.7\; \rm{KeV} $; here, the central values correspond to the Landau gauge with the gauge parameter $ \xi^{\rm MOM} = 0 $, the first errors correspond to $ \xi^{\rm MOM}\in[-1,1] $, and the second ones arise through taking $ \Delta \alpha_s^{\overline{\rm MS}}(M_Z) = \pm0.0011 $. The uncertainty of the Higgs mass $ \Delta M_H = 0.24\; \rm{GeV} $ causes an extra error of $ \sim \pm1.7 $ (or $ \sim\pm1.8 $) KeV for all the aforementioned MOM schemes. It is found that the Higgs decay width $ \Gamma (H\to gg) $ depends very weakly on the choice of MOM scheme, which is consistent with renormalization group invariance. It is found that the gauge dependence of $ \Gamma(H\to gg) $ under the $ \rm{MOMgg} $ scheme is less than ±1%, which is the smallest gauge dependence among all the aforementioned MOM schemes.
Prediction of moment of inertia of rotating nuclei
Mohd Kh. M. Abu El Sheikh, A. A. Okhunov, H. Abu Kassim, M. U. Khandaker
Published: , doi: 10.1088/1674-1137/abb0dd
Abstract:
In this study, the mathematical expression formulated by Bohr for the moment of inertia of even-even nuclei based on the hydrodynamical model is modified. The modification pertains to the kinetic energy of the surface oscillations, including the second and third terms of the R-expansion as well as the first term, which had already been modified by Bohr. Therefore, this work can be considered a continuation and support of Bohr's hydrodynamic model. The procedure yields a Bohr formula to be multiplied by a factor that depends on the deformation parameter. Bohr's (modified) formula is examined by applying it on axially symmetric even-even nuclei with atomic masses ranging between 150 and 190 as well as on some triaxial symmetry nuclei. In this paper, the modification of Bohr's formula is discussed, including information about the stability of this modification and the second and third terms of the R-expansion in Bohr's formula. The results of the calculation are compared with the experimental data and Bohr's results recorded earlier. The results obtained are in good agreement with experimental data, with a ratio of approximately 0.7, and are better than those of the unmodified ones.
Tetraquark candidates in LHCb’s di-J/ψ mass spectrum
Zhi-Gang Wang
Published:
Abstract:
In this article, we study the first radial excited states of the scalar, axialvector, vector, and tensor diquark-antidiquark-type $cc\bar{c}\bar{c}$ tetraquark states with the QCD sum rules and obtain the masses and pole residues; then, we use the Regge trajectories to obtain the masses of the second radial excited states. The predicted masses support assigning the broad structure from 6.2 to 6.8 GeV in the di- $J/\psi$ mass spectrum to be the first radial excited state of the scalar, axialvector, vector, or tensor $cc\bar{c}\bar{c}$ tetraquark state, as well as assigning the narrow structure at about 6.9 GeV in the di- $J/\psi$ mass spectrum to be the second radial excited state of the scalar or axialvector $cc\bar{c}\bar{c}$ tetraquark state.
Thermodynamics and weak cosmic censorship conjecture of 4D Gauss-Bonnet-Maxwell black holes via charged particle absorption
Shuxuan Ying
Published:
Abstract:
Recently, the non-trivial solutions for 4-dimensional black holes of Einstein-Gauss-Bonnet gravity had been discovered. In this paper, considering a charged particle entering into a 4-dimensional Gauss-Bonnet-Maxwell black hole, we calculate the black hole thermodynamic properties using the Hamilton-Jacobi equation. In the normal phase space, the cosmological constant and Gauss-Bonnet parameter are fixed, the black hole satisfies the first and second laws of thermodynamics, and the weak cosmic censorship conjecture (WCCC) is valid. On the other hand, in the case of extended phase space, the cosmological constant and Gauss-Bonnet parameter are treated as thermodynamic variables. The black hole also satisfies the first law of thermodynamics. However, the increase or decrease in the black hole's entropy depends on some specific conditions. Finally, we observe that the WCCC is violated for the near-extremal black holes in the extended phase space.
