Processing math: 38%

One-loop analytical expressions for gg/γγϕiϕj in Higgs extensions of the standard model and their applications

  • General one-loop formulas for loop-induced processes gg/γγϕiϕj with ϕiϕj=hh, hH, HH are presented in this paper. The analytic expressions evaluated in this study are valid for a class of Higgs Extensions of the Standard Model, e.g., Inert Doublet Higgs, Two Higgs Doublet, Zee-Babu, and Triplet Higgs Models. Analytic expressions for one-loop form factors are expressesd in terms of the basic scalar one-loop two-, three-, and four-point functions following the output format of the packages LoopTools and Collier. Hence, physical results can be evaluated numerically using one of these packages. The analytic results are tested using several checks such as the ultraviolet finiteness and infrared finiteness of the one-loop amplitudes. Furthermore, the amplitudes obey the ward identity due to massless gauge bosons in the initial states. This identity is also verified numerically. Regarding applications, we present the phenomenological results for the investigated processes in the Zee-Babu model as a typical example. In particular, production cross-sections for the processes γγhh are scanned over the parameter space of the Zee-Babu Model.
  • Discovering the structure of scalar potential and consequently answering for the nature of the electroweak symmetry breaking (EWSB) are the most important purposes at future colliders, e.g. the High-Luminosity Large Hadron Collider (HL-LHC) [1, 2], future lepton colliders (LC) [3, 4]. For the purposes, probing for multi-scalar boson productions are great of interest at the future colliders. Because the accuracy production cross-sections provide us not only a crucial information for extracting triple Higgs and quadruple Higgs self-couplings but also direct searches for new scalar particles. In the former case, indirect searches for new physics contributions can be performed through the corrected measurements for Higgs self-couplings. Recently, Standard Model-like (SM-like) Higgs boson pair productions have been probed at the LHC, e.g. via the events of two bottom quarks associated with two photons, four bottom quarks events, etc, as shown in [516]. The future lepton colliders are also proposed for complementary to the physics at the LHC, for examples, the LC can significantly improve accuracy the LHC measurements on many observables [17]. More important point, photon-photon collision is considered as an option of the LC [3, 4] which the scalar Higgs pair productions (ϕiϕj) can be measured through scattering processes ˉˉγγˉϕiϕj for e,μ. Together with the LHC, the LC also open a good opportunity for discovering many of physics beyond the SM (BSM) via multi-scalar Higgs productions.

    In order to match the higher-precision data at the future colliders, theoretical evaluations for one-loop contributing to the di-Higgs boson productions are mandatory. One-loop contributing to the processes at the LHC in the frameworks of the SM, of the Higgs Extensions of the SM (HESM) and other BSMs have performed in many papers, e.g. refering typical works as in Refs. [1880]. In the high-energy photon-photon collisions, one-loop corrections to the di-Higgs boson productions within the SM and many of BSMs have computed in Refs. [8195]. At the future linear lepton colliders, including future multi-TeV muon colliders, the equivalent calculations for the Higgs pair productions have considered in Refs. [9699]. Additionally, one-loop corrections to the scattering processes γγA0A0 (A0 is CP-odd Higgs) in Two Higgs Doublet Model have shown in Ref. [100]. The partonic processes gg/γγϕiϕj play an important role at future colliders. For examples, we can construct the processes ppϕiϕj at the LHC by convoluting the parton distribution functions for the initial gluons. Another case, one can generate the total cross-sections of the scattering processes ˉˉγγˉϕiϕj for e,μ by the convolution of the mentioned partonic channels with the photon energy spectrum in lepton beams. Subsequently, we can obtain the corresponding cross-sections for scalar boson pair productions at future colliders including multi-TeV muon collider. In the scope of this paper, we present a general one-loop formulas for loop-induced partonic processes gg/γγϕiϕj with ϕiϕj=hh,hH,HH which are valid for a class of Higgs Extensions of the Standard Models, e.g. Inert Doublet Higgs Models, Two Higgs Doublet Models, Zee-Babu models as well as Triplet Higgs Models, etc.

    In this computation, analytic expressions for one-loop form factors are written in terms of the basic scalar one-loop two-, three- and four-point functions with following the output format of the packages LoopTools [102] as well as Collier [103]. Numerical investigation can be hence generated by using one of the mentioned packages. Analytic results are confirmed by several checks such as such as the ultraviolet finiteness, infrared finiteness of the one-loop amplitudes. Furthermore, the amplitudes also obey the ward identity due to massless gauge bosons in the initial states. This identity is also verified numerically in the work. In the applications, the phenomenological results for the calculated processes in the Zee-Babu Model are examined as a typical example in this article. Especially, production cross-section for the scattering γγhh are scanned over the parameter space of the model under consideration.

    The paper is presented with the structure as follows. Detailed evaluations for one-loop corrections to with CP-even Higgses ϕi,jh,Hj in the HESMs are shown in section 2. We then discuss on the numerical checks for the calculation and show for the applications of this work in the section 3. Conclusion and outlook are devoted in section 4. Analytic expressions for one-loop form factors given in the appendix B. Deriving the additional couplings in the Zee-Babu models are presented in the appendix C.

    In this section, detailed evaluations for one-loop contributions for the scattering processes gg/γγϕiϕj in the HESMs are shown in this section. We first arrive at the concrete evaluations for the processes γγϕiϕj. We then extend these results to the processes ggϕiϕj.

    Additional scalar bosons in the mentioned HESMs are included as CP-even Higgses ϕi, CP-odd Higgses A0j and singly (doubly) charged Higgses SSQk with charged quantum number Q, for i,j,k=1,2,. In this work, SQk can be singly charged Higgs H± and doubly charged Higgs K±±, appropriately. Beyond the SM, the extra couplings relating to the mentioned scalar particles in the HESMs are parameterized as general form gvertex. Explicitly formulas for gvertex for each model under investigation are presented in concrete, seen Zee-Babu Model in the application of this work and our previous work [104] for examples.

    By employing the on-shell renormalization scheme developed in [113115] for the fermion sector and gauge sector as well as the improved on-shell renormalization scheme for the scalar sector following the method in [116], one loop-induced Feynman diagrams for the production processes γγϕiϕj with CP-even Higgses ϕi,jh,H in the HESMs are plotted in the following paragraphs. The calculations are handled in the't Hooft-Feynman (HF) gauge which one loop-induced Feynman diagrams can be categorized into several groups as explained in below. We mention the first classification Feynman diagrams as shown in Fig. 1. In this group, we list all one-loop diagrams with ϕk-poles for ϕk=h,H. These kinds of diagrams appear in this group are included all one-loop diagrams contributions for off-shell CP-even Higges decay like ϕkγγ with fermions (noted as G1), W-boson, charged Goldstone χ±, Ghosht particles c± (as G2) and charged Higges SQ (as G3) internal lines in connecting with the vertices ϕkϕiϕj.

    Figure 1

    Figure 1.  All one-loop diagrams with fermions, W bosons (with charged Goldstone χ±, Ghosht particles c±) and charged Higges exchanging in the loop of ϕk-poles, for ϕk=h,H. These kinds of diagrams appear in this group are included one-loop contributions for off-shell CP-even Higges decay like ϕkγγ in connecting with the vertices ϕkϕiϕj.

    The second classification of one-loop Feynman diagrams is involed to the one-loop box diagrams. The first type of box diagrams contributing to the computed processes is plotted as in Fig. 2. In these topologies, all fermions internal lines are taken into consideration (noted as group G4).

    Figure 2

    Figure 2.  One-loop four external legs with fermion internal lines contributing to the computed processes (noted as group G4).

    Additionally, the second type of one-loop four-point Feynman diagrams with vector W-bosons, the charged Goldstone bosons χ±, Ghosht particles c± internal lines are concerned in the calculated processes. These diagrams are grouped into G5 as shown in Figs. 3, 4.

    Figure 3

    Figure 3.  All one-loop box diagrams contributing to the processes with W-boson exchanging in the loop (putted into G5).

    Figure 4

    Figure 4.  All one-loop box diagrams contributing to the processes with W-boson exchanging in the loop (putted into G5).

    In the scope of the HESMs concerned in this work, we have also another type pf one-loop box diagrams with both W-boson and singly charged Higgs SQH± propagating in the loop, seen Figs. 5, 6. We put these diagrams into group G6.

    Figure 5

    Figure 5.  One-loop box diagrams with both W-boson and charged Higgs propagating in the loop (putted into G6).

    Figure 6

    Figure 6.  Further one-loop box diagrams with both W-boson and charged Higgs propagating in the loop (putted into G6).

    Finally, we consider the last type of one-loop box diagrams with charged Higgses SQH±,K±± in the loop, as shown in Fig. 7. We then added these diagrams in to G7. Both singly charged and doubly charged Higges are considered being internal line particles in this case.

    Figure 7

    Figure 7.  All one-loop box diagrams with charged Higgs in the loop (considered as G7).

    We turn out our attention to discuss on analytic results. In general, one-loop amplitude for scattering processes γμ(q1)γν(q2)ϕi(q3)ϕj(q4) is presented in terms of Lorentz structure as follows:

    Aγγϕiϕj=[F(γγ)00gμν+3i,j=1;ijF(γγ)ijqνiqμj]εμ(q1)εν(q2).

    (1)

    In this formulas, the vector εμ(q) is polarization vector of external photon with the 4-dimension momentum q. The scalar coefficients F(γγ)ij for i,j=1,2,3 are called as one-loop form factors. They are written as functions of the following kinematic invariant variables:

    ˆs=(q1+q2)2=q21+2q1q2+q22=2q1q2,

    (2)

    ˆt=(q1q3)2=q212q1q3+q23=M2ϕi2q1q3,

    (3)

    ˆu=(q2q3)2=q222q2q3+q23=M2ϕi2q2q3.

    (4)

    The kinematic invariant masses for external legs are given as q21=q22=0, q23=M2ϕi, q24=M2ϕj. These variables obey the follow identity as ˆs+ˆt+ˆu=M2ϕi+M2ϕj. Associated with two massless photons in the initial states, one loop-induced amplitude must satisfy the ward identity. As a result, we derive the following relations among the form factors as:

    F(γγ)00=ˆtM2ϕi2F(γγ)13ˆs2F(γγ)12,

    (5)

    F(γγ)00=ˆuM2ϕi2F(γγ)23ˆs2F(γγ)12,

    (6)

    F(γγ)13=ˆuM2ϕiˆsF(γγ)33,

    (7)

    F(γγ)23=ˆtM2ϕiˆsF(γγ)33.

    (8)

    Using the mentioned above relations, one-loop amplitude is expressed via two independent one-loop form factors, e.g. taking F(γγ)12 and F(γγ)33 as an example. In detail, the amplitude can be rewritten as follows:

    Aγγϕiϕj=[PμνF(γγ)12+QμνF(γγ)33]εμ(q1)εν(q2).

    Where two given tensors are defined as

    Pμν=qμ2qν1ˆs2gμν,

    (9)

    Qμν=(M2ϕiˆt)(M2ϕiˆu)2ˆsgμν+qμ3qν3+(ˆtM2ϕi)ˆsqμ2qν3.

    (10)

    Analytic results for one-loop form factors F(γγ)12 and F(γγ)33 for the considered processes in the HESMs are collected in terms of the basic scalar one-loop functions. The form factors F(γγ)ab for ab={12,33} are decomposed into triangle and box parts which are corresponding to the contributions from one-loop triangle and one-loop box diagrams shown in above paragraphs. In detail, the form factor are expressed as follows:

    F(γγ)12=ϕk=h,Hgϕkϕiϕj[sM2ϕk+iΓϕkMϕk]×[fgϕkffCγγfFTrig12,f+gϕkWWFTrig12,W+S=H±,K±±gϕkSSFTrig12,S]+fgϕiffgϕjffCγγfFBox12,f+[gϕiWWgϕjWWFBox, 112,W+gϕiϕjWWFBox, 212,W+gϕiϕjχχFBox, 312,W]+S=H±,K±±[gϕiSSgϕjSSFBox,112,S+gϕiϕjSSFBox,212,S]+gϕiH±WgϕjH±WFBox12,W,H±,

    (11)

    F(γγ)33=fgϕiffgϕjffCγγfFBox33,f+gϕiWWgϕjWWFBox33,W+SQ=H±,K±±gϕiSSgϕjSSFBox33,S+gϕiH±WgϕjH±WFBox33,W,H±.

    (12)

    In the above equations, Cγγf=NfC(eQf)2 for the decay process γγϕiϕj. Where Qf(NfC) is denoted for charged (color) quantum number of the corresponding fermion f. We note that S is for both singly charged Higgs H± and doubly charged Higgs K±± in the above formulas. The first contributions to one-loop form factors F(γγ)12 are calculated from one-loop diagrams appear in off-shell CP-even Higges decay like ϕkγγ connecting with the vertices ϕkϕiϕj (as plotted in Fig. 1). They are decomposed into each term in the bracket, e.g. FTrig12,f (from fermions f in the loop of G1 in Fig. 1), FTrig12,W (from W boson in the loop of G2 in Fig. 1), FTrig12,S (from charged Higges in the loop of G3 in Fig. 1). Secondly, one-loop factors FBox12,f are computed from the fermions f exchanging in the box diagrams as in Fig. 2. One-loop form factors collected from one-loop W boson propagating in the box diagrams as in Fig. 3, can be divided into the following parts, e.g. FBox, k12,W for k=1,2,3 which are corresponding to the factors factorized out by general trilinear-couplings of ϕiWW,ϕjWW, quadratic-couplings of ϕiϕjWW and ϕiϕjχχ as in Eq. 11. We also express the factors attributing from one-loop charged Higgs in the box diagrams into two sub-factors FBox,k12,S for k=1,2 which are factorized out by general trilinear-couplings of ϕiSS,ϕjSS, quadratic-couplings of ϕiϕjWW and ϕiϕjSS as in Eq. 11. Lastly, from diagrams with mixing W boson and singly charged Higgs in the loop, we have the factors FBox12,WH± which can be factorized out in term of the trilinear-couplings ϕiH±W,ϕjH±W. Otherwise, the form factors F(γγ)33 are only contributed from one-loop box diagrams. They can be factorized out in term of general couplings as in Eq. 12. Analytic results for one-loop form factors given in Eqs. 11, 12 are shown explicitly in the appendix B.

    Analytic results presented in the above paragraphs can be extended to the channels ggϕiϕj. There aren't W bosons and charged Higgs propagating in the loop diagrams of the processes ggϕiϕj. All one-loop Feynman diagrams with f exchanging in the loop are taken into account in this case. In detail, the first diagram G1 in Fig. 1 and all diagrams G4 in Fig. 2 are contributed to the processes ggϕiϕj. Subsequently, all one-loop form factors FTrig12,W, FTrig12,S, FBoxab,W, FBoxab,S and FBoxab,WH± for ab={12,33} are being to zero in this case. Finally, one-loop form factors in the channels ggϕiϕj are expressed as follows

    F(gg)12=fϕk=h,HCggfgϕkϕiϕj[sM2ϕk+iΓϕkMϕk][gϕkffFTrig12,f+gϕiffgϕjffFBox12,f],

    (13)

    F(gg)33=fCggfgϕiffgϕjffFBox33,f.

    (14)

    Where Cggf=2g2s with gs=4παs. αs is strong coupling constant.

    Having all the necessary form factors, the cross sections are then evaluated as follows

    ˆσgg/γγϕiϕjHESM(ˆs)=1n!116πˆs2tmaxtmindˆt14unpol.|Agg/γγϕiϕj|2

    (15)

    with n=2 if the final particles are identical such as gg/γγhh,HH, and 1 otherwise like gg/γγhH. The integration limits are

    tmin(max)=ˆs2{1M2ϕi+M2ϕjs±[12(M2ϕi+M2ϕjs)+(M2ϕiM2ϕjs)2]1/2}.

    (16)

    Total amplitude is given

    14unpol.|Agg/γγϕiϕj|2=M4ϕiˆs2+(M2ϕiM2ϕjˆtˆu)28ˆs2|F(gg/γγ)33|2M2ϕiˆs4Re[F(gg/γγ)33(F(gg/γγ)12)]+ˆs28|F(gg/γγ)12|2.

    We are going to present the phenomenological results for this work. We consider two typical applications in this work which are the SM and Zee-Babu Model. We work in the Gμ-scheme and use the input parameters in the SM as same as our previous papers [117, 118]. In the phenomenological results for Zee-Babu model, the parameter space will be taken appropriately in the next subsections. Hereafter, we only discuss the partonic processes γγϕiϕj as typical example for the numerical tests as well as for the phenomenological analysis.

    We first perform numerical tests for the calculations. The form factors must be the ultraviolet finiteness and the infrared finiteness. Furthermore, one-loop amplitude must follow the ward identity due to the initial photons. Numerical checks for the ultraviolet finiteness, infrared finiteness for one-loop form factors are shown in Table 1. For this test, we set the couplings λHΦ=+2, λKΦ=1 and the charged scalar masses as follows: MH±=500 GeV, MK±±=1000 GeV. Additional, one sets ˆs=15002 GeV, ˆt=2002 GeV2. By varying the parameters CUV,λ2 (see appendix A for the definition of these parameters) in a wide range, we find that the results are good stability up to last digits (over 15 digits at the amplitude level).

    Table 1

    Table 1.  Numerical checks for the UV- and IR- finiteness for one-loop form factor F(γγ)12, F(γγ)33. For this test, we set the couplings λHΦ=+2, λKΦ=1 and the charged scalar Higgs masses as follows: MH±=500 GeV, MK±±=1000 GeV. Additional, one sets ˆs=15002 GeV2, ˆt=2002 GeV2.
    (CUV,λ2)F(γγ)12F(γγ)33
    (0,1)4.43237792963761510101.274104987282513108
    +7.4277149242473331010i+2.439535005865118107i
    (102,104)4.43237792963772110101.274104987282583108
    +7.4277149242473331010i+2.439535005865118107i
    (104,108)4.43237792963748910101.274104987282561108
    +7.4277149242473331010i+2.439535005865118107i
    DownLoad: CSV
    Show Table

    Due to the initial photons taking part in the scattering processes, one-loop amplitude must follow the ward identity. The identity is verified numerically in this work. This can be done as follows. We collect analytic results for one-loop form factors F(γγ)00, F(γγ)12, F(γγ)23 and F(γγ)33 independent way. All the relations in Eqs. 5, 6, 7, 8 are confirmed numerically. The form factors F(γγ)TT is given

    F(γγ)TT=ˆuM2ϕi2ˆtM2ϕiˆsF(γγ)33ˆs2F(γγ)12.

    (17)

    One then verifies numerically the equation that F(γγ)TT=F(γγ)00. In Table 2, we show numerical results for the test. In this Table, we fix the value of (ˆt,λHΦ,λKΦ) in the first column. The results of form factors F(γγ)TT obtaining from F(γγ)12 and F(γγ)33 as shown in Eq. 17 are shown in the second column. The last column is presented for the results of F(γγ)00. The relation F(γγ)00=F(γγ)TT is confirmed numerically in this Table. From the data, we find that the results are good stability over 12 digits.

    Table 2

    Table 2.  The ward identity check, confirming the relation F(γγ)TT=F(γγ)00, for the case of MH±=500 GeV, MK±±=1000 GeV, ˆs=15002 GeV2 and varying of ˆt, λHΦ, λKΦ.
    F(γγ)12
    (ˆt,λHΦ,λKΦ)F(γγ)33
    F(γγ)TT [given in Eq. 17]F(γγ)00
    3.506673731227688109
    9.48914729381836109i
    (+3002,+1.5,+0.5)2.073875880451545107
    +3.018956669634884108i
    0.015663720868439760.01566372086843974
    +0.01122720571181518i+0.01122720571181515i
    2.473869485576741109
    1.389444047877029108i
    (+3002,1.5,+0.5)2.073875880451545107
    +3.018956669634884108i
    +0.005051569661633232+0.005051569661633237
    +0.0118652133892367i+0.0118652133892366i
    3.691602634060829109
    1.389444047877029108i
    (+3002,1.5,0.5)2.073875880451545107
    +3.018956669634884108i
    +0.03914990554641669+0.03914990554641665
    +0.0118652133892367i+0.0118652133892364i
    +1.601959722985257109
    3.1793646801004791011i
    (3002,+1.5,+0.5)1.286260135515678108
    +1.785310771633653107i
    0.030022888771586040.03002288877158601
    +0.01073513714169602i+0.01073513714169605i
    +1.417030820152116109
    4.437086831752933109i
    (3002,1.5,0.5)1.286260135515678108
    +1.785310771633653107i
    +0.02479073764327042+0.02479073764327045
    +0.01137314481911753i+0.01137314481911754i
    DownLoad: CSV
    Show Table

    In this case, we have no contributions of charged Higgs as well as the mixing of charged Higgs with W bosons in the loop. By replacing the general couplings to the SM's couplings respectively, we arrive at the analytical results for the process γγhh in the SM. Additionally, cross sections for the process γγhh have calculated in the SM in many previous works. For example, we take Ref. [98] in which the results have shown in α-scheme, α=1/137.035999084(21), cross-section for γγhh at ˆsγγ=470 GeV is about 0.28 fb. In our work, the result is corresponding to 0.275 fb. This value is good agreement with the result in Ref. [98]. We note that part of the results γγhh in the SM are shown together with γγhh,hH,HH in the Inert Higgs Doublet model, Two Higgs Doublet Models as in our previous paper [104]. In this paper, we are not going to present the phenomenological results for γγhh in the SM in further.