Recent progress in multiple chiral doublet bands
Shou-Yu Wang
Published: , doi: 10.1088/1674-1137/abaed2
Abstract:
Recent progress regarding multiple chiral doublet bands ($ {\rm{M}}\chi{\rm{D}}$) is reviewed from the experimental and theoretical perspectives. In particular, the experimental findings, theoretical predictions, selection rule for electromagnetic transitions, $ {\rm{M}}\chi{\rm{D}}$ with octupole correlations, and some related topics are highlighted. Based on these discussions, it is of great scientific interest to search for the other $ {\rm{M}}\chi{\rm{D}}$, as well as possible chiral wobblers, chirality-parity quartet bands, and chirality-pseudospin triplet (or quartet) bands in the nuclear system.
A Bayesian-neural-network prediction for fragment production in proton induced spallation reaction
Chun-Wang Ma, Dan Peng, Hui-Ling Wei, Yu-Ting Wang, Jie Pu
Published:
Abstract:
Fragment production in spallation reactions yields key infrastructure data for various applications. Based on the empirical SPACS parameterizations, a Bayesian-neural-network (BNN) approach is established to predict the fragment cross sections in proton-induced spallation reactions. A systematic investigation has been performed for the measured proton-induced spallation reactions of systems ranging from intermediate to heavy nuclei systems and incident energies ranging from 168 MeV/u to 1500 MeV/u. By learning the residuals between the experimental measurements and SPACS predictions, it is found that the BNN-predicted results are in good agreement with the measured results. The established method is suggested to benefit the related research on nuclear astrophysics, nuclear radioactive beam sources, accelerator driven systems, proton therapy, etc.
Probing electroweak dark matter at 14 TeV LHC
Shuai Xu, Si-Bo Zheng
Published: , doi: 10.1088/1674-1137/abae4c
Abstract:
Well-motivated electroweak dark matter is often hosted by an extended electroweak sector that also contains new lepton pairs with masses near the weak scale. In this study, we explore such electroweak dark matter by combining dark matter direct detection experiments and high-luminosity LHC probes of new lepton pairs. Using Z- and W-associated electroweak processes with two or three lepton final states, we show that depending on the overall coupling constant, dark matter masses of up to $170-210$ GeV can be excluded at the $2\sigma$ level and those up to $175-205$ GeV can be discovered at the $5\sigma$ level at the 14 TeV LHC with integrated luminosities of 300 fb$^{-1}$ and 3000 fb$^{-1}$, respectively.
Revisiting nonfactorizable contributions to factorization-forbidden decays of B mesons to charmonium
Ya-Qian Li, Meng-Kun Jia, Rui Zhou
Published: , doi: 10.1088/1674-1137/abae50
Abstract:
Motivated by the large rates of $B\rightarrow (\chi_{c0}, \chi_{c2}, h_c)K$ decays observed by the $BABAR$ and Belle collaborations, we investigate the nonfactorizable contributions to these factorization-forbidden decays, which can occur through a gluon exchange between the $c\bar c$ system and the spectator quark. Our numerical results demonstrate that the spectator contributions are capable of producing a large branching ratio consistent with the experiments. As a by-product, we also study the Cabibbo-suppressed decays, such as $B\rightarrow (\chi_{c0}, \chi_{c2}, h_c)\pi$ and the U-spin-related $B_s$ decay, which have so far received less theoretical and experimental attention. The calculated branching ratios reach the order of $10^{-6}$, which is within the scope of the Belle-II and LHCb experiments. Further, the $CP$-asymmetry parameters are also calculated for these decays. The obtained results are compared with the available experimental data and numbers from other predictions. We also investigate the sources of theoretical uncertainties in our calculation.
Two-neutron transfer reactions as a tool to study the interplay between shape coexistence and quantum phase transitions
J.E. García-Ramos, J.M. Arias, A. Vitturi
Published:
Abstract:
The atomic mass table presents zones where the structure of the states changes rapidly as a function of the neutron or proton number. Among them, notable examples are the A ≈ 100 Zr region, the Pb region around the neutron midshell (N = 104), and the N ≈ 90 rare-earth region. The observed phenomena can be understood in terms of either shape coexistence or quantum phase transitions. The objective of this study is to find an observable that can distinguish between both shape coexistence and quantum phase transitions. As an observable to be analyzed, we selected the two-neutron transfer intensity between the 0+ states in the parent and daughter nuclei. The framework used for this study is the Interacting Boson Model (IBM), including its version with configuration mixing (IBM-CM). To generate wave functions of isotope chains of interest needed for calculating transfer intensities, previous systematic studies using IBM and IBM-CM were used without changing the parameters. The results of two-neutron transfer intensities are presented for Zr, Hg, and Pt isotopic chains using IBM-CM. Moreover, for Zr, Pt, and Sm isotopic chains, the results are presented using IBM with only a single configuration, i.e., without using configuration mixing. For Zr, the two-neutron transfer intensities between the ground states provide a clear observable, indicating that normal and intruder configurations coexist in the low-lying spectrum and cross at A = 98 → 100. This can help clarify whether shape coexistence induces a given quantum phase transition. For Pt, in which shape coexistence is present and the regular and intruder configurations cross for the ground state, there is almost no impact on the value of the two-neutron transfer intensity. Similar is the situation with Hg, where the ground state always has a regular nature. For the Sm isotope chain, which is one of the quantum phase transition paradigms, the value of the two-neutron transfer intensity is affected strongly.
Effect of null aether field on weak deflection angle of black holes
A. Övgün, İ. Sakallı, J. Saavedra
Published:
Abstract:
We study light rays in the static and spherically symmetric gravitational field of the null aether theory (NAT). To this end, we employ the Gauss-Bonnet theorem to compute the deflection angle formed by a NAT black hole in the weak limit approximation. Using the optical metrics of the NAT black hole, we first obtain the Gaussian curvature and then calculate the leading terms of the deflection angle. Our calculations indicate how gravitational lensing is affected by the NAT field. We also illustrate that the bending of light stems from global and topological effects.
Dark matter search at colliders and neutrino floor
Qing-Hong Cao, An-Kang Wei, Qian-Fei Xiang
Published: , doi: 10.1088/1674-1137/abae53
Abstract:
The sensitivity of the direct detection of dark matter (DM) approaches the so-called neutrino floor, below which it is difficult to disentangle the DM candidate from the neutrino background. In this work, we consider the scenario that no DM signals are reported in various DM direct detection experiments and explore whether collider searches could probe DM below the neutrino floor. We adopt several simplified models in which the DM candidate couples to electroweak gauge bosons or leptons in the standard model only through high-dimensional operators. After including the RGE running effect, we investigate the constraints of direct detection, indirect detection, and collider searches. The collider search can probe light DM below the neutrino floor. Particularly, for the effective interaction of $ \bar{\chi}\chi B_{\mu\nu}B^{\mu\nu}$, current data from the mono-photon channel at the 13 TeV LHC has already covered the entire parameter space of the neutrino floor.
Null geodesics, quasinormal modes, and thermodynamic phase transition for charged black holes in asymptotically flat and dS spacetimes
Shao-Wen Wei, Yu-Xiao Liu
Published: , doi: 10.1088/1674-1137/abae54
Abstract:
A numerical study has indicated that there exists a relation between the quasinormal modes and the Davies point for a black hole. In this paper, we analytically study this relation for charged Reissner-Nordström black holes in asymptotically flat and de Sitter (dS) spacetimes in the eikonal limit, under which the quasinormal modes can be obtained from the null geodesics using the angular velocity $\Omega$ and the Lyapunov exponent $\lambda$ of the photon sphere. Both in asymptotically flat and dS spacetimes, we observe spiral-like shapes in the complex quasinormal mode plane. However, the starting point of the shapes does not coincide with the Davies point. Nevertheless, we find a new relation in which the Davies point exactly meets the maximum temperature T in the T-$\Omega$ and T-$\lambda$ planes. In a higher-dimensional asymptotically flat spacetime, although there is no spiral-like shape, such a relation still holds. Therefore, we provide a new relation between black hole thermodynamics and dynamics in the eikonal limit. Applying this relation, we can test the thermodynamic property of a black hole using the quasinormal modes.