    The Zee-Babu model is cosnidered as another typical application. We first review briefly the Zee-Babu model based on the papers [105, 106]. The model is added to two complex scalars which are a singly charged scalar H± and a doubly charged scalar K±± with the quantum numbers as H±(1,1,±1), K±±(1,1,±2), respectively. The Lagrangian of the Zee-Babu model constructed as follows:

    LZB=LSM+LZBKVZB+LZBY.

    (18)

    In the Lagrangian, the kinetic term for the scalar fields K and H is expressed explicitly by

    LZBK=(DμH)(DμH)+(DμK)(DμK)

    (19)

    with the following covariant derivatives given Dμ=μ+igH/KYH/KBμ. The electromagnetic charge operator is given QH/K=T3L+Y in which the hypercharge is taken YH±=±1 (YK±±=±2), respectively. Two additional scalars don't carry the color or weak isopin. As a result, additional scalar particles only interact with the U(1)Y group.

    The Zee-Babu scalar potential is taken the form of

    VZB=μ21HH+μ22KK+λH(HH)2+λK(KK)2+λHK(HH)(KK)+(μLHHK+μLHHK)+λKΦ(KK)(ΦΦ)+λHΦ(HH)(ΦΦ).

    (20)

    For the EWSB, the Higgs doublet field of SM Φ is parameterized as follows:

    Φ=(χ±v+h+iχ02)

    (21)

    with v246. GeV for coinciding with the SM case. The particles h,χ0 and χ± are corresponding to Higgs bosons of SM and neutral Goldstone bosons, charged Goldstone bosons. From the Zee-Babu scalar potential, the masses of H± and K±± can be collected as

    M2K±±=μ22+λKΦ2v2,M2H±=μ21+λHΦ2v2.

    (22)

    The Yukawa lagragian LZB part which describes the interactions between the SM leptons to the additional scalar fields K and H are given by

    LZBY=fij¯~LiLjH+gij¯(ecR)iejRK+¯fij(¯~LiLj)H+¯gij(¯(ecR)iejR)K.

    (23)

    In the Yukawa sector LZBY, we denote that Li=(νiL,eiL) and ˜Li=iσ2(L)i with generation index i=1,2,3. We have also noted as L(1,2,1/2)(νL,L)T and R(1,1,1). The 3×3 Yukawa coupling matrices fij and gij are anti-symmetric (fij=fji) and symmetric (gij=gji), respectively.

    All the additional couplings from the Zee-Babu model are listed in Table 3. Several couplings in this Table are taken part in to the processes under investigation.

    Table 3

    Table 3.  The additional couplings from the ZB model are listed in this Table. Some of these ones are taken part in to the processes under investigation.
    Vertices Notations Couplings
    ZμH±(K±±)H(K) gZHH(KK)××(pH±(K±±)pH(K))μ iesWcWQH(K)××(pH±(K±±)pH(K))μ
    AμH±(K±±)H(K) gAH±H(K±±K)××(pH±(K±±)pH(K))μ ieQH(K)××(pH±(K±±)pH(K))μ
    AμAνH±H(K±±K) gAAH±H(K±±K)gμν ie2Q2H(K)gμν
    ZμZνH±H(K±±K) gZZH±H(K±±K)gμν ie2(s2Wc2WQ2H(K))gμν
    AμZνH±H(K±±K) gAZH±H(K±±K)gμν ie2(s2Wc2WQ2H(K))gμν
    H±H±K gH±H±K iμL
    hHH± ghHH± ivλHΦ=i2(μ21M2H±)v
    hKK±± ghKK±± ivλKΦ=i2(μ22M2K±±)v
    hhHH± ghhHH± iλHΦ=i2(μ21M2H±)v2
    hhKK±± ghhKK±± iλKΦ=i2(μ22M2K±±)v2
    H±HKK±± gH±HKK±± iλHK
    H±Hχχ± gH±Hχχ± iλHΦ=i2(μ21M2H±)v2
    K±±Kχχ± gK±±Kχχ± iλKΦ=i2(μ22M2K±±)v2
    DownLoad: CSV
    Show Table

    It is stressed that the Yukawa Lagragian LZB part presented in above is not related to the computed processes. As a result, the parameter space of the Zee-Babu model for our next phenomenological studies is included as PZB={M2H±,MK±±,λKΦ,λHΦ}. For the updated parameter space in the Zee-Babu, we refer the papers [107112].

    We pay our attention to phenomenological results for the Zee-Babu model. To our knowledge, we emphasize that all phenomenological results presented in the following paragraphs for the Zee-Babu model can be considered to be first results from this study. First, cross-sections are presented as functions of center-of-mass (CoM) energies (ˆs). For this plot, we fix MH±=400 GeV, MK±±=800 GeV and λKΦ=±0.7,λHΦ=±2. In the following plot, The CoM energies are vsaried from 500 GeV to 2000 GeV. The red line shows for cross sections with λKΦ=+0.7,λHΦ=2, the blue line presents for the data with λKΦ=+0.7,λHΦ=2 and the green line is corresponding to the results for λKΦ=0.7,λHΦ=2 (and pink color line for the data at λKΦ=0.7,λHΦ=+2). The black line is for the data of the process in the SM. In general, we observe two peaks of cross sections at ˆs2MH±=800 GeV and ˆs2MK±±=1600 GeV. We find that production cross-sections are proportional to ˆs2 as in Eq. 15. Therefore, in general the production cross-sections are decreased with increasing the center-of-mass (CoM) energies. The cross-sections are enhanced at around the thresholds of producing the pair of charged Higgses. Depending on the signs of λHΦ and λKΦ, threshold enhanced cross-sections are different behavior in each case. This can be explained as follows. If we consider the same input configurations for both singly charged Higgs and doubly charged Higgs in the loop, e.g. the same values for the masses and the couplings. Approximately, one-loop amplitude with doubly charged Higgs internal lines may be estimated as 4 times of the ones with singly charged Higgs in the loop. It is because the couplings of gAK±±K=2gAH±H. The contributions of doubly charged Higgs are domimant in comparison with the corresponding ones from singly charged Higgs. Examining the artributions from doubly charged Higgs in the loop in further concrete, we find that the couplings g2hK±±K appear in the one-loop box diagrams. However the couplings ghK±±K are only taken into account in one-loop triangle diagrams. As a result, the squared amplitudes of one-loop box diagrams may cancel with the ones from mixing of one-loop triangle diagrams and box diagrams when the couplings ghK±±K being negative values. This explains that cross-sections in the cases of λKΦ=+0.7,λHΦ=2 (λKΦ=0.7,λHΦ=2 as same reason) tend to the SM case. Other cases, one finds the large contributions from charged scalars in the loop around the peaks.

    We next study enhancement factor which are given by

    μZBhh=ˆσZBhhˆσSMhh(ˆs,PZB)

    (24)

    over the parameters of the Zee-Babu model.

    In Fig. 8, the factors are scanned over the singly charged Higgs masses MH± and λHΦ. In the scatter plots, we fix MK±±=800 GeV and λKΦ=0.7 (left panel plots), λKΦ=+0.7 (right panel plots). In the following plots we set ˆs=1000 GeV (for all above plots) and ˆs=1500 GeV (for below plots), respectively. We vary 200 GeV MH±1000 GeV and 0λHΦ5. We find that the factors tend to 1 (tend to the SM case) when λHΦ0. In this limit, the contributions of singly charged Higges are going to zero and because of the small contributions of doubly charged Higgs due to the large value of MK±± and the small value of the couplings λKΦ. At ˆs=1 TeV, we observe a narrove peak of producing two charged Higgses at 500 GeV. The factors are sensitive with λHΦ in the MH± regions of the below the peak. Above the peak region of MH±, the factor depends slightly on λHΦ and its value goes to 1. It shows that the contributions of singly and doubly charged Higges being small in the concerned regions. We note that for the case λKΦ=+0.7 the factors are bigger than the ones in case of λKΦ=0.7. This can be explained the same reasons as in Fig. 9. We obtain the same behavior for the enhancement factors at ˆs=1.5 TeV.

    Figure 8

    Figure 8.  The scatter plots as functions of (M2H±,λHΦ). In these plots, we vary 200 GeV MH±1000 GeV and 0λHΦ5.

    Figure 9

    Figure 9.  Cross section as functions of C.o.M. MH±=400 GeV, MK±±=800 GeV and λKΦ=±0.7, λHΦ=±2. In the following plots, we vary ˆs=500 GeV to ˆs=2 TeV.

    The investigations for the enhancement factors in the parameter space of (MH±,MK±±) are next considered. For this study, we take λKΦ=λHΦ=±0.7. In the following plots, we vary 200 GeV MH±,MK±±1000 GeV at fixing ˆs=1 TeV (for all plots 10) and ˆs=1.5 TeV (for all plots 11). In general, the factors are inversly propotional to MH±,MK±±. For the cases of λHΦ=0.7, λKΦ=0.7 (for left pannel Figures) the enhancement are domimant at low mass regions of MH±,MK±±. We have no peak of the factor around 500 GeV in this case. The factors tend to 1 beyond the regions of MK±±>500 GeV. We next coments on the cases of λHΦ=0.7, λKΦ=+0.7 (for right pannel Figures), the factors are suppressed in the low mass regions of MH±,MK±±. They develop to the peak 2MK±±=2MH±=500 GeV. The factors are in the range of [1.0,1.15] beyond the peak regions.

    Figure 10

    Figure 10.  The scatter plots as functions of (MH±, MK±±) at 1 TeV of CoM. In these plots, we vary 200 GeV MH±, MK±±1000 GeV.

    The enhancement factors are examined in the parameter space of (MH±,MK±±) at 1.5 TeV of CoM. We observe the same behavior of the factors as previous 1 TeV of CoM. In both CoM energies mentioned, the factors in the case of (λHΦ=+0.7, λKΦ=+0.7) are smallest in comparison with other cases. It is explained as the data in Fig. 9.

    Figure 11

    Figure 11.  The scatter plots as functions of (MH±, MK±±) at 1.5 TeV of CoM. In these plots, we vary 200 GeV MH±, MK±±1000 GeV.

    As we mentioned in the introduction of the paper, by the convolution of the partonic processes in this work with the photon energy spectrum in lepton beams or with the parton distribution functions for initial gluons. Subsequently, we can obtain the corresponding cross-sections for scalar boson pair productions at future colliders including multi-TeV muon collider or the HL-LHC in many of HESMs. These topics are far from our current discussions and will be devoted in our future papers.

    A general one-loop formulas for loop-induced processes gg/γγϕiϕj with CP-even Higges ϕi,ϕj=h,Hj which are valid for a class of Higgs Extensions of the Standard Models, e.g. Inert Doublet Higgs Models, Two Higgs Doublet Models, Zee-Babu models as well as Triplet Higgs Models, etc, are presented in the paper. Analytic expressions for one-loop form factors are written in terms of the basic scalar one-loop functions. The scalar functions are output in the packages LoopTools and Collier. Physical results are hence evaluated numerically by using one of the mentioned packages. Analytic results are tested by several checks such as the ultraviolet finiteness, infrared finiteness of the one-loop amplitudes. Furthermore, the amplitudes also obey the ward identity due to massless gauge bosons in the initial states. This identity is also verified numerically in the works. Additionally, both the packages LoopTools and Collier are used for cross-checking for the final results before generating physical results. In the applications, we show phenomenological results for the studied processes in the Zee-Babu model as a typical example in this reference. Production cross-section for the processes γγhh scanned over the masses of singly charged Higgs, doubly charged Higges as well as their couplings to SM-like Higgs are studied.

    We apply tensor reduction method developed in Ref. [101] for this computation. The method is described briefly in the appendix. Following the technique, tensor one-loop integrals rank P with N-external legs can be decomposed into the basic scalar one-loop functions with N4 (they are labeled as A0, B0, C0, D0). Definition of tensor integrals with rank P (taking N4 external legs for examples) is

    {A;B;C;D}μ1μ2μP=(μ2)2d/2ddk(2π)dkμ1kμ2kμP{D1;D1D2;D1D2D3;D1D2D3D4}.

    (A1)

    In this formula, Dj (j=1,,4) are the inverse Feynman propagators

    Dj=(k+qj)2m2j+iρ,

    (A2)

    qj=ji=1pi, pi are the external momenta, mj are internal masses in the loops. One-loop integrals are handled in the space-time dimension d=42ε. We note that one-loop integrals contain the ultraviolet divergences. The divergent part is as CUV=1/εlog(4π)+γE with EulerGamma γE0.57721. Furthermore, the fictitious mass λ is introduced for virtual photon to regularize the infrared divergences. The parameter μ2 plays a key role of a renormalization scale. Explicit reduction formulas for one-loop one-, two-, three- and four-point tensor integrals up to rank P=3 [101] are presented as follows. For one-loop one-, two-, three-point tensor integrals, one has

    Aμ=0,

    (A3)

    Aμν=gμνA00,

    (A4)

    Aμνρ=0,

    (A5)

    Bμ=qμB1,

    (A6)

    Bμν=gμνB00+qμqνB11,

    (A7)

    Bμνρ={g,q}μνρB001+qμqνqρB111,

    (A8)

    and

    Cμ=qμ1C1+qμ2C2=2i=1qμiCi,

    (A9)

    Cμν=gμνC00+2i,j=1qμiqνjCij,

    (A10)

    Cμνρ=2i=1{g,qi}μνρC00i+2i,j,k=1qμiqνjqρkCijk.

    (A11)

    For one-loop four-point tensor functions, the reduction formulas are given

    Dμ=qμ1D1+qμ2D2+qμ3D3=3i=1qμiDi,

    (A12)

    Dμν=gμνD00+3i,j=1qμiqνjDij,

    (A13)

    Dμνρ=3i=1{g,qi}μνρD00i+3i,j,k=1qμiqνjqρkDijk.

    (A14)

    The tensor {g,qi}μνρ [101] is given by {g,qi}μνρ=gμνqρi+gνρqμi+gμρqνi. The scalar Passarino-Veltman functions (PV-functions) [101] are A00,B1,,D333 in the right hand sides. The PV-functions are calculated in terms of the basic scalar one-loop functions with N4, e.g. A0-, B0-, C0- and D0- scalar functions which are implemented into LoopTools [102] and Collier [103] for numerical computations.

    In this appendix, we show analytic results for one-loop form factors given in the equations 11, 12. In the analytic expressions, we use the following kinematic variables as

    xt(u)=ˆt(ˆu)ˆs,xϕi,j,k=M2ϕi,j,kˆs,

    (B1)

    xf=m2fˆs,xW=M2Wˆs,xS=M2Sˆs

    (B2)

    for SSQH±, K±± in the below results. We first arrive at the factors FTrig12,f/W/S calculated from one-loop triangle with connecting to ϕk-poles. The factors are written in terms of scalar one-loop three-point functions C0. We first take into account all fermions propagating in the loop, as ploted in Fig. 1 (G1), the factors are given explicitly

    FTrig12,f=14π2[4xf+2m2f(4xf1)C0(0,ˆs,0;m2f,m2f,m2f)].

    (B3)

    One next considers one-loop diagrams with W boson exchanged in the loop in connecting with ϕk-poles (G2), as shown in Fig. 1. The corresponding factors are given by

    FTrig12,W=e28π2M2W[xϕk+6xW+2M2W(xϕk+6xW4)C0(0,ˆs,0;M2W,M2W,M2W)].

    (B4)

    Furthermore, considering singly (as well as doubly) charged Higgses in the loop, as plotted in Fig. 1 (G3), the respective factors are collected as

    FTrig12,S=e2Q2S4π2ˆs[1+2M2SC0(0,ˆs,0;M2S,M2S,M2S)].

    (B5)

    Here we note QS for charged quantum numbers for charged scalars (S).

    We then arrive at the factors contributing from the one-loop box diagrams with fermions f, W-bosons and singly (doubly) charged Higgses S internal lines, noted as FBoxab,P with ab12,33 and P=f,W,S. For all fermions propagating in the loop, the factors are casted into the form of

    FBoxab,f=14π2[δfab+η(0)ab,fC0(0,ˆs,0;m2f,m2f,m2f)+η(1)ab,fC0(M2ϕi,M2ϕj,ˆs;m2f,m2f,m2f)+η(2)ab,fC0(ˆt,M2ϕi,0;m2f,m2f,m2f)+η(3)ab,fC0(M2ϕi,0,ˆu;m2f,m2f,m2f)+η(4)ab,fC0(0,M2ϕj,ˆt;m2f,m2f,m2f)+η(5)ab,fC0(ˆu,M2ϕj,0;m2f,m2f,m2f)+ζ(0)ab,fD0(0,M2ϕj,M2ϕi,0;ˆt,ˆs;m2f,m2f,m2f,m2f)+ζ(1)ab,fD0(0,M2ϕi,M2ϕj,0;ˆu,ˆs;m2f,m2f,m2f,m2f)+ζ(2)ab,fD0(M2ϕi,0,M2ϕj,0;ˆu,ˆt;m2f,m2f,m2f,m2f)].

    (B6)

    In this formulas, we have used the notations: δf12=4xf, δf33=0. All presented coefficients in the above-mentioned factors are given by

    η(0)12,f=m2f[(xϕixt)(xϕjxt)+xt]2×{2x2ϕi[4xf[1+(xϕjxt)2]2xϕj+xt+1]+8x2txf(1xϕj+xt)2x3ϕi+xϕi[2x2t[8xf(2xϕjxt1)1]+(1xϕj)(16xϕjxtxf8xf2xt+xϕj1)]},

    (B7)

    η(1)12,f=m2fxϕi(xϕi+xϕj8xf1)[x2ϕi+x2ϕj+1+2(xt+1)(xtxϕixϕj)][(xϕixt)(xϕjxt)+xt]2,

    (B8)

    η(2)12,f=m2f(xϕixt)2[(xϕixt)(xϕjxt)+xt]2×{(8xfxϕixϕj)[x2t(xϕi+2xϕjxt2)+xϕix2ϕj]+xt[(2xϕi+xϕj2)[xϕj(xϕi+xϕj)8xfxϕj]8xf+xϕj]+xϕixϕj}.

    (B9)

    We also have the following coefficients:

    ζ(0)12,f=ˆs2xf[(xϕixt)(xϕjxt)+xt]2{16x2f[(xϕixt)(xϕjxt)+xt]×[xϕi(xϕj+1)xt(xϕi+xϕjxt1)]+2xf{x2ϕixϕj[xϕj(xϕi+xϕj+2)+xϕi1]+x3t(xϕi+xϕj+1)[xt+2(xϕi+xϕj1)]x2t[xϕi[xϕj(5xϕi+5xϕj+1)+x2ϕi+2]+(xϕj1)2(xϕj+1)]+xϕixt(xϕi+xϕj1)[xϕi(2xϕj+1)+xϕj(2xϕj+3)1]}+xϕixt(xϕixϕj+x2t)},

    (B10)

    ζ(2)12,f=ˆs2xf[(xϕixt)(xϕjxt)+xt]{16x2f[xt(xϕi+xϕjxt1)+xϕi(xϕj+1)]2xf{x2t[4(x2ϕi+x2ϕj)7(xϕi+xϕj)+16xϕixϕj+5]+xϕi[xϕi(4x2ϕj+xϕj+1)+xϕj(xϕj+2)1]xt(xϕi+xϕj1)[xϕi(8xϕj+1)+xϕj+1]+4x3t[xt2(xϕi+xϕj1)]}+(xϕi+xϕj)[(xϕixt)(xϕjxt)+xt]2}.

    (B11)

    The corresponding coefficients for the factors FBox33,f are shown as follows:

    η(0)33,f=m2f[(xϕixt)(xϕjxt)+xt]2{8xf(xϕi+xϕj1)+xϕi(2xt4xϕjxϕi+2)+2xt(xϕjxt1)(xϕj1)2},

    (B12)

    η(1)33,f=1xϕi×η(1)12,f,

    (B13)

    η(2)33,f=m2f(xϕixt)[xt(xt8xf)+xϕixϕj][(xϕixt)(xϕjxt)+xt]2,

    (B14)

    ζ(0)33,f=s2xf[(xϕixt)(xϕjxt)+xt]2×{16x2f[(xϕixt)(xϕjxt)+xt]+xt(xϕixϕj+x2t)+2xf[x2t(xϕi+xϕj+3)+[xt(xϕi+xϕj1)xϕixϕj](xϕi+xϕj1)]},

    (B15)

    and also have

    ζ(2)33,f=2m4f(8xfxϕixϕj+1)[(xϕixt)(xϕjxt)+xt].