Near-threshold K*(892)+ meson production in the interaction of π mesons with nuclei
E. Ya. Paryev
Published: , doi: 10.1088/1674-1137/abae55
Abstract:
We study the inclusive production of strange vector $K^*(892)^+$ mesons in ${\pi^-}A$ reactions at near-threshold laboratory incident pion momenta of 1.4–2.0 GeV/c via a nuclear spectral function approach. The approach accounts for incoherent primary $\pi^-$ meson–proton ${\pi^-}p \to {K^*(892)^+}\Sigma^-$ production processes as well as the influence of the scalar $K^*(892)^+$ –nucleus potential (or the $K^*(892)^+$ in-medium mass shift) on these processes. We calculate the absolute differential and total cross sections for the production of $K^*(892)^+$ mesons from carbon and tungsten nuclei at laboratory angles of 0 $^{\circ}$ –45 $^{\circ}$ and at the aforementioned momenta in five scenarios for the aforenoted shift. We show that the $K^*(892)^+$ momentum distributions and their excitation functions (absolute and relative) possess a high sensitivity to changes in the in-medium $K^*(892)^+$ mass shift in the low-momentum region of 0.1–0.6 GeV/c. Therefore, the measurement of such observables in a dedicated experiment at the GSI pion beam facility in the near-threshold momentum domain will allow us to get valuable information on the $K^*(892)^+$ in-medium properties.
Unified interpretation of scalegenesis in conformally extended standard models: a dynamical origin of Higgs portal
Hiroyuki Ishida, Shinya Matsuzaki, Ruiwen Ouyang
Published:
Abstract:
We present a universal interpretation of a class of conformal extended standard models that include Higgs portal interactions as realized in low-energy effective theories. The scale generation mechanism in this class (scalegenesis) arises along the (nearly) conformal/flat direction for breaking scale symmetry, where the electroweak symmetry-breaking structure arises similarly as in the standard model. A dynamical origin for the Higgs portal coupling can provide the discriminator for the low-energy “universality class,” to be probed in forthcoming collider experiments.
Radiative decays of f1(1285) as the ${ { K}^*\bar { K}}$ molecular state
Ju-Jun Xie, Gang Li, Xiao-Hai Liu
Published: , doi: 10.1088/1674-1137/abae51
Abstract:
With $f_1(1285)$ as a dynamically generated resonance from $ K^*\bar K$ interactions, we estimate the rates of the radiative transitions of the $f_1(1285)$ meson to the vector mesons $\rho^0$, $\omega$ and $\phi$. These radiative decays proceed via the kaon loop diagrams. The calculated results are in a fair agreement with experimental measurements. Some predictions can be tested experimentally; their analysis will be valuable for decoding the strong coupling of the $f_1(1285)$ state to the $\bar{K}K^*$ channel.
DP(π, K) helicity form factors within light-cone sum rule approach
Hai-Bing Fu, Wei Cheng, Rui-Yu Zhou, Long Zeng
Published: , doi: 10.1088/1674-1137/abae4f
Abstract:
In this study, $D\to P(\pi, K)$ helicity form factors (HFFs) are investigated by applying the QCD light-cone sum rule (LCSR) approach. The calculation accuracy is up to the next-to-leading order (NLO) gluon radiation correction of twist-(2,3) distribution amplitude. The resultant HFFs at a large recoil point are ${\cal{P}}_{t,0}^\pi(0) = 0.688^{+0.020}_{-0.024}$ and ${\cal{P}}_{t,0}^K(0)=0.780^{+0.024}_{-0.029}$, in which the contributions from the three particles of the leading order (LO) are so small that they can be safely neglected. The maximal contribution of the NLO gluon radiation correction for ${\cal{P}}_{t,0}^{\pi,K}(0)$ is less than 3%. After extrapolating the LCSR predictions for these HFFs to the whole $q^2$-region, we obtain the decay widths for semileptonic decay processes $D\to P\ell\nu_\ell$, which are consistent with the BES-III collaboration predictions within error limits. After considering the $D^{+}/D^{0}$-meson lifetime, we give the branching fractions of $D\to P\ell\nu_\ell$ with $\ell = e, \mu$; our predictions also agree with the BES-III collaboration results within error limits, especially for the $D\to \pi \ell\nu_\ell$ decay process. Finally, we present the forward-backward asymmetry ${\cal{A}}_{\rm{FB}}^\ell(q^2)$ and lepton convexity parameter ${\cal{C}}_F^\ell(q^2)$, and further calculate the mean value of these two observations, $\langle{\cal{A}}_{\rm{FB}}^\ell\rangle$ and $\langle{\cal{C}}_F^\ell\rangle$, which may provide a way to test those HFFs in future experiments.
Cosmic acceleration caused by the extra-dimensional evolution in a generalized Randall-Sundrum model
Guang-Zhen Kang, De-Sheng Zhang, Chao Shi, Long Du, Dan Shan, Hong-Shi Zong
Published: , doi: 10.1088/1674-1137/abadec
Abstract:
We investigate an $(n+1) $-dimensional generalized Randall-Sundrum model with an anisotropic metric which has three different scale factors. One obtains a positive effective cosmological constant $\Omega_{\rm eff}\sim10^{-124}$(in Planck units), which only needs a solution $ kr\simeq50-80$ without fine tuning. Both the visible and hidden brane tensions are positive, which renders the two branes stable. Then, we find that the Hubble parameter is close to a constant in a large region near its minimum, thus causing the acceleration of the universe. Meanwhile, the scale of extra dimensions is smaller than the observed scale but greater than the Planck length. This may suggest that the observed present acceleration of the universe is caused by the extra-dimensional evolution.
Fast heating dissociation of ${ \Upsilon(1S) }$ in heavy ion collisions at RHIC
Yunpeng Liu, Baoyi Chen
Published:
Abstract:
By adopting the adiabatic assumption in the cooling process, we discuss a novel mechanism of $ \Upsilon(1S) $ suppression that occurs due to the fast heating process at the early stage of the fireball, instead of its finite decay width in a finite temperature medium generated by heavy ion collisions. We calculate the transition probability after the fast heating dissociation as a function of the temperature of the medium and the nuclear modification factor in central collisions and find that the suppression is not negligible at RHIC, even if the width of $ \Upsilon(1S) $ becomes zero.
Cross-section measurements for 58,60,61Ni(n, α)55,57,58Fe reactions in the 4.50 – 5.50 MeV neutron energy region
Haoyu Jiang, Zengqi Cui, Yiwei Hu, Jie Liu, Jinxiang Chen, Guohui Zhang, Yu. M. Gledenov, E. Sansarbayar, G. Khuukhenkhuu, L. Krupa, I. Chuprakov
Published: , doi: 10.1088/1674-1137/abadf2
Abstract:
The cross sections at 5 energy points of the 58Ni(n, α)55Fe reaction were measured in the 4.50 MeV ≤ En ≤ 5.50 MeV region while those for the 60Ni(n, α)57Fe and 61Ni(n, α)58Fe reactions were measured at En = 5.00 and 5.50 MeV using the 4.5 MV Van de Graaff accelerator at Peking University. A gridded twin ionization chamber (GIC) was used as the detector, and enriched 58Ni, 60Ni, and 61Ni foil samples were prepared and mounted at the sample changer of the GIC. Three highly enriched 238U3O8 samples inside the GIC were used to determine the relative and absolute neutron fluxes. The neutron energy spectra were obtained through unfolding the pulse height spectra measured by the EJ-309 liquid scintillator. The interference from the low-energy neutrons and impurities in the samples has been corrected. The present data of the 60Ni(n, α)57Fe reaction are the first measurement results below 6.0 MeV, and those of the 61Ni(n, α)58Fe reactions are the first measurement results in the MeV region. The present results have been compared with existing measurements, evaluations, and TALYS-1.9 calculations.