    (B16)

    We next consider one-loop box diagrams with vector boson W in the loop. The factors are then presented as follows:

    FBox,1ab,W=e2(4π)21M2W{δWab+εWab[B0(ˆs;M2W,M2W)B0(0;M2W,M2W)]+η(0)ab,WC0(0,ˆs,0;M2W,M2W,M2W)+η(1)ab,WC0(M2ϕi,M2ϕj,ˆs;M2W,M2W,M2W)+η(2)ab,WC0(ˆt,M2ϕi,0;M2W,M2W,M2W)+η(3)ab,WC0(M2ϕi,0,ˆu;M2W,M2W,M2W)+η(4)ab,WC0(0,M2ϕj,ˆt;M2W,M2W,M2W)+η(5)ab,WC0(ˆu,M2ϕj,0;M2W,M2W,M2W)+ζ(0)ab,WD0(0,M2ϕj,M2ϕi,0;ˆt,ˆs;M2W,M2W,M2W,M2W)+ζ(1)ab,WD0(0,M2ϕi,M2ϕj,0;ˆu,ˆs;M2W,M2W,M2W,M2W)+ζ(2)ab,WD0(M2ϕi,0,M2ϕj,0;ˆu,ˆt;M2W,M2W,M2W,M2W)},

    (B17)

    FBox, 212,W=e2(4π)22ˆs{5+2[B0(ˆs,M2W,M2W)B0(0,M2W,M2W)]+2ˆs(5xW2)C0(0,ˆs,0,M2W,M2W,M2W)},

    (B18)

    FBox, 312,W=e2(4π)24ˆs[1+2xWˆsC0(0,ˆs,0;M2W,M2W,M2W)].

    (B19)

    Where we definded the following functions as: εW12=2ˆs, δW12=1ˆs, εW33=0, δW33=0. All coefficients involed with one-loop form factors calculated from the W-boson box diagrams contributions. The coefficients are given explicitly as follows:

    η(0)12,W=1xW[(xϕixt)(xϕjxt)+xt]2×{2x2txW(xW+2)(1xϕj+xt)2+x2ϕi{xϕjx2ϕj[2xW(xW+2)+1]+4xϕjxW[xt(xW+2)+3]2xW[xt(2xt+4)+(x2t+6)xW+3]}+2xϕixW{x2ϕj[2xt(xW+2)+1]xϕj[2xt(2xtxW+4xt+xW+4)+6xW+3]+2xt(xt+1)[xt(xW+2)+2]+6xW+2}x3ϕi(xϕj2xW)},

    (B20)

    η(1)12,W=xϕixW[(xϕixt)(xϕjxt)+xt]2×[xϕixϕj2xW(xϕi+xϕj6xW2)]×[x2ϕi+x2ϕj+1+2(xtxϕixϕj)(xt+1)],

    (B21)

    η(2)12,W=(xϕixt)2xW[(xϕixt)(xϕjxt)+xt]2×{xϕi(xϕjxt)2[xϕi(xϕj2xW)+12x2W]2xϕixW[xϕj(x2ϕj+2xt2)x2t(xt3xϕj+2)+xt(13x2ϕj)]+xt(1xϕj+xt)2[2xW(xϕj6xW)xϕixϕj]}.

    (B22)

    All coefficients for scalar one-loop four-point functions in the above-equations are given by

    ζ(0)12,W=ˆsxW[(xϕixt)(xϕjxt)+xt]2×{2xWx3ϕi(xtxϕj)[x2ϕjxϕj(xt+2xW+1)+2xW(xt1)+2xt]+x2ϕi{2xtxW[x2ϕj(2xϕj5)+2x2t(xϕj2)+xϕjxt(94xϕj)+xϕj3xt]+4x2W[x2t(5xϕj+1)+xt(4x2ϕj4xϕj+3)+xϕj(x2ϕj+3xϕj2)2x3t]24x3W(xϕjxt)(xϕjxt+1)+xϕjx2t}+2xϕixtxW{xt[2x2ϕj(xt+2)xϕj(x2t+6xt+4)+2(x2t+xt+1)x3ϕj]+2xW[x3t2xt22x2t(2xϕj+1)+5xϕjxt(xϕj+1)+xϕj(72x2ϕj3xϕj)]+12x2W(xϕjxt1)(2xϕj2xt+1)}+4x2tx2W(xϕj6xW+2)(1xϕj+xt)2},

    (B23)

    ζ(2)12,W=ˆsxW[(xϕixt)(xϕjxt)+xt]{x3ϕi(xϕj2xW)(xϕjxt)2+2x2ϕi{2x2W[xϕj(3xϕj6xt+1)+xt(3xt1)+1]xW[x2ϕj(xϕj4xt+1)+xϕj(5x2t+xt1)2xt(x2t+xt1)]xϕjxt(xϕjxt)(xϕjxt1)}+xϕi{4x2W[x2ϕj(6xt1)xϕj(12x2t+4xt+3)+xt(6x2t+5xt+1)+2]+2xtxW(xϕjxt1)[xt(xt+1)2+xϕj(2xϕj3xt+1)]+xϕjx2t(xϕj+xt+1)224x3W(xϕjxt+1)}2xtxW(xϕjxt1)×[xt(xϕj6xW)(xϕjxt1)+2xW(xϕj6xW+2)]}.

    (B24)

    Furthermore, one gives the coefficients appear in the factors FBox33,W

    η(0)33,W=1xW[(xϕixt)(xϕjxt)+xt]2{(12x2W+xϕixϕj)(1xϕixϕj)+2xW[xϕi(xϕi+6xϕj4xt3)+(xϕj2xt)23xϕj+4xt+2]},

    (B25)

    η(1)33,W=1xϕi×η(1)12,W,

    (B26)

    η(2)33,W=(xϕixt)[xϕixϕj(xt4xW)+2xtxW(xϕj+xϕi2xt+6xW)]xW[(xϕixt)(xϕjxt)+xt]2.

    (B27)

    Furthermore, one gives

    ζ(0)33,W=ˆsxW[(xϕixt)(xϕjxt)+xt]2×{2x2ϕixW(xϕjxt)(xϕj2xt+2xW)+8x2Wxϕixt+xϕi{4x2W[x2ϕj+(xt2xϕj)(xt+1)]+2xtxW[xϕj(3xϕj+7xt+1)xt(4xt+3)]+24x3W(xtxϕj)+xϕjx2t}+2xtxW{xt[xϕj(2xϕj4xt3)+2(x2t+xt+1)]+12x2W(xϕjxt1)+2xW[xϕj(xϕj+xt+3)+xt2]}},

    (B28)

    ζ(2)33,W=2ˆs[xϕi(xϕj2xt+2xW)+2xW(xϕj6xW2)+2xt(xtxϕj+1)][(xϕixt)(xϕjxt)+xt].

    (B29)

    Besides, the remaining factors with a shorted abbreviation like Pf,W,S are directly expressed by the following relations as shown,

    η(3)ab,Pη(2)ab,P(xtxu),η(4)ab,P=xϕjxtxϕixt×η(2)ab,P,

    (B30)

    η(5)ab,P=xϕjxuxϕixu×η(3)ab,P,ζ(1)ab,Pζ(0)ab,P(xtxu).

    (B31)

    We pay attention to the contributions of singly (doubly) charged Higges exchanging in the loop. The factors are given by

    FBox,1ab,S=e2Q2S4π2{η(0)ab,SC0(0,ˆs,0;M2S,M2S,M2S)+η(1)ab,SC0(M2ϕi,M2ϕj,ˆs;M2S,M2S,M2S)+η(2)ab,SC0(ˆt,M2ϕi,0;M2S,M2S,M2S)+η(3)ab,SC0(M2ϕi,0,ˆu;M2S,M2S,M2S)+η(4)ab,SC0(0,M2ϕj,ˆt;M2S,M2S,M2S)+η(5)ab,SC0(ˆu,M2ϕj,0;M2S,M2S,M2S)+ζ(0)ab,SD0(0,M2ϕj,M2ϕi,0;ˆt,ˆs;M2S,M2S,M2S,M2S)+ζ(1)ab,SD0(0,M2ϕi,M2ϕj,0;ˆu,ˆs;M2S,M2S,M2S,M2S)+ζ(2)ab,SD0(M2ϕi,0,M2ϕj,0;ˆu,ˆt;M2S,M2S,M2S,M2S)},

    (B32)

    FBox,212,S=e2Q2S4π2[1ˆs2xSC0(0,ˆs,0,M2S,M2S,M2S)].

    (B33)

    All coefficients related to the above-formulas are given explicitly

    η(0)12,S=xϕi(xϕi+xϕj1)s[(xϕixt)(xϕjxt)+xt]2,

    (B34)

    η(1)12,S=xϕi[x2ϕi+x2ϕj+2(xtxϕixϕj)(xt+1)+1]s[(xϕixt)(xϕjxt)+xt]2,

    (B35)

    η(2)12,S=(xϕixt)2[xϕi(xϕjxt)2xt(xϕj+xt+1)2]s[(xϕixt)(xϕjxt)+xt]2.

    (B36)

    The coefficients of scalar one-loop four-point integrals in the above equations are

    ζ(0)12,S=1[(xϕixt)(xϕjxt)+xt]2×{xϕix2t2xS[(xϕixt)(xϕjxt)+xt]×[xt(xϕi+xϕj1)+xϕi(xϕj+1)+x2t]},

    (B37)

    ζ(2)12,S=1[(xϕixt)(xϕjxt)+xt]×{[(xϕixt)(xϕjxt)+xt]22xS[xt(xϕi+xϕj1)+xϕi(xϕj+1)+x2t]}.

    (B38)

    Other coefficients are calculated as

    η(0)33,S=1xϕi×η(0)12,S,

    (B39)

    η(1)33,S=1xϕi×η(1)12,S,

    (B40)

    η(2)33,S=xt(xϕixt)s[(xϕixt)(xϕjxt)+xt]2,

    (B41)

    ζ(0)33,S=x2t2xS[(xϕixt)(xϕjxt)+xt][(xϕixt)(xϕjxt)+xt]2,

    (B42)

    ζ(2)33,S=2xS[(xϕixt)(xϕjxt)+xt].

    (B43)

    We arrive at contributions of mixing charged Higgs H± and vector boson W± boxes diagrams as follows:

    FBoxab,W,H±=e24π2{δW,H±ab+εW,H±ab[B0(ˆs,M2W,M2W)B0(0,M2W,M2W)]+η(0)ab,W,H±C0(0,ˆs,0;M2W,M2W,M2W)+η(1)ab,W,H±C0(0,ˆs,0;M2H±,M2H±,M2H±)+η(2)ab,W,H±[C0(M2ϕi,ˆs,M2ϕj;M2H±,M2W,M2W)+C0(ˆs,M2ϕi,M2ϕj;M2H±,M2H±,M2W)]+η(3)ab,W,H±[C0(ˆt,0,M2ϕi;M2H±,M2W,M2W)+C0(0,ˆt,M2ϕi;M2H±,M2H±,M2W)]+η(4)ab,W,H±[C0(ˆt,0,M2ϕj;M2H±,M2W,M2W)+C0(0,ˆt,M2ϕj;M2H±,M2H±,M2W)]+η(5)ab,W,H±[C0(ˆu,0,M2ϕi;M2H±,M2W,M2W)+C0(0,ˆu,M2ϕi;M2H±,M2H±,M2W)]+η(6)ab,W,H±[C0(ˆu,0,M2ϕj;M2H±,M2W,M2W)+C0(0,ˆu,M2ϕj;M2H±,M2H±,M2W)]+ζ(0)ab,W,H±D0(ˆt,0,ˆs,M2ϕi;M2ϕj,0;M2H±,M2W,M2W,M2W)+ζ(1)ab,W,H±D0(ˆu,0,ˆs,M2ϕj;M2ϕi,0;M2H±,M2W,M2W,M2W)+ζ(2)ab,W,H±D0(0,ˆs,M2ϕi,ˆt;0,M2ϕj;M2H±,M2H±,M2H±,M2W)+ζ(3)ab,W,H±D0(0,ˆs,M2ϕj,ˆu;0,M2ϕi;M2H±,M2H±,M2H±,M2W)+ζ(4)ab,W,H±D0(0,ˆu,0,ˆt;M2ϕi,M2ϕj;M2H±,M2H±,M2W,M2W)}.

    (B44)

    In the above-equations, we have used the following functions as: εW,H±12=2/ˆs, δW,H±12=1/ˆs, εW,H±33=0 and δW,H±33=0. Remaining coefficients relating to the formulas are given

    η(0)12,W,H±=1xW[(xϕixt)(xϕjxt)+xt]2×{xϕixW[2xH±(xϕi+xϕj3xH±+1)+4xϕixϕj(2xϕj)+xϕi(xϕi3)+xϕj(xϕj3)+2]4x2txW[x2ϕi+x2t+(4xϕi+xϕj1)(xϕj1)]+8xtxW(xϕi+xϕj1)[x2t+xϕi(xϕj1)]+xϕix2W[4x2t(2xϕjxt1)+(14xϕjxt)(xϕj1)+6xH±2]+x2ϕix2W[1+2(xϕjxt)2]+2x2tx2W(xϕjxt1)2+xϕi[(xH±xϕi)(xH±xϕj)(2xH±xϕixϕj+1)2x3W]},

    (B45)

    η(1)12,W,H±=1xW[(xϕixt)(xϕjxt)+xt]2×{xϕix2H±(xϕi+xϕj2xH±+6xW+1)+xH±{x2ϕi[xϕi+2xW14xW(xϕjxt)2]2xW[3xϕixW+2x2t(xϕjxt1)2]+2xϕixW[4xϕjxt(xϕj+2xt1)+4x2t(xt+1)3]+xϕixϕj(xϕj+2xW1)}xϕi(xϕi+xϕj2xW1)[xϕixϕjxW(xϕi+xϕjxW2)]},

    (B46)

    \begin{aligned}[b] \eta_{12,W, H^\pm}^{(2)} =\;& \dfrac{x_{\phi_i}}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \big]^2} \times \Big[ x_{\phi_i}^2 + x_{\phi_j}^2 + 2 \big(x_t+1 \big) \big(x_t - x_{\phi_i} - x_{\phi_j} \big) + 1 \Big] \\& \times \Big[ x_{\phi_i} x_{\phi_j} - x_{H^\pm} \big( x_{\phi_i} +x_{\phi_j} -x_{H^\pm} +2 x_W \big) - x_W \big( x_{\phi_i} +x_{\phi_j} -x_W -2 \big) \Big], \end{aligned}

    (B47)

    \begin{aligned}[b] \eta_{12,W, H^\pm}^{(3)} =\;& \dfrac{ (x_{\phi_i}-x_t)^2 }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ x_{H^\pm} \big( x_{\phi_i}+x_{\phi_j} -x_{H^\pm}+2 x_W \big) \Big[ x_{\phi_i} \big( x_{\phi_j}-x_t \big)^2 - x_t \big( x_{\phi_j}-x_t-1 \big)^2 \Big] \\& + x_W x_{\phi_i} \Big[ x_{\phi_j} \big( x_{\phi_j}^2 - 3 x_{\phi_j} x_t + 3 x_t^2 + 2 x_t - 2 \big) - x_t \big( x_t^2 + 2 x_t - 1 \big) \Big] + x_{\phi_j} x_t x_{\phi_i} \big( x_{\phi_j}-x_t-1 \big)^2 - x_W^2 x_{\phi_i} \big( x_{\phi_j}-x_t \big)^2 \\& + \big( x_W-x_{\phi_j} \big) \Big[ x_t x_W \big( x_{\phi_j}-x_t-1 \big)^2 + x_{\phi_i}^2 \big( x_{\phi_j}-x_t \big)^2 \Big] \Bigg\}. \end{aligned}

    (B48)

    Other terms are presented as follows:

    \begin{aligned}[b] \zeta_{12,W, H^\pm}^{(0)} =\;& \dfrac{ \hat{s} }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ x_{\phi_i} x_{H^\pm} \Big[ 2 x_{\phi_i}^2 x_W \big( x_{\phi_j} - x_t \big) \big( x_{\phi_j} - x_t + 1 \big) - x_{H^\pm}^2 \big( x_{\phi_i}+x_{\phi_j} - x_{H^\pm}+2 x_t +4 x_W \big) \Big] \\& - 2 x_{\phi_i}^3 x_W \big( x_{\phi_j}-x_t \big) \Big[ 2 x_t + x_W \big( x_t-1 \big) - x_{\phi_j} \big( x_t+x_W-x_{\phi_j}+1 \big) \Big] + 2 x_W x_t^2 \big( x_{\phi_j}-x_t-1 \big)^2 \Big[ x_W \big( x_{\phi_j}-x_W \big) \\& + x_{H^\pm} \big( x_{\phi_j}+2 x_W-2 \big) \Big] + x_{\phi_i} x_{\phi_j} x_t^2 \big( x_{\phi_i} - x_{H^\pm} \big) + x_{H^\pm}^2 \Big\{ x_{\phi_i}^2 \Big[ x_{\phi_j} + 2 x_t + x_W - 2 x_W \big( x_{\phi_j}-x_t \big) \big( x_{\phi_j}-x_t+1 \big) \Big] \\& + x_{\phi_i} \Big[ x_{\phi_j} x_W \big( 4 x_{\phi_j} x_t + 1 \big) - 2 x_{\phi_j} x_t \big( 4 x_t x_W + x_W-1 \big) + 2 x_W \big( 2 x_t + 1 \big) \big( x_t^2 + 1 \big) + x_t^2 + 6 x_W^2 \Big] - 2 x_t^2 x_W \big( x_{\phi_j}-x_t\\& - 1 \big)^2 \Big\} + x_{\phi_i}^2 x_{H^\pm} \Big\{ 2 x_W \big( x_{\phi_j} - x_t \big) \Big[ x_t \big( 2 x_t - 3 x_{\phi_j} + 3 \big) + x_{\phi_j} \big( x_{\phi_j} - 1 \big) + 1 \Big] + x_W^2 \big( 2 x_{\phi_j} - 2 x_t+1 \big)^2 - x_t \big( 2 x_{\phi_j} +x_t \big) \Big\} \\& + x_{\phi_i} x_{H^\pm} \Big\{ x_W^2 \Big[ x_{\phi_j} - 4 x_W - 2 x_t \big( 4 x_{\phi_j}^2 + 4 x_t^2 + 2 x_t + 1 \big) + 4 x_{\phi_j} x_t \big( 4 x_t+1 \big) - 4 \Big] + 2 x_t x_W \Big[ x_{\phi_j}^2 \big( 5 x_t -2 x_{\phi_j} +5 \big) \\& - x_{\phi_j} \big( 4 x_t^2 +11x_t +5 \big) + x_t \big( x_t^2+6x_t+6 \big) \Big] \Big\} + x_{\phi_i}^2 \Big\{ x_W^3 \Big[ 2 x_t \big( 2 x_{\phi_j}- x_t+1 \big) - 2 x_{\phi_j} \big( x_{\phi_j}+1 \big) - 1 \Big] \\& + x_W^2 \Big[ x_{\phi_j} \big( 2 x_{\phi_j}^2 +2 x_{\phi_j}-7 \big) + 2 x_t^2 \big( 5 x_{\phi_j} - 2 x_t-1 \big) - 8 x_t \big( x_{\phi_j}^2-1 \big) \Big] + x_t x_W \Big[ x_t \big( 18 x_{\phi_j} -8 x_{\phi_j}^2-5 \big) \\& + 2 x_{\phi_j} \big( x_{\phi_j}-2 \big) \big( 2 x_{\phi_j}-1 \big) + 4 x_t^2 \big( x_{\phi_j}-2 \big) \Big] \Big\} + x_{\phi_i} x_W \Big\{ 2 x_t x_W \big( 1-2 x_{\phi_j} \big) \big( x_{\phi_j}^2-x_{\phi_j} x_W-2 \big) \\& + 2 x_t^4 \big( x_W-x_{\phi_j}+2 \big) + 4 x_t^3 \Big[ x_{\phi_j} \big( x_{\phi_j}-3 \big) + x_W \big( x_W-2 x_{\phi_j}+1 \big) + 1 \Big] + x_t^2 \Big[ 2 x_W^2 \big( 1-4 x_{\phi_j} \big) \\& + 2 x_{\phi_j} x_W \big( 5 x_{\phi_j}-3 \big) + x_{\phi_j} \big( 8 x_{\phi_j} -2 x_{\phi_j}^2 -7 \big) - 5 x_W + 2 \Big] + x_W^2 \big( x_W-x_{\phi_j}+2 \big) \Big\} \Bigg\}, \end{aligned}

    (B49)

    \begin{aligned}[b] \zeta_{12,W, H^\pm}^{(2)} = \;&\dfrac{\hat{s}}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2}\times \Big[ x_{\phi_i} x_{\phi_j} - x_{H^\pm} \big( x_{\phi_i} +x_{\phi_j} -x_{H^\pm}+2 x_W \big) - x_W \big( x_{\phi_i} +x_{\phi_j}-x_W -2 \big) \Big] \\& \times \Bigg\{ x_{\phi_i} \Big[ x_{H^\pm}^2 + \big( x_t-x_W \big)^2 \Big] - 2 x_{H^\pm} \Big[ x_{\phi_i}^2 \big( x_{\phi_j}-x_t \big) \big( x_{\phi_j}-x_t+1 \big) \\& - x_{\phi_i} x_t \big(x_{\phi_j} - x_t \big) \big(2 x_{\phi_j} -2 x_t-1 \big) + x_t^2 \big( x_{\phi_j} -x_t-1 \big)^2 + x_{\phi_i} x_W \Big] \Bigg\},\end{aligned}

    (B50)

    \zeta_{12,W, H^\pm}^{(4)} = \dfrac{2 \hat{s} }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \kappa_{12,W, H^\pm}^{(4)},