Pattern for flavor-dependent quark-antiquark interaction
Muyang Chen, Lei Chang
Published:
Abstract:
A flavor-dependent kernel is constructed based on the rainbow-ladder truncation of the Dyson-Schwinger and Bethe-Salpeter equation approach of quantum chromodynamics. The quark-antiquark interaction is composed of a flavor-dependent infrared part and a flavor-independent ultraviolet part. Our model gives a successful and unified description of the light, heavy, and heavy-light ground pseudoscalar and vector mesons. For the first time, our model shows that the infrared-enhanced quark-antiquark interaction is stronger and wider for lighter quarks.
Heavy flavor quenching and flow: the roles of initial condition, pre-equilibrium evolution, and in-medium interaction
Shu-Qing Li, Wen-Jing Xing, Feng-Lei Liu, Shanshan Cao, Guang-You Qin
Published: , doi: 10.1088/1674-1137/abadee
Abstract:
Within an advanced Langevin-hydrodynamics framework coupled to a hybrid fragmentation-coalescence hadronization model, we study heavy flavor quenching and flow in relativistic heavy-ion collisions. We investigate how the initial heavy quark spectrum, the in-medium energy loss and hadronization mechanisms of heavy quarks, the evolution profile of the pre-equilibrium stage, the medium flow, and the temperature dependence of heavy quark diffusion coefficients influence the suppression and elliptic flow of heavy mesons at the RHIC and the LHC. Our results show that the different modeling of initial conditions, pre-equilibrium evolution, and in-medium interactions can individually yield uncertainties of approximately 10-40% in D meson suppression and flow at a low transverse momentum. We also find that proper combinations of collisional versus radiative energy loss, coalescence versus fragmentation in hadronization, and the inclusion of medium flow are the most important factors for describing the suppression and elliptic flow of heavy mesons.
Horizon thermodynamics in ${f(R,R^{\mu\nu}R_{\mu\nu}})$ theory
Haiyuan Feng, Rong-Jia Yang
Published: , doi: 10.1088/1674-1137/abadef
Abstract:
We investigate whether the new horizon first law still holds in $f(R,R^{\mu\nu}R_{\mu\nu})$ theory. For this complicated theory, we first determine the entropy of a black hole by using the Wald method, and then derive the energy of the black hole by using the new horizon first law, the degenerate Legendre transformation, and the gravitational field equations. For application, we consider the quadratic-curvature gravity, and first calculate the entropy and energy of a static spherically symmetric black hole, which are in agreement with the results obtained in the literature for a Schwarzschild-(A)dS black hole.
Cross-sections for (n,2n), (n,α), (n,p),(n,d), and (n,t) reactions on molybdenum isotopes in the neutron energy range of 13 to 15 MeV
Junhua Luo, Li Jiang
Published: , doi: 10.1088/1674-1137/abaded
Abstract:
Given the insufficient cross-sectional data regarding the 14-MeV-neutron experiment of molybdenum, the vital fusion reactor structural material, and the significant heterogeneities among the reported values, this study examined the (n,2n), (n,α), (n,p), (n,d), and (n,t) reaction cross sections in molybdenum isotopes based on the neutrons produced via a T(d,n)4He reaction carried out in the Pd-300 Neutron Generator at the China Academy of Engineering Physics (CAEP). A high-resolution gamma-ray spectrometer, which was equipped with a coaxial high-purity germanium detector, was used to measure the product nuclear gamma activities. In addition, 27Al(n,α)24Na and 93Nb(n,2n)92mNb reactions were utilized as the neutron fluence standards. The experimental 92Mo(n,2n)91Mo, 94Mo(n,2n)93mMo, 100Mo(n,2n)99Mo, 98Mo(n,α)95Zr, 100Mo(n,α)97Zr, 92Mo(n,p)92mNb, 96Mo(n,p)96Nb, 97Mo(n,p)97Nb, 98Mo(n,p)98mNb, 92Mo(n,d)91mNb, and 92Mo(n,t)90Nb reaction cross sections were acquired within the 13–15 MeV neutron energy range. Thereafter, we compared and analyzed these obtained cross sections based on the existing IAEA-EXFOR database-derived experimental data, together with evaluation results corresponding to ENDF/B-VIII.0, JEFF-3.3, BROND-3.1, and CENDL-3.1 and the theoretical outcomes acquired through TALYS-1.95 and EMPIRE-3.2.3 (nuclear-reaction modeling tools).