    (B51)

    with

    \begin{aligned}[b] \kappa_{12,W, H^\pm}^{(4)} = \;& - x_{\phi_i}^2 x_{H^\pm}^3 \Big[ x_{\phi_j} \big( x_{\phi_j} -2 x_t +1 \big) - x_t \big( 1-x_t \big) + 1 \Big] - x_t^2 x_{H^\pm}^3 \big( x_{\phi_j}-x_t-1 \big)^2 - x_{\phi_i} x_{H^\pm}^3 \Big[ x_t^2 \big( 4 x_{\phi_j} -2 x_t-1 \big) + x_{\phi_j} x_t \big( 1-2 x_{\phi_j} \big) \\& + x_t + x_{\phi_j} + 4 x_W - x_{H^\pm} \Big] + x_{H^\pm}^2 x_{\phi_i}^3 \big( x_{\phi_j}-x_t \big) \Big[ x_{\phi_j} \big( x_{\phi_j}-2 x_t +1 \big) + x_t \big( x_t-1 \big) + 1 \Big] + x_{H^\pm}^2 x_{\phi_i}^2 \Big\{ x_{\phi_j}^2 \Big[ x_{\phi_j} \big( 1-3 x_t \big) \\& - x_t \big( 1 - 9 x_t \big) + x_W + 1 \Big] + x_{\phi_j} \Big[ 1 + x_W \big( 1-2 x_t \big) - x_t^2 \big( 1+9 x_t \big) \Big] + x_W \big( 1-x_t \big) + x_t \Big[ x_t^2 \big( 1+3 x_t \big) + x_t \big( x_W-1 \big) + 1 \Big] \Big\} \\& + x_{H^\pm}^2 x_{\phi_i} x_W \Big[ 6 x_W + x_t^2 \big( 4 x_{\phi_j}-2 x_t-1 \big) + x_{\phi_j} x_t \big( 1-2 x_{\phi_j} \big) + x_t + x_{\phi_j} + 2 \Big] + x_t \big( x_{\phi_j}-x_t-1 \big) x_{H^\pm}^2 x_{\phi_i} \Big[ x_{\phi_j}^2 \big( 3 x_t-2 \big)\\& - x_{\phi_j} \big( 1+6 x_t^2 \big) + x_t \big( x_t+1 \big) \big( 3 x_t-1 \big) \Big] + x_t^2 x_{H^\pm}^2 \big( x_{\phi_j}-x_t-1 \big)^2 \Big[ x_t \big( 1+x_t \big) + x_{\phi_j} \big( 1-x_t \big) + x_W \Big] + x_{H^\pm} x_{\phi_i}^3 \big( x_t-x_{\phi_j} \big) \\& \times \Big[ x_{\phi_i} \big( x_{\phi_j}-x_t \big)^2 + x_{\phi_j}^2 \big( x_{\phi_j} -5 x_t +2 x_W +1 \big) - 2 x_W \big( x_{\phi_j}+1 \big) + x_{\phi_j} \big( 7 x_t^2 - 4 x_W x_t + 2 x_t + 1 \big) + x_t \big( x_t+1 \big) \big( 2 x_W-3 x_t \big) \Big] \\& - x_{H^\pm} x_{\phi_i}^2 \Big\{ - x_W^2 \Big[ 1 + x_{\phi_j} \big( x_{\phi_j}-2 x_t +1 \big) + x_t \big( x_t-1 \big) \Big] + 2 x_W \big( x_t-x_{\phi_j} \big) \times \Big[ x_t^2 \big( 3 x_t-6 x_{\phi_j}+5 \big) + 3 x_t \big( x_{\phi_j}-1 \big)^2 \\& + x_{\phi_j} \big( x_{\phi_j}-1 \big) - 1 \Big] + x_t \big( x_{\phi_j}-x_t-1 \big) \times \Big[ x_{\phi_j}^2 \big( 9 x_t-3 x_{\phi_j}-2 \big) + \big( x_t+1 \big) \big( 3 x_t^2-x_{\phi_j} \big) - 9 x_t^2 x_{\phi_j} \Big] \Big\} \\& - x_{H^\pm} x_{\phi_i} \Big\{ x_W^2 \Big[ 2 x_t x_{\phi_j}^2 - x_{\phi_j} \big( 4 x_t^2+x_t+1 \big) + x_t \big( 2 x_t^2+x_t-1 \big) + 4 \big( x_W+1 \big) \Big] + 2 x_t x_W \big( x_{\phi_j}-x_t-1 \big) \\& \times \Big[ x_{\phi_j}^2 \big( 3 x_t+2 \big) - 3 x_{\phi_j} \big( 2 x_t^2+2 x_t+1 \big) + x_t \big( 3 x_t^2 +4 x_t+5 \big) \Big] + x_t^2 \big( x_{\phi_j}-x_t-1 \big)^2 \Big[ x_{\phi_j} \big( 3 x_{\phi_j}-4 x_t +1 \big) \\& + x_t \big( x_t+1 \big) \Big] \Big\} - x_{H^\pm} x_t^2 \big( x_{\phi_j}-x_t-1 \big)^2 \times \Big[ - x_{\phi_j}^2 x_t + x_{\phi_j} \big( x_t+1 \big) \big( x_t-2 x_W \big) + x_W \big( 2 x_t^2 + 2 x_t-x_W+4 \big) \Big] \\& + x_W^2 \Big[ \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) + x_t - x_W \Big] \Big\{ x_{\phi_i}^2 \Big[ 1 + \big( x_{\phi_j}-x_t \big)^2 \Big] - x_{\phi_i} x_W + x_{\phi_i} \Big[ \big( 1-2 x_{\phi_j} x_t \big) \big( x_{\phi_j}-1 \big) \\& + 2 x_t^2 \big( 2 x_{\phi_j}-x_t-1 \big) - 1 \Big] + x_t^2 \big( x_{\phi_j}-x_t-1 \big)^2 \Big\} - x_W \Big[ \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) + x_t - x_W \Big] \Big\{ x_{\phi_i}^2 \Big[ x_{\phi_i} \big( x_{\phi_j}-x_t \big)^2 \\& + 2 x_t + \big( x_{\phi_j}-x_t-1 \big) \big( x_{\phi_j}^2 + x_{\phi_j} + 2 x_t^2 - 3 x_t x_{\phi_j} \big) \Big] + x_t \big( x_{\phi_j}-x_t-1 \big) \times \Big[ x_{\phi_j} x_t \big( x_{\phi_j}-x_t-1 \big) \\& - x_{\phi_i} \big( x_{\phi_j}-x_t+1 \big) \big( 2 x_{\phi_j}-x_t-2 \big) \Big] \Big\} + x_{\phi_i} x_{\phi_j} \Big[ \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) +x_t-x_W \Big] \Big[ \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) + x_t \Big]^2 \Bigg\}, \end{aligned}

    \begin{aligned}[b] \eta_{33,W, H^\pm}^{(0)} =\;& \dfrac{1}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ x_W \Big[ 2 x_{H^\pm} \big( x_{\phi_i} +x_{\phi_j} - 3 x_{H^\pm}+1 \big) + x_{\phi_j} \big( x_{\phi_j} - 3 \big) - 8 x_t \big( x_{\phi_i} +x_{\phi_j}-x_t-1 \big) \\& + x_{\phi_i} \big( x_{\phi_i} + 8 x_{\phi_j} - 3 \big) + 2 \Big] + 2 x_W^2 \big( 4 x_{H^\pm} - x_W - 1 \big) + \big( 2 x_{H^\pm}-x_{\phi_i}-x_{\phi_j}+1 \big) \Big[ \big( x_{H^\pm}-x_{\phi_i} \big) \big( x_{H^\pm}-x_{\phi_j} \big) - x_W^2 \Big] \Bigg\}, \end{aligned}

    (B52)

    \begin{aligned}[b] \eta_{33,W, H^\pm}^{(1)} = \;&- \dfrac{1}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) +x_t \Big]^2} \Big[ 2 x_{H^\pm}+x_{\phi_i}+x_{\phi_j}-2 x_W-1 \Big] \times \Bigg[ x_{\phi_i} x_{\phi_j} - x_{H^\pm} \big( x_{\phi_i}+x_{\phi_j}-x_{H^\pm}+2 x_W \big) \\& - x_W \big( x_{\phi_i}+x_{\phi_j}-x_W-2 \big) \Bigg], \end{aligned}

    (B53)

    \eta_{33,W, H^\pm}^{(2)} = \dfrac{1}{x_{\phi_i}} \times \eta_{12,W, H^\pm}^{(2)},

    (B54)

    \begin{aligned}[b] \eta_{33,W, H^\pm}^{(3)} =\;& \dfrac{ x_{\phi_i}-x_t }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) +x_t \Big]^2} \Big\{ x_{\phi_i} \big( x_{\phi_j} x_t-2 x_{\phi_j} x_W+x_t x_W \big) + x_t \Big[ x_W \big( x_{\phi_j}-2 x_t+x_W \big) \\& - x_{H^\pm} \big( x_{\phi_i}+x_{\phi_j}-x_{H^\pm}+2 x_W \big) \Big] \Big\}, \end{aligned}

    (B55)

    \begin{aligned}[b] \zeta_{33,W, H^\pm}^{(0)} =\;& \dfrac{\hat{s} }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ x_W^2 x_{H^\pm} \Big[ \big( 1-4 x_t \big) \big( x_{\phi_i} +x_{\phi_j} \big) + 2 x_t \big( 2 x_t-1 \big) + 2 \big( 3 x_{H^\pm} + 2 x_{\phi_i} x_{\phi_j} - 2 \big) \Big] \\& + x_W^2 \big( x_{\phi_i} x_{\phi_j} + x_t^2 \big) \big( 2 x_{\phi_i} + 2 x_{\phi_j} - 7 \big) - 2 x_t x_W^2 \Big[ \big( x_{\phi_i} + x_{\phi_j} - 4 \big) \big( x_{\phi_i} + x_{\phi_j} \big) + 2 \Big] + \big( x_{H^\pm} - x_{\phi_i} \big) \big( x_{H^\pm}-x_{\phi_j} \big) \big( x_{H^\pm}-x_t \big)^2 \\& + x_W \Big\{ x_{H^\pm}^2 \Big[ - 4 x_{H^\pm} - 2 \big( x_{\phi_i} x_{\phi_j} + x_t^2 \big) + \big( 2 x_t + 1 \big) \big( x_{\phi_i}+x_{\phi_j}+2 \big) \Big] + 2 x_{H^\pm} \big( x_{\phi_i}+x_{\phi_j}+1 \big) \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) \\& + 2 x_{\phi_i} x_{\phi_j} \Big[ x_{\phi_i} x_{\phi_j} - x_t \big( 3 x_{\phi_i}+3 x_{\phi_j}-2 \big) \Big] - 4 x_t^3 \big( 2 x_{\phi_i} +2 x_{\phi_j}-x_t-1 \big) + x_t^2 \Big[ 2 x_{\phi_i} \big( 2 x_{\phi_i}+5 x_{\phi_j} \big) \\& + \big( x_{\phi_i} + x_{\phi_j} \big) \big( 4 x_{\phi_j}-5 \big) + 2 \Big] \Big\} - x_W^3 \Big[ 4 x_{H^\pm} - x_W + \big( 1-2 x_t \big) \big( x_{\phi_i}+x_{\phi_j} \big) + 2 \big( x_{\phi_i} x_{\phi_j} + x_t^2 - 1 \big) \Big] \Bigg\},\end{aligned}

    (B56)

    \begin{aligned}[b] \zeta_{33,W, H^\pm}^{(2)} =\;& \dfrac{\hat{s} }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Big[ x_{\phi_i} x_{\phi_j} - x_{H^\pm} \big( x_{\phi_i}+x_{\phi_j}-x_{H^\pm}+2 x_W \big) - x_W \big( x_{\phi_i}+x_{\phi_j}- x_W-2 \big) \Big] \\& \times \Big\{ x_{H^\pm}^2-2 x_{H^\pm} \Big[ \big(x_{\phi_i}-x_t \big) \big(x_{\phi_j}-x_t \big) +x_W \Big] + \big(x_t-x_W \big)^2 \Big\}, \end{aligned}

    (B57)

    \begin{aligned}[b] \zeta_{33,W, H^\pm}^{(4)} =\;& \dfrac{2 \hat{s} } {x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ - x_W^3 \Big[ 4 x_{H^\pm} - x_W + x_{\phi_i} x_{\phi_j} - \big( x_t-1 \big) \big( x_{\phi_i} + x_{\phi_j}-x_t-2 \big) \Big] \\& + x_W^2 \Big\{ x_{H^\pm} \Big[ x_{\phi_i} x_{\phi_j} - 2 \big( 1-3 x_{H^\pm} \big) - \big( x_t-1 \big) \big( x_{\phi_i}+x_{\phi_j}-x_t-2 \big) \Big] + \big( x_{\phi_i}+x_{\phi_j}-4 \big) \Big[ x_{\phi_i} x_{\phi_j} \\& - x_t \big( x_{\phi_i}+x_{\phi_j}-x_t-1 \big) \Big] + x_{\phi_i} x_{\phi_j} \Big\} + x_W \Big\{ x_{H^\pm}^2 \Big[ x_{\phi_i} x_{\phi_j} - 4 \big( x_{H^\pm}-1 \big) - \big( x_t-1 \big) \big( x_{\phi_i} +x_{\phi_j}-x_t-2 \big) \Big] \\& + 2 x_{H^\pm} \Big[ x_{\phi_i} x_{\phi_j} \big( x_{\phi_i} +x_{\phi_j}-1 \big) - x_t \big( x_{\phi_i}+x_{\phi_j} \big) \big( x_{\phi_i}+x_{\phi_j}-x_t-1 \big) \Big] + \Big[ \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) + x_t \Big] \Big[ x_{\phi_i} x_{\phi_j} \\& - 2 x_t \big( x_{\phi_i} +x_{\phi_j}-x_t-1 \big) \Big] \Big\} + x_{H^\pm} \big( x_{H^\pm}-x_{\phi_i} \big) \big( x_{H^\pm}-x_{\phi_j} \big) \Big[ x_{H^\pm} - x_t + \big( x_{\phi_i}-x_t \big) \big( x_t-x_{\phi_j} \big) \Big] \Bigg\}. \end{aligned}

    (B58)

    Remaining coefficients are expressed by the following relations as shown

    \eta_{ab,W, H^\pm}^{(4)} = \dfrac{x_{\phi_j} - x_t}{x_{\phi_i} - x_t} \times \eta_{ab,W, H^\pm}^{(3)}, \quad \eta_{ab,W, H^\pm}^{(5)} = \eta_{ab,W, H^\pm}^{(3)} \big(x_t \leftrightarrow x_u \big),

    (B59)

    \eta_{ab,W, H^\pm}^{(6)} = \dfrac{x_{\phi_j} - x_u}{x_{\phi_i} - x_u} \times \eta_{ab,W, H^\pm}^{(5)}, \quad \zeta_{ab,W, H^\pm}^{(1/3)} = \zeta_{ab,W, H^\pm}^{(0/2)} \big(x_t \leftrightarrow x_u \big).

    (B60)

    Deriving all the couplings in Zee-Babu models are presented in this appendix. After the EWSB, the hypercharge field B_\mu mixes with the weak isospin field W_\mu^3 . They are decomposed in terms of the mass eigenstates as follows: B_\mu = c_WA_\mu-s_WZ_\mu where \theta_W is the weak mixing angle. The kinetic term can be expanded as

    \begin{aligned}[b] {\cal{L}}_K^{ZB} =\;& (D_{\mu}H)^{\dagger}(D^{\mu}H) +(D_{\mu}K)^{\dagger}(D^{\mu}K) \;{\supset}\; -ig_Yc_WQ_{H}A^{\mu}(H^{\mp}\partial_{\mu}H^{\pm}-H^{\pm}\partial_{\mu}H^{\mp}) +ig_Ys_WQ_{H}Z^{\mu}(H^{\mp}\partial_{\mu}H^{\pm}-H^{\pm}\partial_{\mu}H^{\mp}) \\& + g_Y^2c_W^2Q_{H}^2A^{\mu}A_{\mu}H^{\pm}H^{\mp} + g_Y^2s_W^2Q_{H}^2Z^{\mu}Z_{\mu}H^{\pm}H^{\mp} - g_Y^2s_{2W}Q_{H}^2A^{\mu}Z_{\mu}H^{\pm}H^{\mp} - ig_Yc_WQ_{K}A^{\mu}(K^{\mp\mp}\partial_{\mu}K^{\pm\pm} - K^{\pm\pm}\partial_{\mu}K^{\mp\mp}) \\& + ig_Ys_WQ_{K}Z^{\mu} (K^{\mp\mp}\partial_{\mu}K^{\pm\pm} -K^{\pm\pm}\partial_{\mu}K^{\mp\mp}) + g_Y^2c_W^2Q_{K}^2A^{\mu}A_{\mu}K^{\pm\pm}K^{\mp\mp} \\& + g_Y^2s_W^2Q_{K}^2Z^{\mu}Z_{\mu}K^{\pm\pm}K^{\mp\mp} - g_Y^2s_{2W}Q_{K}^2A^{\mu}Z_{\mu}K^{\pm\pm}K^{\mp\mp}. \end{aligned}

    (C1)

    The scalar potential of H^{\pm} and K^{\pm\pm} are expressed in the mass basis

    \begin{aligned}[b] -{\cal{V}}_{ZB} =\;& -\mu^2_1H^{\mp}{H^\pm} -\mu^2_2K^{\mp\mp}{K}^{\pm\pm} -\lambda_H(H^\mp{H^\pm})^2 -\lambda_K(K^{\mp\mp}{K^{\pm\pm}})^2 -\lambda_{HK}(H^{\mp}{H^\pm})(K^{\mp\mp}{K^{\pm\pm}}) -\mu_L({H^{\pm}H^{\pm}K^{\mp\mp}} +{H^{\mp}H^{\mp}K^{\pm\pm}}) \\& -\lambda_{K\Phi}(K^{\mp\mp}K^{\pm\pm}) [\chi^{\mp}\chi^{\pm} +\frac{1}{2}(v^2+2vh+hh+\chi_0^2) ] -\lambda_{H\Phi}(H^{\mp\mp}H^{\pm\pm}) [\chi^{\mp}\chi^{\pm}+\frac{1}{2} (v^2+2vh+hh+\chi_0^2)] \end{aligned}

    (C2)

    \begin{aligned}[b] \supset\; &-\mu_LH^{\pm}H^{\pm}K^{\mp\mp} -v\lambda_{H\Phi}hH^{\pm}H^{\mp} -v\lambda_{K\Phi}hK^{\pm\pm}K^{\mp\mp} -\frac{\lambda_{H\Phi}}{2}hhH^{\pm}H^{\mp} -\frac{\lambda_{K\Phi}}{2}hhK^{\pm\pm}K^{\mp\mp} \\ & -\lambda_{HK}H^{\pm}H^{\mp}K^{\pm\pm}K^{\mp\mp} -\lambda_{H\Phi}H^{\pm}H^{\mp}\chi^{\pm}\chi^{\mp} -\lambda_{K\Phi}K^{\pm\pm}K^{\mp\mp}\chi^{\pm}\chi^{\mp}. \end{aligned}

    (C3)

    The Yukawa of Zee-Babu model is given by

    \begin{aligned}[b] {\cal{L}}_{Y}^{ZB} \;&= f_{ij}[\overline{\tilde{L^i}}L^{j}H^\dagger-h.c]+g_{ij}[\overline{(e_R^c)^i}e_R^jK^\dagger+h.c] = f_{ij}[\left(\begin{array}{cc} (\overline{e}^c_L)^i -\overline{\nu}_L^c \\ \end{array}\right)\left(\begin{array}{c} \nu_L \\ (e_L)^j \end{array}\right)H^\dagger-h.c]+g_{ij}[\overline{(e_R^c)^i}e_R^jK^\dagger+h.c] \\& =f_{ij}\bigg\{[(\overline{e}^c_L)^i\nu_L-\overline{\nu}_L^ce_L^j]H^\dagger-h.c\bigg\} +g_{ij}[\overline{(e_R^c)^i}e_R^jK^\dagger+h.c]. \end{aligned}

    (C4)
    [1] A. Liss et al. (ATLAS), arXiv: 1307.7292
    [2] CMS Collaboration), arXiv: 1307.7135
    [3] H. Baer et al. (ILC), arXiv: 1306.6352
    [4] V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. 93, 015006 (2021), arXiv: 2003.09084[physics.acc-ph] doi: 10.1103/RevModPhys.93.015006
    [5] G. Aad et al. (ATLAS), Phys. Rev. D 106(5), 052001 (2022), arXiv: 2112.11876[hep-ex] doi: 10.1103/PhysRevD.106.052001
    [6] G. Aad et al. (ATLAS), Phys. Rev. Lett. 114(8), 081802 (2015), arXiv: 1406.5053[hep-ex] doi: 10.1103/PhysRevLett.114.081802
    [7] G. Aad et al. (ATLAS), Eur. Phys. J. C 75(9), 412 (2015), arXiv: 1506.00285[hep-ex] doi: 10.1140/epjc/s10052-015-3628-x
    [8] G. Aad et al. (ATLAS), Phys. Rev. D 92, 092004 (2015), arXiv: 1509.04670[hep-ex] doi: 10.1103/PhysRevD.92.092004
    [9] A. M. Sirunyan et al. (CMS), JHEP 2018, 054 (2018), arXiv: 1708.04188[hep-ex] doi: 10.1007/JHEP01(2018)054
    [10] M. Aaboud et al. (ATLAS), JHEP 2018, 040 (2018), arXiv: 1807.04873[hep-ex] doi: 10.1007/JHEP11(2018)040
    [11] A. M. Sirunyan et al. (CMS), Phys. Lett. B 788, 7 (2019), arXiv: 1806.00408[hep-ex] doi: 10.1016/j.physletb.2018.10.056
    [12] A. M. Sirunyan et al. (CMS), JHEP 2021, 257 (2021), arXiv: 2011.12373[hep-ex] doi: 10.1007/JHEP03(2021)257
    [13] A. Tumasyan et al. (CMS), Phys. Rev. Lett. 129(8), 081802 (2022), arXiv: 2202.09617[hep-ex] doi: 10.1103/PhysRevLett.129.081802
    [14] G. Aad et al. (ATLAS), JHEP 2023, 040 (2023), arXiv: 2209.10910[hep-ex] doi: 10.1007/JHEP07(2023)040
    [15] G. Aad et al. (ATLAS), Phys. Rev. D 108(5), 052003 (2023), arXiv: 2301.03212[hep-ex] doi: 10.1103/PhysRevD.108.052003
    [16] G. Aad et al., arXiv: 2406.09971
    [17] G. Weiglein et al. (LHC/LC Study Group), Phys. Rept. 426, 47 (2006), arXiv: hep-ph/0410364[hep-ph] doi: 10.1016/j.physrep.2005.12.003
    [18] A. Arhrib, R. Benbrik, C. H. Chen et al., JHEP 2009, 035 (2009), arXiv: 0906.0387[hep-ph] doi: 10.1088/1126-6708/2009/08/035
    [19] J. Grigo, J. Hoff, K. Melnikov et al., Nucl. Phys. B 875, 1 (2013), arXiv: 1305.7340[hep-ph] doi: 10.1016/j.nuclphysb.2013.06.024
    [20] D. Y. Shao, C. S. Li, H. T. Li et al., JHEP 2013, 169 (2013), arXiv: 1301.1245[hep-ph] doi: 10.1007/JHEP07(2013)169
    [21] U. Ellwanger, JHEP 2013, 077 (2013), arXiv: 1306.5541[hep-ph] doi: 10.1007/JHEP08(2013)077
    [22] C. Han, X. Ji, L. Wu et al., JHEP 2014, 003 (2014), arXiv: 1307.3790[hep-ph] doi: 10.1007/JHEP04(2014)003
    [23] A. J. Barr, M. J. Dolan, C. Englert et al., Phys. Lett. B 728, 308 (2014), arXiv: 1309.6318[hep-ph] doi: 10.1016/j.physletb.2013.12.011
    [24] D. de Florian and J. Mazzitelli, Phys. Rev. Lett. 111, 201801 (2013), arXiv: 1309.6594[hep-ph] doi: 10.1103/PhysRevLett.111.201801
    [25] N. Haba, K. Kaneta, Y. Mimura et al., Phys. Rev. D 89(1), 015018 (2014), arXiv: 1311.0067[hep-ph] doi: 10.1103/PhysRevD.89.015018
    [26] J. Cao, D. Li, L. Shang et al., JHEP 2014, 026 (2014), arXiv: 1409.8431[hep-ph] doi: 10.1007/JHEP12(2014)026
    [27] T. Enkhbat, JHEP2014, 158 (2014), arXiv: 1311.4445[hep-ph] doi: 10.1007/JHEP01(2014)158
    [28] Q. Li, Q. S. Yan, and X. Zhao, Phys. Rev. D 89(3), 033015 (2014), arXiv: 1312.3830[hep-ph] doi: 10.1103/PhysRevD.89.033015
    [29] R. Frederix, S. Frixione, V. Hirschi et al., Phys. Lett. B 732, 142 (2014), arXiv: 1401.7340[hep-ph] doi: 10.1016/j.physletb.2014.03.026
    [30] J. Baglio, O. Eberhardt, U. Nierste et al., Phys. Rev. D 90(1), 015008 (2014), arXiv: 1403.1264[hep-ph] doi: 10.1103/PhysRevD.90.015008
    [31] D. E. Ferreira de Lima, A. Papaefstathiou et al., JHEP 2014, 030 (2014), arXiv: 1404.7139[hep-ph] doi: 10.1007/JHEP08(2014)030
    [32] B. Hespel, D. Lopez-Val, and E. Vryonidou, JHEP 2014, 124 (2014), arXiv: 1407.0281[hep-ph] doi: 10.1007/JHEP09(2014)124
    [33] V. Barger, L. L. Everett, C. B. Jackson et al., Phys. Rev. Lett. 114(1), 011801 (2015), arXiv: 1408.0003[hep-ph] doi: 10.1103/PhysRevLett.114.011801
    [34] J. Grigo, K. Melnikov, and M. Steinhauser, Nucl. Phys. B 888, 17 (2014), arXiv: 1408.2422[hep-ph] doi: 10.1016/j.nuclphysb.2014.09.003
    [35] F. Maltoni, E. Vryonidou, and M. Zaro, JHEP 2014, 079 (2014), arXiv: 1408.6542[hep-ph] doi: 10.1007/JHEP11(2014)079
    [36] F. Goertz, A. Papaefstathiou, L. L. Yang et al., JHEP 2015, 167 (2015), arXiv: 1410.3471[hep-ph] doi: 10.1007/JHEP04(2015)167
    [37] A. Azatov, R. Contino, G. Panico et al., Phys. Rev. D 92(3), 035001 (2015), arXiv: 1502.00539[hep-ph] doi: 10.1103/PhysRevD.92.035001
    [38] A. Papaefstathiou, Phys. Rev. D 91(11), 113016 (2015), arXiv: 1504.04621[hep-ph] doi: 10.1103/PhysRevD.91.113016
    [39] R. Grober, M. Muhlleitner, M. Spira et al., JHEP 2015, 092 (2015), arXiv: 1504.06577[hep-ph] doi: 10.1007/JHEP09(2015)092
    [40] D. de Florian and J. Mazzitelli, JHEP 2015, 053 (2015), arXiv: 1505.07122[hep-ph] doi: 10.1007/JHEP09(2015)053
    [41] H. J. He, J. Ren, and W. Yao, Phys. Rev. D 93(1), 015003 (2016), arXiv: 1506.03302[hep-ph] doi: 10.1103/PhysRevD.93.015003
    [42] J. Grigo, J. Hoff, and M. Steinhauser, Nucl. Phys. B 900, 412 (2015), arXiv: 1508.00909[hep-ph] doi: 10.1016/j.nuclphysb.2015.09.012
    [43] W. J. Zhang, W. G. Ma, R. Y. Zhang et al., Phys. Rev. D 92, 116005 (2015), arXiv: 1512.01766[hep-ph] doi: 10.1103/PhysRevD.92.116005
    [44] A. Agostini, G. Degrassi, R. Gröber et al., JHEP 2016, 106 (2016), arXiv: 1601.03671[hep-ph] doi: 10.1007/JHEP04(2016)106
    [45] R. Grober, M. Muhlleitner, and M. Spira, JHEP 2016, 080 (2016), arXiv: 1602.05851[hep-ph] doi: 10.1007/JHEP06(2016)080
    [46] G. Degrassi, P. P. Giardino, and R. Gröber, Eur. Phys. J. C 76(7), 411 (2016), arXiv: 1603.00385[hep-ph] doi: 10.1140/epjc/s10052-016-4256-9
    [47] S. Kanemura, K. Kaneta, N. Machida et al., Phys. Rev. D 94(1), 015028 (2016), arXiv: 1603.05588[hep-ph] doi: 10.1103/PhysRevD.94.015028
    [48] D. de Florian, M. Grazzini, C. Hanga et al., JHEP 2016, 151 (2016), arXiv: 1606.09519[hep-ph] doi: 10.1007/JHEP09(2016)151
    [49] S. Borowka, N. Greiner, G. Heinrich et al., JHEP 2016, 107 (2016), arXiv: 1608.04798[hep-ph] doi: 10.1007/JHEP10(2016)107
    [50] F. Bishara, R. Contino, and J. Rojo, Eur. Phys. J. C 77(7), 481 (2017), arXiv: 1611.03860[hep-ph] doi: 10.1140/epjc/s10052-017-5037-9
    [51] Q. H. Cao, G. Li, B. Yan et al., Phys. Rev. D 96(9), 095031 (2017), arXiv: 1611.09336[hep-ph] doi: 10.1103/PhysRevD.96.095031
    [52] K. Nakamura, K. Nishiwaki, K. Y. Oda et al., Eur. Phys. J. C 77(5), 273 (2017), arXiv: 1701.06137[hep-ph] doi: 10.1140/epjc/s10052-017-4835-4
    [53] R. Grober, M. Muhlleitner, and M. Spira, Nucl. Phys. B 925, 1 (2017), arXiv: 1705.05314[hep-ph] doi: 10.1016/j.nuclphysb.2017.10.002
    [54] G. Heinrich, S. P. Jones, M. Kerner et al., JHEP 2017, 088 (2017), arXiv: 1703.09252[hep-ph] doi: 10.1007/JHEP08(2017)088
    [55] S. Jones and S. Kuttimalai, JHEP 2018, 176 (2018), arXiv: 1711.03319[hep-ph] doi: 10.1007/JHEP02(2018)176
    [56] J. Davies, G. Mishima, M. Steinhauser et al., JHEP 2018, 048 (2018), arXiv: 1801.09696[hep-ph] doi: 10.1007/JHEP03(2018)048
    [57] D. Gonçalves, T. Han, F. Kling et al., Phys. Rev. D 97(11), 113004 (2018), arXiv: 1802.04319[hep-ph] doi: 10.1103/PhysRevD.97.113004
    [58] J. Chang, K. Cheung, J. S. Lee et al., Phys. Rev. D 100(9), 096001 (2019), arXiv: 1804.07130[hep-ph] doi: 10.1103/PhysRevD.100.096001
    [59] G. Buchalla, M. Capozi, A. Celis et al., JHEP 2018, 057 (2018), arXiv: 1806.05162[hep-ph] doi: 10.1007/JHEP09(2018)057
    [60] R. Bonciani, G. Degrassi, P. P. Giardino et al., Phys. Rev. Lett. 121(16), 162003 (2018), arXiv: 1806.11564[hep-ph] doi: 10.1103/PhysRevLett.121.162003
    [61] P. Banerjee, S. Borowka, P. K. Dhani et al., JHEP 2018, 130 (2018), arXiv: 1809.05388[hep-ph] doi: 10.1007/JHEP11(2018)130
    [62] A. A H, P. Banerjee, A. Chakraborty, P. K. Dhani et al., JHEP 2019, 030 (2019), arXiv: 1811.01853[hep-ph] doi: 10.1007/JHEP05(2019)030
    [63] J. Baglio, F. Campanario, S. Glaus et al., Eur. Phys. J. C 79(6), 459 (2019), arXiv: 1811.05692[hep-ph] doi: 10.1140/epjc/s10052-019-6973-3
    [64] J. Davies, F. Herren, G. Mishima et al., JHEP 2019, 157 (2019), arXiv: 1904.11998[hep-ph] doi: 10.1007/JHEP05(2019)157
    [65] J. Davies, G. Heinrich, S. P. Jones et al., JHEP 2019, 024 (2019), arXiv: 1907.06408[hep-ph] doi: 10.1007/JHEP11(2019)024
    [66] L. B. Chen, H. T. Li, H. S. Shao et al., Phys. Lett. B 803, 135292 (2020), arXiv: 1909.06808[hep-ph] doi: 10.1016/j.physletb.2020.135292
    [67] L. B. Chen, H. T. Li, H. S. Shao et al., JHEP 2020, 072 (2020), arXiv: 1912.13001[hep-ph] doi: 10.1007/JHEP03(2020)072
    [68] J. Baglio, F. Campanario, S. Glaus et al., JHEP 2020, 181 (2020), arXiv: 2003.03227[hep-ph] doi: 10.1007/JHEP04(2020)181
    [69] G. Wang, Y. Wang, X. Xu et al., Phys. Rev. D 104(5), L051901 (2021), arXiv: 2010.15649[hep-ph] doi: 10.1103/PhysRevD.104.L051901
    [70] H. Abouabid, A. Arhrib, D. Azevedo, J. E. et al., JHEP 2022, 011 (2022), arXiv: 2112.12515[hep-ph] doi: 10.1007/JHEP09(2022)011
    [71] J. Davies, G. Mishima, K. Schönwald et al., JHEP 2022, 259 (2022), arXiv: 2207.02587[hep-ph] doi: 10.1007/JHEP08(2022)259
    [72] D. He, T. F. Feng, J. L. Yang et al., J. Phys. G 49(8), 085002 (2022), arXiv: 2206.04450[hep-ph] doi: 10.1088/1361-6471/ac77a8
    [73] A. A H and H. S. Shao, JHEP 2023, 067 (2023), arXiv: 2209.03914[hep-ph] doi: 10.1007/JHEP02(2023)067
    [74] S. Iguro, T. Kitahara, Y. Omura et al., Phys. Rev. D 107(7), 075017 (2023), arXiv: 2211.00011[hep-ph] doi: 10.1103/PhysRevD.107.075017
    [75] S. Alioli, G. Billis, A. Broggio et al., JHEP 2023, 205 (2023), arXiv: 2212.10489[hep-ph] doi: 10.1007/JHEP06(2023)205
    [76] J. Davies, K. Schönwald, M. Steinhauser et al., JHEP 2023, 033 (2023), arXiv: 2308.01355[hep-ph] doi: 10.1007/JHEP10(2023)033
    [77] E. Bagnaschi, G. Degrassi, and R. Gröber, Eur. Phys. J. C 83(11), 1054 (2023), arXiv: 2309.10525[hep-ph] doi: 10.1140/epjc/s10052-023-12238-8
    [78] J. Davies, K. Schönwald, M. Steinhauser et al., arXiv: 2405.20372
    [79] V. Brigljevic, D. Ferencek, G. Landsberg. et al., arXiv: 2407.03015
    [80] J. Cao, Z. Heng, L. Shang et al., JHEP 2013, 134 (2013), arXiv: 1301.6437[hep-ph] doi: 10.1007/JHEP04(2013)134
    [81] G. V. Jikia, Nucl. Phys. B 412, 57 (1994) doi: 10.1016/0550-3213(94)90494-4
    [82] L. Z. Sun and Y. Y. Liu, Phys. Rev. D 54, 3563 (1996) doi: 10.1103/PhysRevD.54.3563
    [83] S. H. Zhu, C. S. Li, and C. S. Gao, Phys. Rev. D 58, 015006 (1998), arXiv: hep-ph/9710424[hep-ph] doi: 10.1103/PhysRevD.58.015006
    [84] S. H. Zhu, J. Phys. G 24, 1703 (1998) doi: 10.1088/0954-3899/24/9/005
    [85] G. J. Gounaris and P. I. Porfyriadis, Eur. Phys. J. C 18, 181 (2000), arXiv: hep-ph/0007110[hep-ph] doi: 10.1007/s100520000520
    [86] Y. J. Zhou, W. G. Ma, H. S. Hou et al., Phys. Rev. D 68, 093004 (2003), arXiv: hep-ph/0308226[hep-ph] doi: 10.1103/PhysRevD.68.093004
    [87] F. Cornet and W. Hollik, Phys. Lett. B 669, 58 (2008), arXiv: 0808.0719[hep-ph] doi: 10.1016/j.physletb.2008.09.035
    [88] E. Asakawa, D. Harada, S. Kanemura et al., Phys. Lett. B 672, 354 (2009), arXiv: 0809.0094[hep-ph] doi: 10.1016/j.physletb.2009.01.050
    [89] E. Asakawa, D. Harada, S. Kanemura et al., arXiv: 0902.2458
    [90] T. Takahashi, N. Maeda, K. Ikematsu et al., arXiv: 0902.3377
    [91] R. N. Hodgkinson, D. Lopez-Val, and J. Sola, Phys. Lett. B 673, 47 (2009), arXiv: 0901.2257[hep-ph] doi: 10.1016/j.physletb.2009.02.009
    [92] A. Arhrib, R. Benbrik, C. H. Chen et al., Phys. Rev. D 80, 015010 (2009), arXiv: 0901.3380[hep-ph] doi: 10.1103/PhysRevD.80.015010
    [93] E. Asakawa, D. Harada, S. Kanemura et al., Phys. Rev. D 82, 115002 (2010), arXiv: 1009.4670[hep-ph] doi: 10.1103/PhysRevD.82.115002
    [94] J. Hernandez-Sanchez, C. G. Honorato, M. A. Perez et al., Phys. Rev. D 85, 015020 (2012), arXiv: 1108.4074[hep-ph] doi: 10.1103/PhysRevD.85.015020
    [95] W. Ma, C. X. Yue, and T. T. Zhang, Chin. Phys. C 35, 333 (2011) doi: 10.1088/1674-1137/35/4/003
    [96] J. Sola and D. Lopez-Val, Nuovo Cim. C 34S1, 57 (2011), arXiv: 1107.1305[hep-ph] doi: 10.1393/ncc/i2011-11002-1
    [97] Z. Heng, L. Shang, and P. Wan, JHEP 2013, 047 (2013), arXiv: 1306.0279[hep-ph] doi: 10.1007/JHEP10(2013)047
    [98] M. Chiesa, B. Mele, and F. Piccinini, Eur. Phys. J. C 84(5), 543 (2024), arXiv: 2109.10109[hep-ph] doi: 10.1140/epjc/s10052-024-12882-8
    [99] B. Samarakoon and T. M. Figy, Phys. Rev. D 109(7), 075015 (2024), arXiv: 2312.12594[hep-ph] doi: 10.1103/PhysRevD.109.075015
    [100] M. Demirci, Turk. J. Phys. 43(5), 442 (2019), arXiv: 1902.07236[hep-ph] doi: 10.3906/fiz-1903-15
    [101] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999) doi: 10.1016/S0010-4655(98)00173-8
    [102] A. Denner, S. Dittmaier, and L. Hofer, Comput. Phys. Commun. 212, 220 (2017), arXiv: 1604.06792[hep-ph] doi: 10.1016/j.cpc.2016.10.013
    [103] K. H. Phan, D. T. Tran, and T. H. Nguyen, Processes γγ→ϕ iϕ j in Inert Higgs Doublet Models and Two Higgs Doublet Models, arXiv: 2409.00662
    [104] M. Bohm, H. Spiesberger, and W. Hollik, Fortsch. Phys. 34, 687 (1986) doi: 10.1002/prop.19860341102
    [105] W. F. L. Hollik, Fortsch. Phys. 38, 165 (1990) doi: 10.1002/prop.2190380302
    [106] K. I. Aoki, Z. Hioki, M. Konuma et al., Prog. Theor. Phys. Suppl. 73, 1 (1982) doi: 10.1143/PTPS.73.1
    [107] S. Kanemura, M. Kikuchi, K. Sakurai et al., Phys. Rev. D 96(3), 035014 (2017), arXiv: 1705.05399[hep-ph] doi: 10.1103/PhysRevD.96.035014
    [108] K. H. Phan, D. T. Tran, and T. H. Nguyen, arXiv: 2406.15749
    [109] K. H. Phan, D. T. Tran, and T. H. Nguyen, PTEP 2024(8), 083B02 (2024), arXiv: 2404.02417[hep-ph] doi: 10.1093/ptep/ptae103
    [110] A. Zee, Nucl. Phys. B 264, 99 (1986) doi: 10.1016/0550-3213(86)90475-X
    [111] K. S. Babu, Phys. Lett. B 203, 132 (1988) doi: 10.1016/0370-2693(88)91584-5
    [112] M. Nebot, J. F. Oliver, D. Palao et al., Phys. Rev. D 77, 093013 (2008), arXiv: 0711.0483[hep-ph] doi: 10.1103/PhysRevD.77.093013
    [113] J. Herrero-Garcia, M. Nebot, N. Rius et al., Nucl. Phys. B 885, 542 (2014), arXiv: 1402.4491[hep-ph] doi: 10.1016/j.nuclphysb.2014.06.001
    [114] D. Aristizabal Sierra and M. Hirsch, JHEP 2006, 052 (2006), arXiv: hep-ph/0609307[hep-ph] doi: 10.1088/1126-6708/2006/12/052
    [115] J. Alcaide, M. Chala, and A. Santamaria, Phys. Lett. B 779, 107 (2018), arXiv: 1710.05885[hep-ph] doi: 10.1016/j.physletb.2018.02.001
    [116] R. Ruiz, JHEP 2022, 200 (2022), arXiv: 2206.14833[hep-ph] doi: 10.1007/JHEP10(2022)200
    [117] A. Jueid, T. A. Chowdhury, S. Nasri et al., Phys. Rev. D 109(7), 075011 (2024), arXiv: 2306.01255[hep-ph] doi: 10.1103/PhysRevD.109.075011
    [118] A. Denner and S. Dittmaier, Nucl. Phys. B 734, 62 (2006), arXiv: hep-ph/0509141[hep-ph] doi: 10.1016/j.nuclphysb.2005.11.007