Mesonic condensation in isospin matter under rotation
Hui Zhang, Defu Hou, Jin-Feng Liao
Published: , doi: 10.1088/1674-1137/abae4d
Abstract:
We investigate mesonic condensation in isospin matter under rotation. Using the two-flavor NJL effective model in the presence of global rotation, we demonstrate two important effects of rotation on its phase structure: a rotational suppression of the scalar-channel condensates, in particular, the pion condensation region; and a rotational enhancement of the rho condensation region with vector-channel condensate. A new phase diagram for isospin matter under rotation is mapped out on the $ \omega-\mu_I$ plane where the three distinct phases, corresponding to the $ \sigma,\; \pi, \;\rho$ -dominated regions, respectively, are separated by a second-order line at low isospin chemical potential as well as a first-order line at high rotation and are further connected at a tri-critical point.
Orientation dichroism effect of proton scattering on deformed nuclei
Li Ou, Zhi-Gang Xiao
Published: , doi: 10.1088/1674-1137/abadf1
Abstract:
Proton-induced scattering of 238U nuclei, with spheroidal deformations at beam energies above 100 MeV, is simulated using an improved quantum molecular dynamics model. The angular distribution of the deflected protons is highly sensitive to the orientation of the symmetrical long axis of the target nuclei with respect to the beam direction. As a result, in reverse kinematic reactions, an orientation dichroism effect is predicted, implying that the absorption rate of the 238U beam by a proton target discerns between the parallel and perpendicular orientations of the deformed 238U nuclei.
Decay properties of the Zc(3900) through the Fierz rearrangement
Hua-Xing Chen
Published: , doi: 10.1088/1674-1137/abae4b
Abstract:
We systematically construct all the tetraquark currents/operators of $J^{PC} = 1^{+-}$ with the quark configurations $[cq][\bar c \bar q]$, $[\bar c q][\bar q c]$, and $[\bar c c][\bar q q]$ ($q=u/d$), and derive their relations through the Fierz rearrangement of the Dirac and color indices. Using the transformations of $[qc][\bar q \bar c] \to [\bar c c][\bar q q]$ and $[\bar c q][\bar q c]$, we study decay properties of the $Z_c(3900)$ as a compact tetraquark state; while using the transformation of $[\bar c q][\bar q c] \to [\bar c c][\bar q q]$, we study its decay properties as a hadronic molecular state.
Yield ratio of hypertriton to light nuclei in heavy-ion collisions from ${ \sqrt{{ s}_{{NN}}}}$ = 4.9 GeV to 2.76 TeV
Tian-Hao Shao, Jin-Hui Chen, Che Ming Ko, Kai-Jia Sun, Zhang-Bu Xu
Published: , doi: 10.1088/1674-1137/abadf0
Abstract:
We argue that the difference in the yield ratio ${{{S}}_{\rm{3}}} = \dfrac{{{{{N}}_{_\Lambda ^3{\rm{H}}}}/{{{N}}_\Lambda }}}{{{{{N}}_{^3{\rm{He}}}}/{{{N}}_{{p}}}}}$ measured in Au+Au collisions at $\rm \sqrt{s_{NN}}$ = 200 GeV and in Pb-Pb collisions at $\rm \sqrt{s_{NN}}$ = 2.76 TeV is mainly owing to the different treatment of the weak decay contribution to the proton yield in the Au+Au collisions at $\rm \sqrt{s_{NN}}$ = 200 GeV. We then use the coalescence model to extract from measured $\rm S_3$ the information about the $\Lambda$ and nucleon density fluctuations at the kinetic freeze-out of heavy-ion collisions. We also show, using available experimental data, that the yield ratio ${{{S}}_{\rm{2}}} = \dfrac{{{{{N}}_{_\Lambda ^3{\rm{H}}}}}}{{{{{N}}_\Lambda }{{{N}}_{{d}}}}}$ is a more promising observable than $\rm S_3$ for probing the local baryon-strangeness correlation in the produced medium.