  • [1] A. Liss et al. (ATLAS), arXiv: 1307.7292
    [2] CMS Collaboration), arXiv: 1307.7135
    [3] H. Baer et al. (ILC), arXiv: 1306.6352
    [4] V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. 93, 015006 (2021), arXiv: 2003.09084[physics.acc-ph] doi: 10.1103/RevModPhys.93.015006
    [5] G. Aad et al. (ATLAS), Phys. Rev. D 106(5), 052001 (2022), arXiv: 2112.11876[hep-ex] doi: 10.1103/PhysRevD.106.052001
    [6] G. Aad et al. (ATLAS), Phys. Rev. Lett. 114(8), 081802 (2015), arXiv: 1406.5053[hep-ex] doi: 10.1103/PhysRevLett.114.081802
    [7] G. Aad et al. (ATLAS), Eur. Phys. J. C 75(9), 412 (2015), arXiv: 1506.00285[hep-ex] doi: 10.1140/epjc/s10052-015-3628-x
    [8] G. Aad et al. (ATLAS), Phys. Rev. D 92, 092004 (2015), arXiv: 1509.04670[hep-ex] doi: 10.1103/PhysRevD.92.092004
    [9] A. M. Sirunyan et al. (CMS), JHEP 2018, 054 (2018), arXiv: 1708.04188[hep-ex] doi: 10.1007/JHEP01(2018)054
    [10] M. Aaboud et al. (ATLAS), JHEP 2018, 040 (2018), arXiv: 1807.04873[hep-ex] doi: 10.1007/JHEP11(2018)040
    [11] A. M. Sirunyan et al. (CMS), Phys. Lett. B 788, 7 (2019), arXiv: 1806.00408[hep-ex] doi: 10.1016/j.physletb.2018.10.056
    [12] A. M. Sirunyan et al. (CMS), JHEP 2021, 257 (2021), arXiv: 2011.12373[hep-ex] doi: 10.1007/JHEP03(2021)257
    [13] A. Tumasyan et al. (CMS), Phys. Rev. Lett. 129(8), 081802 (2022), arXiv: 2202.09617[hep-ex] doi: 10.1103/PhysRevLett.129.081802
    [14] G. Aad et al. (ATLAS), JHEP 2023, 040 (2023), arXiv: 2209.10910[hep-ex] doi: 10.1007/JHEP07(2023)040
    [15] G. Aad et al. (ATLAS), Phys. Rev. D 108(5), 052003 (2023), arXiv: 2301.03212[hep-ex] doi: 10.1103/PhysRevD.108.052003
    [16] G. Aad et al., arXiv: 2406.09971
    [17] G. Weiglein et al. (LHC/LC Study Group), Phys. Rept. 426, 47 (2006), arXiv: hep-ph/0410364[hep-ph] doi: 10.1016/j.physrep.2005.12.003
    [18] A. Arhrib, R. Benbrik, C. H. Chen et al., JHEP 2009, 035 (2009), arXiv: 0906.0387[hep-ph] doi: 10.1088/1126-6708/2009/08/035
    [19] J. Grigo, J. Hoff, K. Melnikov et al., Nucl. Phys. B 875, 1 (2013), arXiv: 1305.7340[hep-ph] doi: 10.1016/j.nuclphysb.2013.06.024
    [20] D. Y. Shao, C. S. Li, H. T. Li et al., JHEP 2013, 169 (2013), arXiv: 1301.1245[hep-ph] doi: 10.1007/JHEP07(2013)169
    [21] U. Ellwanger, JHEP 2013, 077 (2013), arXiv: 1306.5541[hep-ph] doi: 10.1007/JHEP08(2013)077
    [22] C. Han, X. Ji, L. Wu et al., JHEP 2014, 003 (2014), arXiv: 1307.3790[hep-ph] doi: 10.1007/JHEP04(2014)003
    [23] A. J. Barr, M. J. Dolan, C. Englert et al., Phys. Lett. B 728, 308 (2014), arXiv: 1309.6318[hep-ph] doi: 10.1016/j.physletb.2013.12.011
    [24] D. de Florian and J. Mazzitelli, Phys. Rev. Lett. 111, 201801 (2013), arXiv: 1309.6594[hep-ph] doi: 10.1103/PhysRevLett.111.201801
    [25] N. Haba, K. Kaneta, Y. Mimura et al., Phys. Rev. D 89(1), 015018 (2014), arXiv: 1311.0067[hep-ph] doi: 10.1103/PhysRevD.89.015018
    [26] J. Cao, D. Li, L. Shang et al., JHEP 2014, 026 (2014), arXiv: 1409.8431[hep-ph] doi: 10.1007/JHEP12(2014)026
    [27] T. Enkhbat, JHEP2014, 158 (2014), arXiv: 1311.4445[hep-ph] doi: 10.1007/JHEP01(2014)158
    [28] Q. Li, Q. S. Yan, and X. Zhao, Phys. Rev. D 89(3), 033015 (2014), arXiv: 1312.3830[hep-ph] doi: 10.1103/PhysRevD.89.033015
    [29] R. Frederix, S. Frixione, V. Hirschi et al., Phys. Lett. B 732, 142 (2014), arXiv: 1401.7340[hep-ph] doi: 10.1016/j.physletb.2014.03.026
    [30] J. Baglio, O. Eberhardt, U. Nierste et al., Phys. Rev. D 90(1), 015008 (2014), arXiv: 1403.1264[hep-ph] doi: 10.1103/PhysRevD.90.015008
    [31] D. E. Ferreira de Lima, A. Papaefstathiou et al., JHEP 2014, 030 (2014), arXiv: 1404.7139[hep-ph] doi: 10.1007/JHEP08(2014)030
    [32] B. Hespel, D. Lopez-Val, and E. Vryonidou, JHEP 2014, 124 (2014), arXiv: 1407.0281[hep-ph] doi: 10.1007/JHEP09(2014)124
    [33] V. Barger, L. L. Everett, C. B. Jackson et al., Phys. Rev. Lett. 114(1), 011801 (2015), arXiv: 1408.0003[hep-ph] doi: 10.1103/PhysRevLett.114.011801
    [34] J. Grigo, K. Melnikov, and M. Steinhauser, Nucl. Phys. B 888, 17 (2014), arXiv: 1408.2422[hep-ph] doi: 10.1016/j.nuclphysb.2014.09.003
    [35] F. Maltoni, E. Vryonidou, and M. Zaro, JHEP 2014, 079 (2014), arXiv: 1408.6542[hep-ph] doi: 10.1007/JHEP11(2014)079
    [36] F. Goertz, A. Papaefstathiou, L. L. Yang et al., JHEP 2015, 167 (2015), arXiv: 1410.3471[hep-ph] doi: 10.1007/JHEP04(2015)167
    [37] A. Azatov, R. Contino, G. Panico et al., Phys. Rev. D 92(3), 035001 (2015), arXiv: 1502.00539[hep-ph] doi: 10.1103/PhysRevD.92.035001
    [38] A. Papaefstathiou, Phys. Rev. D 91(11), 113016 (2015), arXiv: 1504.04621[hep-ph] doi: 10.1103/PhysRevD.91.113016
    [39] R. Grober, M. Muhlleitner, M. Spira et al., JHEP 2015, 092 (2015), arXiv: 1504.06577[hep-ph] doi: 10.1007/JHEP09(2015)092
    [40] D. de Florian and J. Mazzitelli, JHEP 2015, 053 (2015), arXiv: 1505.07122[hep-ph] doi: 10.1007/JHEP09(2015)053
    [41] H. J. He, J. Ren, and W. Yao, Phys. Rev. D 93(1), 015003 (2016), arXiv: 1506.03302[hep-ph] doi: 10.1103/PhysRevD.93.015003
    [42] J. Grigo, J. Hoff, and M. Steinhauser, Nucl. Phys. B 900, 412 (2015), arXiv: 1508.00909[hep-ph] doi: 10.1016/j.nuclphysb.2015.09.012
    [43] W. J. Zhang, W. G. Ma, R. Y. Zhang et al., Phys. Rev. D 92, 116005 (2015), arXiv: 1512.01766[hep-ph] doi: 10.1103/PhysRevD.92.116005
    [44] A. Agostini, G. Degrassi, R. Gröber et al., JHEP 2016, 106 (2016), arXiv: 1601.03671[hep-ph] doi: 10.1007/JHEP04(2016)106
    [45] R. Grober, M. Muhlleitner, and M. Spira, JHEP 2016, 080 (2016), arXiv: 1602.05851[hep-ph] doi: 10.1007/JHEP06(2016)080
    [46] G. Degrassi, P. P. Giardino, and R. Gröber, Eur. Phys. J. C 76(7), 411 (2016), arXiv: 1603.00385[hep-ph] doi: 10.1140/epjc/s10052-016-4256-9
    [47] S. Kanemura, K. Kaneta, N. Machida et al., Phys. Rev. D 94(1), 015028 (2016), arXiv: 1603.05588[hep-ph] doi: 10.1103/PhysRevD.94.015028
    [48] D. de Florian, M. Grazzini, C. Hanga et al., JHEP 2016, 151 (2016), arXiv: 1606.09519[hep-ph] doi: 10.1007/JHEP09(2016)151
    [49] S. Borowka, N. Greiner, G. Heinrich et al., JHEP 2016, 107 (2016), arXiv: 1608.04798[hep-ph] doi: 10.1007/JHEP10(2016)107
    [50] F. Bishara, R. Contino, and J. Rojo, Eur. Phys. J. C 77(7), 481 (2017), arXiv: 1611.03860[hep-ph] doi: 10.1140/epjc/s10052-017-5037-9
    [51] Q. H. Cao, G. Li, B. Yan et al., Phys. Rev. D 96(9), 095031 (2017), arXiv: 1611.09336[hep-ph] doi: 10.1103/PhysRevD.96.095031
    [52] K. Nakamura, K. Nishiwaki, K. Y. Oda et al., Eur. Phys. J. C 77(5), 273 (2017), arXiv: 1701.06137[hep-ph] doi: 10.1140/epjc/s10052-017-4835-4
    [53] R. Grober, M. Muhlleitner, and M. Spira, Nucl. Phys. B 925, 1 (2017), arXiv: 1705.05314[hep-ph] doi: 10.1016/j.nuclphysb.2017.10.002
    [54] G. Heinrich, S. P. Jones, M. Kerner et al., JHEP 2017, 088 (2017), arXiv: 1703.09252[hep-ph] doi: 10.1007/JHEP08(2017)088
    [55] S. Jones and S. Kuttimalai, JHEP 2018, 176 (2018), arXiv: 1711.03319[hep-ph] doi: 10.1007/JHEP02(2018)176
    [56] J. Davies, G. Mishima, M. Steinhauser et al., JHEP 2018, 048 (2018), arXiv: 1801.09696[hep-ph] doi: 10.1007/JHEP03(2018)048
    [57] D. Gonçalves, T. Han, F. Kling et al., Phys. Rev. D 97(11), 113004 (2018), arXiv: 1802.04319[hep-ph] doi: 10.1103/PhysRevD.97.113004
    [58] J. Chang, K. Cheung, J. S. Lee et al., Phys. Rev. D 100(9), 096001 (2019), arXiv: 1804.07130[hep-ph] doi: 10.1103/PhysRevD.100.096001
    [59] G. Buchalla, M. Capozi, A. Celis et al., JHEP 2018, 057 (2018), arXiv: 1806.05162[hep-ph] doi: 10.1007/JHEP09(2018)057
    [60] R. Bonciani, G. Degrassi, P. P. Giardino et al., Phys. Rev. Lett. 121(16), 162003 (2018), arXiv: 1806.11564[hep-ph] doi: 10.1103/PhysRevLett.121.162003
    [61] P. Banerjee, S. Borowka, P. K. Dhani et al., JHEP 2018, 130 (2018), arXiv: 1809.05388[hep-ph] doi: 10.1007/JHEP11(2018)130
    [62] A. A H, P. Banerjee, A. Chakraborty, P. K. Dhani et al., JHEP 2019, 030 (2019), arXiv: 1811.01853[hep-ph] doi: 10.1007/JHEP05(2019)030
    [63] J. Baglio, F. Campanario, S. Glaus et al., Eur. Phys. J. C 79(6), 459 (2019), arXiv: 1811.05692[hep-ph] doi: 10.1140/epjc/s10052-019-6973-3
    [64] J. Davies, F. Herren, G. Mishima et al., JHEP 2019, 157 (2019), arXiv: 1904.11998[hep-ph] doi: 10.1007/JHEP05(2019)157
    [65] J. Davies, G. Heinrich, S. P. Jones et al., JHEP 2019, 024 (2019), arXiv: 1907.06408[hep-ph] doi: 10.1007/JHEP11(2019)024
    [66] L. B. Chen, H. T. Li, H. S. Shao et al., Phys. Lett. B 803, 135292 (2020), arXiv: 1909.06808[hep-ph] doi: 10.1016/j.physletb.2020.135292
    [67] L. B. Chen, H. T. Li, H. S. Shao et al., JHEP 2020, 072 (2020), arXiv: 1912.13001[hep-ph] doi: 10.1007/JHEP03(2020)072
    [68] J. Baglio, F. Campanario, S. Glaus et al., JHEP 2020, 181 (2020), arXiv: 2003.03227[hep-ph] doi: 10.1007/JHEP04(2020)181
    [69] G. Wang, Y. Wang, X. Xu et al., Phys. Rev. D 104(5), L051901 (2021), arXiv: 2010.15649[hep-ph] doi: 10.1103/PhysRevD.104.L051901
    [70] H. Abouabid, A. Arhrib, D. Azevedo, J. E. et al., JHEP 2022, 011 (2022), arXiv: 2112.12515[hep-ph] doi: 10.1007/JHEP09(2022)011
    [71] J. Davies, G. Mishima, K. Schönwald et al., JHEP 2022, 259 (2022), arXiv: 2207.02587[hep-ph] doi: 10.1007/JHEP08(2022)259
    [72] D. He, T. F. Feng, J. L. Yang et al., J. Phys. G 49(8), 085002 (2022), arXiv: 2206.04450[hep-ph] doi: 10.1088/1361-6471/ac77a8
    [73] A. A H and H. S. Shao, JHEP 2023, 067 (2023), arXiv: 2209.03914[hep-ph] doi: 10.1007/JHEP02(2023)067
    [74] S. Iguro, T. Kitahara, Y. Omura et al., Phys. Rev. D 107(7), 075017 (2023), arXiv: 2211.00011[hep-ph] doi: 10.1103/PhysRevD.107.075017
    [75] S. Alioli, G. Billis, A. Broggio et al., JHEP 2023, 205 (2023), arXiv: 2212.10489[hep-ph] doi: 10.1007/JHEP06(2023)205
    [76] J. Davies, K. Schönwald, M. Steinhauser et al., JHEP 2023, 033 (2023), arXiv: 2308.01355[hep-ph] doi: 10.1007/JHEP10(2023)033
    [77] E. Bagnaschi, G. Degrassi, and R. Gröber, Eur. Phys. J. C 83(11), 1054 (2023), arXiv: 2309.10525[hep-ph] doi: 10.1140/epjc/s10052-023-12238-8
    [78] J. Davies, K. Schönwald, M. Steinhauser et al., arXiv: 2405.20372
    [79] V. Brigljevic, D. Ferencek, G. Landsberg. et al., arXiv: 2407.03015
    [80] J. Cao, Z. Heng, L. Shang et al., JHEP 2013, 134 (2013), arXiv: 1301.6437[hep-ph] doi: 10.1007/JHEP04(2013)134
    [81] G. V. Jikia, Nucl. Phys. B 412, 57 (1994) doi: 10.1016/0550-3213(94)90494-4
    [82] L. Z. Sun and Y. Y. Liu, Phys. Rev. D 54, 3563 (1996) doi: 10.1103/PhysRevD.54.3563
    [83] S. H. Zhu, C. S. Li, and C. S. Gao, Phys. Rev. D 58, 015006 (1998), arXiv: hep-ph/9710424[hep-ph] doi: 10.1103/PhysRevD.58.015006
    [84] S. H. Zhu, J. Phys. G 24, 1703 (1998) doi: 10.1088/0954-3899/24/9/005
    [85] G. J. Gounaris and P. I. Porfyriadis, Eur. Phys. J. C 18, 181 (2000), arXiv: hep-ph/0007110[hep-ph] doi: 10.1007/s100520000520
    [86] Y. J. Zhou, W. G. Ma, H. S. Hou et al., Phys. Rev. D 68, 093004 (2003), arXiv: hep-ph/0308226[hep-ph] doi: 10.1103/PhysRevD.68.093004
    [87] F. Cornet and W. Hollik, Phys. Lett. B 669, 58 (2008), arXiv: 0808.0719[hep-ph] doi: 10.1016/j.physletb.2008.09.035
    [88] E. Asakawa, D. Harada, S. Kanemura et al., Phys. Lett. B 672, 354 (2009), arXiv: 0809.0094[hep-ph] doi: 10.1016/j.physletb.2009.01.050
    [89] E. Asakawa, D. Harada, S. Kanemura et al., arXiv: 0902.2458
    [90] T. Takahashi, N. Maeda, K. Ikematsu et al., arXiv: 0902.3377
    [91] R. N. Hodgkinson, D. Lopez-Val, and J. Sola, Phys. Lett. B 673, 47 (2009), arXiv: 0901.2257[hep-ph] doi: 10.1016/j.physletb.2009.02.009
    [92] A. Arhrib, R. Benbrik, C. H. Chen et al., Phys. Rev. D 80, 015010 (2009), arXiv: 0901.3380[hep-ph] doi: 10.1103/PhysRevD.80.015010
    [93] E. Asakawa, D. Harada, S. Kanemura et al., Phys. Rev. D 82, 115002 (2010), arXiv: 1009.4670[hep-ph] doi: 10.1103/PhysRevD.82.115002
    [94] J. Hernandez-Sanchez, C. G. Honorato, M. A. Perez et al., Phys. Rev. D 85, 015020 (2012), arXiv: 1108.4074[hep-ph] doi: 10.1103/PhysRevD.85.015020
    [95] W. Ma, C. X. Yue, and T. T. Zhang, Chin. Phys. C 35, 333 (2011) doi: 10.1088/1674-1137/35/4/003
    [96] J. Sola and D. Lopez-Val, Nuovo Cim. C 34S1, 57 (2011), arXiv: 1107.1305[hep-ph] doi: 10.1393/ncc/i2011-11002-1
    [97] Z. Heng, L. Shang, and P. Wan, JHEP 2013, 047 (2013), arXiv: 1306.0279[hep-ph] doi: 10.1007/JHEP10(2013)047
    [98] M. Chiesa, B. Mele, and F. Piccinini, Eur. Phys. J. C 84(5), 543 (2024), arXiv: 2109.10109[hep-ph] doi: 10.1140/epjc/s10052-024-12882-8
    [99] B. Samarakoon and T. M. Figy, Phys. Rev. D 109(7), 075015 (2024), arXiv: 2312.12594[hep-ph] doi: 10.1103/PhysRevD.109.075015
    [100] M. Demirci, Turk. J. Phys. 43(5), 442 (2019), arXiv: 1902.07236[hep-ph] doi: 10.3906/fiz-1903-15
    [101] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999) doi: 10.1016/S0010-4655(98)00173-8
    [102] A. Denner, S. Dittmaier, and L. Hofer, Comput. Phys. Commun. 212, 220 (2017), arXiv: 1604.06792[hep-ph] doi: 10.1016/j.cpc.2016.10.013
    [103] K. H. Phan, D. T. Tran, and T. H. Nguyen, Processes γγ→ϕ iϕ j in Inert Higgs Doublet Models and Two Higgs Doublet Models, arXiv: 2409.00662
    [104] M. Bohm, H. Spiesberger, and W. Hollik, Fortsch. Phys. 34, 687 (1986) doi: 10.1002/prop.19860341102
    [105] W. F. L. Hollik, Fortsch. Phys. 38, 165 (1990) doi: 10.1002/prop.2190380302
    [106] K. I. Aoki, Z. Hioki, M. Konuma et al., Prog. Theor. Phys. Suppl. 73, 1 (1982) doi: 10.1143/PTPS.73.1
    [107] S. Kanemura, M. Kikuchi, K. Sakurai et al., Phys. Rev. D 96(3), 035014 (2017), arXiv: 1705.05399[hep-ph] doi: 10.1103/PhysRevD.96.035014
    [108] K. H. Phan, D. T. Tran, and T. H. Nguyen, arXiv: 2406.15749
    [109] K. H. Phan, D. T. Tran, and T. H. Nguyen, PTEP 2024(8), 083B02 (2024), arXiv: 2404.02417[hep-ph] doi: 10.1093/ptep/ptae103
    [110] A. Zee, Nucl. Phys. B 264, 99 (1986) doi: 10.1016/0550-3213(86)90475-X
    [111] K. S. Babu, Phys. Lett. B 203, 132 (1988) doi: 10.1016/0370-2693(88)91584-5
    [112] M. Nebot, J. F. Oliver, D. Palao et al., Phys. Rev. D 77, 093013 (2008), arXiv: 0711.0483[hep-ph] doi: 10.1103/PhysRevD.77.093013
    [113] J. Herrero-Garcia, M. Nebot, N. Rius et al., Nucl. Phys. B 885, 542 (2014), arXiv: 1402.4491[hep-ph] doi: 10.1016/j.nuclphysb.2014.06.001
    [114] D. Aristizabal Sierra and M. Hirsch, JHEP 2006, 052 (2006), arXiv: hep-ph/0609307[hep-ph] doi: 10.1088/1126-6708/2006/12/052
    [115] J. Alcaide, M. Chala, and A. Santamaria, Phys. Lett. B 779, 107 (2018), arXiv: 1710.05885[hep-ph] doi: 10.1016/j.physletb.2018.02.001
    [116] R. Ruiz, JHEP 2022, 200 (2022), arXiv: 2206.14833[hep-ph] doi: 10.1007/JHEP10(2022)200
    [117] A. Jueid, T. A. Chowdhury, S. Nasri et al., Phys. Rev. D 109(7), 075011 (2024), arXiv: 2306.01255[hep-ph] doi: 10.1103/PhysRevD.109.075011
    [118] A. Denner and S. Dittmaier, Nucl. Phys. B 734, 62 (2006), arXiv: hep-ph/0509141[hep-ph] doi: 10.1016/j.nuclphysb.2005.11.007
  • 加载中

Figures(11) / Tables(3)

Get Citation
Khiem Hong Phan, Dzung Tri Tran and Thanh Huy Nguyen. One-loop analytical expressions for gg/γγϕiϕj in Higgs Extensions of the Standard Models and its applications[J]. Chinese Physics C. doi: 10.1088/1674-1137/ada3cd
Khiem Hong Phan, Dzung Tri Tran and Thanh Huy Nguyen. One-loop analytical expressions for gg/γγϕiϕj in Higgs Extensions of the Standard Models and its applications[J]. Chinese Physics C.  doi: 10.1088/1674-1137/ada3cd shu
Milestone
Received: 2024-10-11
Article Metric

Article Views(1305)
PDF Downloads(15)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

One-loop analytical expressions for gg/γγϕiϕj in Higgs extensions of the standard model and their applications

    Corresponding author: Khiem Hong Phan, phanhongkhiem@duytan.edu.vn
  • a. Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Vietnam
  • b. Faculty of Natural Sciences, Duy Tan University, Da Nang City 50000, Vietnam
  • c. VNUHCM-University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City 70000, Vietnam

Abstract: General one-loop formulas for loop-induced processes gg/\gamma \gamma \rightarrow \phi_i\phi_j with \phi_i\phi_j = hh,~hH,~HH are presented in this paper. The analytic expressions evaluated in this study are valid for a class of Higgs Extensions of the Standard Model, e.g., Inert Doublet Higgs, Two Higgs Doublet, Zee-Babu, and Triplet Higgs Models. Analytic expressions for one-loop form factors are expressesd in terms of the basic scalar one-loop two-, three-, and four-point functions following the output format of the packages {\tt LoopTools} and {\tt Collier}. Hence, physical results can be evaluated numerically using one of these packages. The analytic results are tested using several checks such as the ultraviolet finiteness and infrared finiteness of the one-loop amplitudes. Furthermore, the amplitudes obey the ward identity due to massless gauge bosons in the initial states. This identity is also verified numerically. Regarding applications, we present the phenomenological results for the investigated processes in the Zee-Babu model as a typical example. In particular, production cross-sections for the processes \gamma \gamma\rightarrow hh are scanned over the parameter space of the Zee-Babu Model.

    HTML

    I.   INTRODUCTION
    • Discovering the structure of scalar potentials and consequently understanding the nature of electroweak symmetry breaking (EWSB) are the most important objectives of future colliders, e.g., the High-Luminosity Large Hadron Collider (HL-LHC) [1, 2] and future lepton colliders (LCs) [3, 4]. Hence, probing for multi-scalar boson productions is of interest to future colliders because accurate production cross-sections not only provide crucial information for extracting triple Higgs and quadruple Higgs self-couplings but also direct searches for new scalar particles. In the former case, indirect searches for new physics contributions can be performed through the corrected measurements for Higgs self-couplings. Recently, Standard Model-like (SM-like) Higgs boson pair productions have been probed at the LHC, e.g., via the events of two bottom quarks associated with two photons, four bottom quarks events, etc., as described in [516]. Future LCs have also been proposed to complement the physics at the LHC; for example, the LCs can significantly improve the accuracy of LHC measurements of many observables [17]. More importantly, photon-photon collision is considered an option of LCs [3, 4], through which scalar Higgs pair productions ( \phi_i\phi_j ) can be measured through scattering processes \ell \bar{\ell} \rightarrow \ell \bar{\ell} \gamma^*\gamma^* \rightarrow \ell \bar{\ell} \phi_i\phi_j for \ell \equiv e, \mu . Together with the LHC, LCs offer an opportunity to discover many concepts of physics beyond the SM (BSM) via multi-scalar Higgs productions.

      To match the higher-precision data at the future colliders, we require theoretical evaluations for one-loop contributing to the di-Higgs boson productions. One-loop contributions to the processes at the LHC in the frameworks of the SM of the Higgs Extensions of the SM (HESM) and other BSMs have been investigated in many studies, e.g., Refs. [1880]. For high-energy photon-photon collisions, one-loop corrections to the di-Higgs boson productions within the SM and many of BSMs have been computed in Refs. [8195]. For future linear LCs, including future multi-TeV muon colliders, the equivalent calculations for the Higgs pair productions have been considered in Refs. [9699]. Additionally, one-loop corrections to the scattering processes \gamma\gamma \rightarrow A^0A^0 ( A^0 is CP-odd Higgs) in the Two Higgs Doublet Model are discussed in Ref. [100]. The partonic processes gg/\gamma \gamma \rightarrow \phi_i\phi_j will play an important role at future colliders. For example, we can construct the processes pp\rightarrow \phi_i\phi_j at the LHC by convoluting the parton distribution functions for the initial gluons. Moreover, we can generate the total cross-sections of the scattering processes \ell \bar{\ell} \rightarrow \ell \bar{\ell} \gamma^*\gamma^* \rightarrow \ell \bar{\ell} \phi_i\phi_j for \ell \equiv e, \mu using the convolution of the mentioned partonic channels with the photon energy spectrum in lepton beams. Subsequently, we can obtain the corresponding cross-sections for scalar boson pair productions at future colliders, including multi-TeV muon colliders. In the scope of this paper, we present general one-loop formulas for loop-induced partonic processes gg/\gamma \gamma \rightarrow \phi_i\phi_j with \phi_i\phi_j = hh,\; hH,\; HH , which are valid for a class of HESMs, e.g., Inert Doublet Higgs, Two Higgs Doublet, Zee-Babu, and Triplet Higgs models.

      In this computation, analytic expressions for one-loop form factors are expressed in terms of the basic scalar one-loop two-, three-, and four-point functions with the output format of the packages {\tt LoopTools} [101] and {\tt Collier} [102]. Hence, a numerical investigation can be performed using one of these packages. Analytic results are confirmed using several checks, such as the ultraviolet finiteness and infrared finiteness of the one-loop amplitudes. Furthermore, the amplitudes obey the ward identity due to massless gauge bosons in the initial states. This identity is also verified numerically in this study. Concerning the applications, the phenomenological results for the calculated processes in the Zee-Babu Model are examined as a typical example. In particular, the production cross-sections for the scattering \gamma \gamma\rightarrow hh are scanned over the parameter space of the model under consideration.

      The remainder of this paper is structured as follows. Detailed evaluations for one-loop corrections to with CP-even Higgses \phi_{i,j}\equiv h,\; H_j in the HESMs are presented in Sec. II. We then discuss the numerical checks for the calculation and present the applications of this study in the Sec. III. The conclusion and outlook are given in Sec. IV. Analytic expressions for one-loop form factors are given in Appendix B. Additional couplings in the Zee-Babu model are derived in Appendix C.

    II.   ONE-LOOP CONTRIBUTIONS FOR PROCESSES gg/\gamma\gamma \rightarrow \phi_i\phi_j IN THE HESMs
    • This section presents detailed evaluations for one-loop contributions for the scattering processes gg/\gamma\gamma \rightarrow \phi_i\phi_j in the HESMs. We first provide concrete evaluations for the processes \gamma\gamma \rightarrow \phi_i\phi_j . We then extend these results to the processes gg \rightarrow \phi_i\phi_j .

      Additional scalar bosons in the mentioned HESMs are included as CP-even Higgses \phi_i , CP-odd Higgses A_j^{0} , and singly (doubly) charged Higgses S\equiv S_k^Q with charged quantum number Q for i,j, k = 1,2,\,\cdots. In this study, S_k^Q can be a singly charged Higgs H^{\pm} and doubly charged Higgs K^{\pm\pm} . Beyond the SM, the extra couplings relating to the mentioned scalar particles in the HESMs are parameterized in the general form g_{\text{vertex}} . Explicit formulas for g_{\text{vertex}} for each model under investigation are presented; see the Zee-Babu Model in the application of this study and our previous study [103] for examples.

      By employing the on-shell renormalization scheme developed in Refs. [104106] for the fermion and gauge sectors and the improved on-shell renormalization scheme for the scalar sector using the method in Ref. [107], we plot one loop-induced Feynman diagrams for the production processes \gamma \gamma \rightarrow \phi_i \phi_j with CP-even Higgses \phi_{i,j} \equiv h, H in the HESMs. The calculations are performed in the Hooft-Feynman (HF) gauge, in which one loop-induced Feynman diagrams can be categorized into several groups, as explained below. The first classification Feynman diagrams are shown in Fig. 1. In this group, we list all one-loop diagrams with \phi_k^* -poles for \phi_k^* = h^*,\; H^* . The types of diagrams in this group include all one-loop diagrams contributions for off-shell CP-even Higgs decay such as \phi_k^* \rightarrow \gamma\gamma with fermions (noted as G_1 ), W-boson, charged Goldstone \chi^{\pm} , Ghosht particles c^\pm (as G_2 ), and charged Higgs S^{Q} (as G_3 ) internal lines in connection with the vertices \phi_k^*\phi_i\phi_j .

      Figure 1.  All one-loop diagrams with fermions, W bosons (with charged Goldstone \chi^{\pm} and Ghosht particles c^\pm), and charged Higgs exchanging in the loop of \phi_k^*-poles, for \phi_k^*=h^*, H^*. The types of diagrams that appear in this group include one-loop contributions for off-shell CP-even Higgs decay such as \phi_k^* \rightarrow \gamma\gamma in connection with the vertices \phi_k^*\phi_i\phi_j.

      The second classification of one-loop Feynman diagrams is one-loop box diagrams. The first type of box diagrams contributing to the computed processes is plotted in Fig. 2. In these topologies, all fermion internal lines are considered (denoted as group G_4 ).

      Figure 2.  One-loop four external legs with fermion internal lines contributing to the computed processes (denoted as group G_4).

      Additionally, the second type of one-loop four-point Feynman diagrams with vector W-bosons, charged Goldstone bosons \chi^{\pm} , and Ghosht particle c^\pm internal lines are considered in the calculated processes. These diagrams are grouped into G_5 as shown in Figs. 3 and 4.

      Figure 3.  All one-loop box diagrams contributing to the processes with W-boson exchanging in the loop (placed into G_5).

      Figure 4.  All one-loop box diagrams contributing to the processes with W-boson exchanging in the loop (placed into G_5).

      In the scope of the HESMs discussed in this study, we also have another type of one-loop box diagrams with both W-boson and singly charged Higgs S^{Q} \equiv H^{\pm} propagating in the loop, shown in Figs. 5 and 6. We place these diagrams into group G_6 .

      Figure 5.  One-loop box diagrams with both W-boson and charged Higgs propagating in the loop (placed into G_6).

      Figure 6.  Further one-loop box diagrams with both W-boson and charged Higgs propagating in the loop (placed into G_6).

      Finally, we consider the last type of one-loop box diagrams with charged Higgses S^{Q} \equiv H^{\pm},\; K^{\pm\pm} in the loop, as shown in Fig. 7. We then add these diagrams into G_7 . Here, both singly and doubly charged Higgses are considered as internal line particles.

      Figure 7.  All one-loop box diagrams with charged Higgs in the loop (considered as G_7).

      We now discuss the analytic results. Generally, the one-loop amplitude for scattering processes \gamma_\mu (q_1) \, \gamma_\nu (q_2) \rightarrow \phi_i (q_3) \, \phi_j (q_4) is presented in terms of the Lorentz structure as follows:

      {\mathcal{A}}_{\gamma \gamma \rightarrow \phi_i \phi_j} = \Big[ F_{00}^{(\gamma\gamma)} \; g^{\mu\nu} + \sum\limits_{i,j = 1; i\leq j}^{3} F_{ij}^{(\gamma\gamma)} \; q_i^{\nu} q_j^{\mu} \Big] \varepsilon_{\mu}(q_1) \varepsilon_{\nu}(q_2).

      (1)

      In this formula, the vector \varepsilon_{\mu}(q) is the polarization vector of an external photon with a four-dimension momentum q. The scalar coefficients F_{ij}^{(\gamma\gamma)} for i,j = 1,2,3 are called one-loop form factors. They are expressed as the functions of the following kinematic invariant variables:

      \hat{s} = (q_1+q_2)^2 = q_1^2 + 2 q_1 \cdot q_2 + q_2^2 = 2 q_1 \cdot q_2,

      (2)

      \hat{t} = (q_1 - q_3)^2 = q_1^2 - 2 q_1 \cdot q_3 + q_3^2 = M_{\phi_i}^2 - 2 q_1 \cdot q_3,

      (3)

      \hat{u} = (q_2 - q_3)^2 = q_2^2 - 2 q_2 \cdot q_3 + q_3^2 = M_{\phi_i}^2 - 2 q_2 \cdot q_3.

      (4)

      The kinematic invariant masses for external legs are given as q_1^2 = q_2^2 = 0 , q_3^2 = M_{\phi_i}^2 , and q_4^2 = M_{\phi_j}^2 . These variables obey the identity \hat{s} + \hat{t} + \hat{u} = M_{\phi_i}^2 + M_{\phi_j}^2 . Associated with two massless photons in the initial states, the one loop-induced amplitude must satisfy the ward identity. Thus, we derive the following relations among the form factors:

      F_{00}^{(\gamma\gamma)} = \dfrac{ \hat{t} - M_{\phi_i}^2 }{2} \, F_{13}^{(\gamma\gamma)} - \dfrac{ \hat{s} }{2} \, F_{12}^{(\gamma\gamma)},

      (5)

      F_{00}^{(\gamma\gamma)} = \dfrac{ \hat{u} - M_{\phi_i}^2}{2} \, F_{23}^{(\gamma\gamma)} - \dfrac{ \hat{s} }{2} \, F_{12}^{(\gamma\gamma)},

      (6)

      F_{13}^{(\gamma\gamma)} = \dfrac{ \hat{u} - M_{\phi_i}^2} { \hat{s} } \, F_{33}^{(\gamma\gamma)},

      (7)

      F_{23}^{(\gamma\gamma)} = \dfrac{ \hat{t} - M_{\phi_i}^2} { \hat{s} } \, F_{33}^{(\gamma\gamma)}.

      (8)

      Using these relations, we express the one-loop amplitude via two independent one-loop form factors, e.g., F_{12}^{(\gamma\gamma)} and F_{33} ^{(\gamma\gamma)} . In detail, the amplitude can be rewritten as follows:

      {\cal{A}}_{\gamma \gamma \rightarrow \phi_i \phi_j} = \Big[ {\cal{P}}^{\mu\nu} \cdot F_{12}^{(\gamma\gamma)} + {\mathcal{Q} }^{\mu\nu} \cdot F_{33}^{(\gamma\gamma)} \Big] \, \varepsilon_{\mu}(q_1) \varepsilon_{\nu}(q_2).

      The two given tensors are defined as

      {\cal{P}}^{\mu\nu} = q_2^{\mu} q_1^{\nu} - \dfrac{ \hat{s} }{2} \cdot g^{\mu\nu},

      (9)

      {\cal{Q}}^{\mu\nu} = \dfrac{(M_{\phi_i}^2 - \hat{t}) (M_{\phi_i}^2 - \hat{u})}{2 \hat{s} } \cdot g^{\mu\nu} + q_3^{\mu} q_3^{\nu} + \dfrac{( \hat{t} -M_{\phi_i}^2)} { \hat{s} } \cdot q_2^{\mu} q_3^{\nu}.

      (10)

      Analytic results for the one-loop form factors F_{12}^{(\gamma\gamma)} and F_{33}^{(\gamma\gamma)} for the considered processes in the HESMs are determined in terms of the basic scalar one-loop functions. The form factors F_{ab}^{(\gamma\gamma)} for ab = \{12, 33\} are decomposed into triangle and box parts, which correspond to the contributions from one-loop triangle and one-loop box diagrams described above. In detail, the form factors are expressed as follows:

      \begin{aligned}[b] F_{12}^{(\gamma\gamma)} = \;& \sum\limits_{\phi_k^* = h^*, H^*} \dfrac{g_{\phi_k^* \phi_i \phi_j}} {\Big[ s - M_{\phi_k}^2 +\mathrm{i} \Gamma_{\phi_k} M_{\phi_k} \Big] } \Bigg[ \sum\limits_{f} g_{\phi_k^* ff} \cdot C^{\gamma\gamma}_f \cdot F_{12,f}^{\text{Trig}} + g_{\phi_k^* WW } \cdot F_{12,W}^{\text{Trig}} + \sum\limits_{S = H^{\pm}, K^{\pm\pm}} g_{\phi_k^*SS } \cdot F_{12,S}^{\text{Trig}} \Bigg] \\ & + \sum\limits_{f} g_{\phi_i ff} \cdot g_{\phi_j ff} \cdot C^{\gamma\gamma}_f \cdot F_{12,f}^{\text{Box}} + \Big[ g_{\phi_i W W} \cdot g_{\phi_j WW } \cdot F_{12,W}^{\text{Box, 1}} + g_{\phi_i \phi_j WW } \cdot F_{12,W}^{\text{Box, 2}} + g_{\phi_i \phi_j \chi\chi } \cdot F_{12,W}^{\text{Box, 3}} \Big] \\ & + \sum\limits_{S = H^{\pm}, K^{\pm\pm}} \Big[ g_{\phi_i SS} \cdot g_{\phi_j SS} \cdot F_{12,S}^{\text{Box},1} + g_{\phi_i \phi_j SS} \cdot F_{12,S}^{\text{Box},2} \Big] + g_{\phi_i H^{\pm} W^{\mp}} \cdot g_{\phi_j H^{\pm} W^{\mp}} \cdot F_{12,W, H^\pm}^{\text{Box}},\end{aligned}

      (11)

      F_{33}^{(\gamma\gamma)} = \sum\limits_{f} g_{\phi_i ff} \cdot g_{\phi_j ff} \cdot C^{\gamma\gamma}_f \cdot F_{33,f}^{\text{Box}} + g_{\phi_i W W} \cdot g_{\phi_j W W} \cdot F_{33,W}^{\text{Box}} + \sum\limits_{S^Q = H^{\pm}, K^{\pm\pm}} g_{\phi_i SS} \cdot g_{\phi_j SS} \cdot F_{33,S}^{\text{Box}} + g_{\phi_i H^{\pm} W^{\mp}} \cdot g_{\phi_j H^{\pm} W^{\mp}} \cdot F_{33,W, H^\pm}^{\text{Box}}.

      (12)

      In the above equations, C^{\gamma\gamma}_f = N_C^{f} (eQ_f)^2 for the decay process \gamma \gamma \rightarrow \phi_i\phi_j . Q_f\; (N_C^f) denotes the charged (color) quantum number of the corresponding fermion f. Note that S is for both singly charged Higgs H^\pm and doubly charged Higgs K^{\pm\pm} . The first contributions to one-loop form factors F_{12}^{(\gamma\gamma)} calculated from one-loop diagrams appear in off-shell CP-even Higgs decay such as \phi_k^* \rightarrow \gamma\gamma in connection with vertices \phi_k^*\phi_i\phi_j (as plotted in Fig. 1). They are decomposed into each term in the bracket, e.g., F_{12,f}^{\text{Trig}} (from fermions f in the loop of G_1 in Fig. 1), F_{12,W}^{\text{Trig}} (from the W boson in the loop of G_2 in Fig. 1), and F_{12,S}^{\text{Trig}} (from the charged Higgs in the loop of G_3 in Fig. 1). Subsequently, one-loop factors F_{12,f}^{\text{Box}} are computed from the fermions f exchanging in the box diagrams, as in Fig. 2. One-loop form factors determined from one-loop W boson propagating in the box diagrams as in Fig. 3 can be divided into the following parts, e.g., F_{12,W}^{\text{Box, k}} for k = 1,2,3 , which correspond to the factors factorized out using general trilinear-couplings of \phi_i WW, \phi_j WW , quadratic-couplings of \phi_i\phi_j WW , and \phi_i\phi_j \chi\chi as in Eq. (11). We also express the factors attributed to the one-loop charged Higgs in the box diagrams into two sub-factors F_{12,S}^{\text{Box},k} for k = 1,2 , which are factorized out using general trilinear-couplings of \phi_i SS,\; \phi_j SS , quadratic-couplings of \phi_i\phi_j WW , and \phi_i\phi_j SS as in Eq. (11). Finally, from the diagrams with mixing W boson and singly charged Higgs in the loop, we have the factors F_{12,WH^\pm}^{\text{Box}} , which can be factorized out in terms of the trilinear-couplings \phi_i H^\pm\; W,\; \phi_jH^\pm\; W . Otherwise, the form factors F_{33}^{(\gamma\gamma)} are only contributed by one-loop box diagrams. They can be factorized out in terms of general couplings as in Eq. (12). The analytic results for one-loop form factors given in Eqs. (11) and (12) are shown explicitly in Appendix B.

      The analytic results presented in the above paragraphs can be extended to the channels gg \rightarrow \phi_i\phi_j . No W boson or charged Higgs propagates in the loop diagrams of the processes gg\rightarrow \phi_i\phi_j . Here, all one-loop Feynman diagrams with f exchanging in the loop are considered. In detail, the first diagram G_1 in Fig. 1 and all diagrams G_4 in Fig. 2 contribute to the processes gg\rightarrow \phi_i\phi_j . Subsequently, all one-loop form factors F_{12,W}^{\text{Trig}} , F_{12,S}^{\text{Trig}} , F_{ab,W}^{\text{Box}} , F_{ab,S}^{\text{Box}} , and F_{ab,WH^{\pm}}^{\text{Box}} for ab = \{12, 33\} are zero in this case. Finally, one-loop form factors in the channels gg\rightarrow \phi_i\phi_j are expressed as follows:

      \begin{aligned}[b] F_{12}^{(gg)} = \;& \sum\limits_{f} \sum\limits_{\phi_k^* = h^*, H^*} C^{gg}_f \cdot \dfrac{ g_{\phi_k^* \phi_i \phi_j}} {\Big[ s - M_{\phi_k}^2 +i \Gamma_{\phi_k} M_{\phi_k} \Big] } \\& \times\Bigg[ g_{\phi_k^* ff} \cdot F_{12,f}^{\text{Trig}} + g_{\phi_i ff} \cdot g_{\phi_j ff} \cdot F_{12,f}^{\text{Box}} \Big], \end{aligned}

      (13)

      F_{33}^{(gg)} = \sum\limits_{f} C^{gg}_f \cdot g_{\phi_i ff} \cdot g_{\phi_j ff} \cdot F_{33,f}^{\text{Box}}.

      (14)

      where C^{gg}_f = \sqrt{2}g_s^2 , with g_s = \sqrt{4\pi \alpha_s} ( \alpha_s is a strong coupling constant).

      Having all the necessary form factors, we evaluate the cross sections as follows:

      \hat{\sigma}_{\rm{HESM}} ^{gg/\gamma\gamma \rightarrow \phi_i \phi_j}(\hat{s}) = \dfrac{1}{n!} \dfrac{1}{16 \pi \hat{s}^2} \int \limits_{t_\text{min}} ^{t_\text{max}} \mathrm{d} \hat{t}\; \frac{1}{4} \sum \limits_\text{unpol.} \big| {\cal{A}}_{gg/\gamma \gamma \rightarrow \phi_i \phi_j} \big|^2

      (15)

      with n = 2 if the final particles are identical, such as for gg/\gamma \gamma \rightarrow hh, HH , and 1 otherwise, such as for gg/\gamma \gamma \rightarrow h H. The integration limits are

      \begin{aligned}[b] t_{\text{min} (\text{max})} =\; & -\dfrac{\hat{s}}{2} \Bigg\{ 1 - \dfrac{M_{\phi_i}^2 + M_{\phi_j}^2}{s} \pm \Bigg[ 1 - 2 \Bigg( \dfrac{M_{\phi_i}^2 + M_{\phi_j}^2}{s} \Bigg) \\& + \Bigg( \dfrac{M_{\phi_i}^2 - M_{\phi_j}^2}{s} \Bigg)^2 \Bigg]^{1/2} \Bigg\}. \end{aligned}

      (16)

      The total amplitude is given by

      \begin{aligned}[b] \frac{1}{4} \sum \limits_\text{unpol.} \big| {\cal{A}}_{gg/\gamma \gamma \rightarrow \phi_i \phi_j} \big|^2 = \;&\dfrac{ M_{\phi_i}^4 \; \hat{s}^2 + ( M_{\phi_i}^2 M_{\phi_j}^2 - \hat{t}\; \hat{u} )^2 } {8\; \hat{s}^2} \, \big| F_{33}^{(gg/\gamma\gamma)} \big|^2 \\ & - \dfrac{ M_{\phi_i}^2 \hat{s} } {4} \, {\cal{R}}e \Big[ F_{33}^{(gg/\gamma\gamma)} \cdot \big( F_{12}^{(gg/\gamma\gamma)} \big)^* \Big] \\& +\dfrac{ \hat{s}^2 } {8} \, \big| F_{12}^{(gg/\gamma\gamma)} \big|^2 . \end{aligned}

    III.   APPLICATIONS
    • Here, we present the phenomenological results of this study. We consider two typical applications: the SM and Zee-Babu Model. We operate in the G_{\mu} -scheme and use the same input parameters in the SM as in our previous studies [108, 109]. In the phenomenological results for the Zee-Babu model, the parameter space will be taken appropriately in the next subsections. Hereafter, we discuss only the partonic processes \gamma\gamma \rightarrow \phi_i \phi_j as typical examples for the numerical tests and phenomenological analysis.

    • A.   Numerical tests

    • We first perform numerical tests for the calculations. The form factors must be the ultraviolet finiteness and infrared finiteness. Furthermore, the one-loop amplitude must follow the ward identity due to the initial photons. Numerical checks for the ultraviolet finiteness and infrared finiteness for one-loop form factors are shown in Table 1. For this test, we set the couplings \lambda_{H\Phi} = +2 , \lambda_{K\Phi} = -1 and the charged scalar masses as follows: M_{H^\pm} = 500 GeV and M_{K^{\pm\pm}} = 1000 GeV. Additionally, we set \hat{s} = 1500^2 GeV and \hat{t} = -200^2 GeV2. By varying the parameters C_{UV},\; \lambda^2 (see Appendix A for the definition of these parameters) in a wide range, we find that the results are stable up to last digits (over 15 digits at the amplitude level).

      \big( C_{UV}, \lambda^2 \big)F_{12}^{(\gamma\gamma)}F_{33}^{(\gamma\gamma)}
      (0,1)-4.432377929637615 \times 10^{-10}-1.274104987282513 \times 10^{-8}
      + 7.427714924247333 \times 10^{-10} \, {\rm{i}}+ 2.439535005865118 \times 10^{-7} \,{\rm{i}}
      (10^2, 10^4)-4.432377929637721 \times 10^{-10}-1.274104987282583 \times 10^{-8}
      + 7.427714924247333 \times 10^{-10} \, {\rm{i}}+ 2.439535005865118 \times 10^{-7} \, {\rm{i}}
      (10^4, 10^8)-4.432377929637489 \times 10^{-10}-1.274104987282561 \times 10^{-8}
      + 7.427714924247333 \times 10^{-10} \, {\rm{i}}+ 2.439535005865118 \times 10^{-7} \, {\rm{i}}

      Table 1.  Numerical checks for the UV- and IR- finiteness for one-loop form factor F_{12}^{(\gamma\gamma)}, F_{33}^{(\gamma\gamma)}. For this test, we set the couplings \lambda_{H\Phi}=+2, \lambda_{K\Phi}=-1 and the charged scalar Higgs masses as follows: M_{H^\pm}=500 GeV and M_{K^{\pm\pm}}=1000 GeV. Additionally, we set \hat{s} =1500^2 GeV2 and \hat{t} = -200^2 GeV2.

      Because the initial photons partake in the scattering processes, the one-loop amplitude must follow the ward identity. The identity is verified numerically in this work. This can be performed as follows. We collect analytic results for one-loop form factors F_{00}^{(\gamma\gamma)} , F_{12}^{(\gamma\gamma)} , F_{23}^{(\gamma\gamma)} , and F_{33}^{(\gamma\gamma)} independently. All the relations in Eqs. (5−8) are confirmed numerically. The form factor F_{TT}^{(\gamma\gamma)} is given by

      F_{TT}^{(\gamma\gamma)} = \dfrac{\hat{u} - M_{\phi_i}^2}{2} \cdot \dfrac{\hat{t} - M_{\phi_i}^2}{\hat{s} } \cdot F_{33}^{(\gamma\gamma)} - \dfrac{\hat{s} }{2} \cdot F_{12}^{(\gamma\gamma)}.

      (17)

      We then numerically verify that F_{TT}^{(\gamma\gamma)} = F_{00}^{(\gamma\gamma)} . In Table 2, we show the numerical results for the test. In this table, we fix the value of (\hat{t}, \lambda_{H\Phi}, \lambda_{K\Phi}) in the first column. The results of form factors F_{TT}^{(\gamma\gamma)} obtained from F_{12}^{(\gamma\gamma)} and F_{33}^{(\gamma\gamma)} using Eq. (17) are shown in the second column. The last column presents the results of F_{00}^{(\gamma\gamma)} . The relation F_{00}^{(\gamma\gamma)} = F_{TT}^{(\gamma\gamma)} is confirmed numerically in this table. From the data, we find that the results have good stability over 12 digits.

      F_{12}^{(\gamma\gamma)}-
      \big( \hat{t}, \lambda_{H\Phi}, \lambda_{K\Phi} \big)F_{33}^{(\gamma\gamma)}-
      F_{TT}^{(\gamma\gamma)} [given in Eq. 17]F_{00}^{(\gamma\gamma)}
      -3.506673731227688 \times 10^{-9}-
      - 9.48914729381836 \times 10^{-9} \, {\rm{i}}
      \big( +300^2 , +1.5 , +0.5 \big)-2.073875880451545 \times 10^{-7}-
      + 3.018956669634884 \times 10^{-8} \, {\rm{i}}
      -0.01566372086843976-0.01566372086843974
      + 0.01122720571181518 \, {\rm{i}}+ 0.01122720571181515 \, {\rm{i}}
      -2.473869485576741 \times 10^{-9}-
      - 1.389444047877029 \times 10^{-8} \, {\rm{i}}
      \big( +300^2 , -1.5 , +0.5 \big)-2.073875880451545 \times 10^{-7}-
      + 3.018956669634884 \times 10^{-8} \, {\rm{i}}
      +0.005051569661633232+0.005051569661633237
      + 0.0118652133892367 \, {\rm{i}}+ 0.0118652133892366 \, {\rm{i}}
      -3.691602634060829 \times 10^{-9}-
      - 1.389444047877029 \times 10^{-8} \, {\rm{i}}
      \big( +300^2 , -1.5 , -0.5 \big)-2.073875880451545 \times 10^{-7}-
      + 3.018956669634884 \times 10^{-8} \, {\rm{i}}
      +0.03914990554641669+0.03914990554641665
      + 0.0118652133892367 \, {\rm{i}}+ 0.0118652133892364 \,{\rm{i}}
      +1.601959722985257 \times 10^{-9}-
      - 3.179364680100479 \times 10^{-11} \, {\rm{i}}
      \big( -300^2 , +1.5 , +0.5 \big)-1.286260135515678 \times 10^{-8}-
      + 1.785310771633653 \times 10^{-7} \, {\rm{i}}
      -0.03002288877158604-0.03002288877158601
      + 0.01073513714169602 \, i+ 0.01073513714169605 \, {\rm{i}}
      +1.417030820152116 \times 10^{-9}-
      - 4.437086831752933 \times 10^{-9} \, {\rm{i}}
      \big( -300^2 , -1.5 , -0.5 \big)-1.286260135515678 \times 10^{-8}-
      + 1.785310771633653 \times 10^{-7} \, {\rm{i}}
      +0.02479073764327042+0.02479073764327045
      + 0.01137314481911753 \, {\rm{i}}+ 0.01137314481911754 \, {\rm{i}}

      Table 2.  Ward identity check, confirming the relation F_{TT}^{(\gamma\gamma)} =F_{00}^{(\gamma\gamma)}, for M_{H^\pm}=500 GeV, M_{K^{\pm\pm}} =1000 GeV, \hat{s} = 1500^2 GeV2, and varying \hat{t},~\lambda_{H\Phi},~\lambda_{K\Phi}.

    • B.   Standard model

    • In this case, we have no contributions of charged Higgs or the mixing of charged Higgs with W bosons in the loop. By replacing the general couplings with SM couplings, we obtain the analytical results for the process \gamma \gamma \rightarrow hh in the SM. Additionally, cross sections for the process \gamma \gamma \rightarrow hh have been calculated in the SM in many previous studies. For example, those in Ref. [98] are shown in the α-scheme, \alpha = 1/137.035999 084(21) , and the cross-section for \gamma \gamma \rightarrow hh at \sqrt{\hat{s}_{\gamma\gamma}} = 470 GeV is \sim 0.28 fb. In our study, the result corresponds to 0.275 fb. This value agrees with the result in Ref. [98]. We note that part of the results of \gamma\gamma \rightarrow hh in the SM are shown together with those of \gamma\gamma \rightarrow hh,\; hH,\; HH in the Inert Higgs Doublet and Two Higgs Doublet Models as in our previous paper [103]. In this paper, we do not present the phenomenological results for \gamma\gamma \rightarrow hh in the SM further.

    • C.   Zee-Babu model

    • The Zee-Babu model is another typical application. We first briefly review the Zee-Babu model based on previous papers [110, 111]. The model is added to two complex scalars, which are a singly charged scalar H^{\pm} and doubly charged scalar K^{\pm\pm} with the quantum numbers H^{\pm}\sim(1,1,\pm1) and K^{\pm\pm}\sim(1,1,\pm2) , respectively. The Lagrangian of the Zee-Babu model is constructed as follows:

      {\cal{L}}_{ZB} = {\cal{L}}_{SM} +{\cal{L}}_{K}^{ZB} - {\cal{V}}_{ZB} +{\cal{L}}_{Y}^{ZB}.

      (18)

      In the Lagrangian, the kinetic term for the scalar fields K and H is expressed explicitly as

      {\cal{L}}_{K}^{ZB} = (D_{\mu}H)^{\dagger} (D^{\mu}H)+(D_{\mu}K)^{\dagger}(D^{\mu}K)

      (19)

      with the covariant derivatives given by D_{\mu} = \partial_\mu+ \mathrm{i}g_{H/K}Y_{H/K} B_{\mu}. The electromagnetic charge operator is given by Q{H/K} = T_L^3+Y , in which the hypercharge is taken as Y_{H^\pm} = \pm{1} (Y_{K^{\pm\pm}} = \pm{2}) . Two additional scalars do not carry the color or weak isopin. Thus, additional scalar particles interact only with the U(1)_Y group.

      The Zee-Babu scalar potential takes the form

      \begin{aligned}[b] {\cal{V}}_{ZB} =\;& \mu_1^2H^\dagger{H} +\mu^2_2K^\dagger{K}+\lambda_H(H^\dagger{H})^2 +\lambda_K(K^\dagger{K})^2\\& +\lambda_{HK}(H^\dagger{H})(K^\dagger{K}) +(\mu_L{HHK^\dagger} +\mu^{\dagger}_L{H^{\dagger}H^{\dagger}K}) \\& +\lambda_{K\Phi}(K^{\dagger}K)(\Phi^\dagger\Phi) +\lambda_{H\Phi}(H^{\dagger}H)(\Phi^\dagger\Phi). \end{aligned}

      (20)

      For the EWSB, the Higgs doublet field of the SM Φ is parameterized as follows:

      \Phi = \left(\begin{array}{c} \chi^{\pm} \\ \dfrac{v+h+\mathrm{i}\chi_0 }{\sqrt{2}} \end{array}\right)

      (21)

      with v\sim 246. GeV, coinciding with the SM case. The particles h,\; \chi_0 , and \chi^{\pm} correspond to the Higgs bosons of the SM and neutral and charged Goldstone bosons. From the Zee-Babu scalar potential, the masses of H^\pm and K^{\pm\pm} can be determined as

      M_{K^{\pm\pm}}^2 = \mu_2^2+\frac{\lambda_{K\Phi}}{2}v^2, \quad M_{H^{\pm}}^2 = \mu_1^2+\frac{\lambda_{H\Phi}}{2}v^2.

      (22)

      The Yukawa Lagrangian {\cal{L}}_{ZB} part, which describes the interactions between the SM leptons and the additional scalar fields K and H, is given by

      {\cal{L}}_{Y}^{ZB} = f_{ij}\overline{\tilde{L^i}}L^{j}H^\dagger +g_{ij}\overline{(e_R^c)^i}e_R^jK^\dagger +\overline{f}_{ij}(\overline{\tilde{L^i}}L^{j})^{\dagger}H +\overline{g}_{ij}(\overline{(e_R^c)^i}e_R^j )^{\dagger}K.

      (23)

      In the Yukawa sector {\cal{L}}_{Y}^{ZB} , we denote L^i = (\nu_L^i,e_L^i) and \tilde{L}^i = i\sigma_2(L^{*})^i with generation index i = 1,2,3 . Additionally, we denote L\sim(1,2,{\mp}1/2)\sim(\nu_L,\ell_L)^T and \ell_R \sim (1,1,{\mp}1) . The 3\times{3} Yukawa coupling matrices f_{ij} and g_{ij} are anti-symmetric (f_{ij} = -f_{ji}) and symmetric (g_{ij} = g_{ji}) , respectively.

      All the additional couplings from the Zee-Babu model are listed in Table 3. Several couplings in this table are considered in the processes under investigation.

      Vertices Notations Couplings
      Z_{\mu}H^{\pm}(K^{\pm\pm})H^{\mp}(K^{\mp\mp}) g_{ZHH(KK)}\times \Big( p_{H^\pm(K^{\pm\pm})} -p_{H^\mp(K^{\mp\mp})} \Big)_{\mu} {\rm i}e\dfrac{s_W}{c_W}Q_{H(K)}\times \Big(p_{H^\pm(K^{\pm\pm})}-p_{H^\mp(K^{\mp\mp})} \Big)_{\mu}
      A_{\mu}H^{\pm} (K^{\pm\pm})H^{\mp}(K^{\mp\mp}) g_{AH^{\pm}H^{\mp} (K^{\pm\pm}K^{\mp\mp})}\times \Big( p_{H^\pm(K^{\pm\pm})} -p_{H^\mp(K^{\mp\mp})} \Big)_{\mu} -{\rm i}eQ_{H(K)} \times \Big( p_{H^\pm(K^{\pm\pm})} - p_{H^\mp(K^{\mp\mp})} \Big)_{\mu}
      A_{\mu}A_{\nu}H^{\pm}H^{\mp} (K^{\pm\pm}K^{\mp\mp}) g_{AAH^{\pm}H^{\mp} (K^{\pm\pm}K^{\mp\mp})} \cdot g_{\mu\nu} \mathrm{i}e^2Q_{H(K)}^2 \cdot g_{\mu\nu}
      Z_{\mu}Z_{\nu} H^{\pm}H^{\mp}(K^{\pm\pm}K^{\mp\mp}) g_{ZZH^{\pm}H^{\mp} (K^{\pm\pm}K^{\mp\mp})} \cdot g_{\mu\nu} \mathrm{i}e^2 \left( \dfrac{s_W^2}{c_W^2}Q_{H(K)}^2 \right) \cdot g_{\mu\nu}
      A_{\mu}Z_{\nu}H^{\pm} H^{\mp} (K^{\pm\pm} K^{\mp\mp}) g_{AZH^{\pm}H^{\mp} (K^{\pm\pm}K^{\mp\mp})} \cdot g_{\mu\nu} -\mathrm{i}e^2 \left( \dfrac{s_{2W} } {c_W^2}Q_{H(K)}^2 \right) \cdot g_{\mu\nu}
      H^{\pm}H^{\pm}K^{\mp\mp} g_{H^{\pm}H^{\pm}K^{\mp\mp}} -i\mu_L
      hH^{\mp}H^{\pm} g_{hH^{\mp}H^{\pm}} -\mathrm{i}v\lambda_{H\Phi} =\mathrm{i}\dfrac{2(\mu_1^2-M_{H^\pm}^2)}{v}
      hK^{\mp\mp}K^{\pm\pm} g_{hK^{\mp\mp}K^{\pm\pm}} -\mathrm{i}v\lambda_{K\Phi} =\mathrm{i}\dfrac{2(\mu_2^2-M_{K^{\pm\pm} }^2)}{v}
      hhH^{\mp}H^{\pm} g_{hhH^{\mp}H^{\pm}} -\mathrm{i}\lambda_{H\Phi} =\mathrm{i}\dfrac{2(\mu_1^2-M_{H^\pm}^2) }{v^2}
      hhK^{\mp\mp}K^{\pm\pm} g_{hhK^{\mp\mp}K^{\pm\pm}} -\mathrm{i}\lambda_{K\Phi} =\mathrm{i}\dfrac{2(\mu_2^2-M_{K^{\pm\pm} }^2)}{v^2}
      H^{\pm}H^{\mp}K^{\mp\mp}K^{\pm\pm} g_{H^{\pm}H^{\mp}K^{\mp\mp}K^{\pm\pm}} -i\lambda_{HK}
      H^{\pm}H^{\mp}\chi^{\mp}\chi^{\pm} g_{H^{\pm}H^{\mp}\chi^{\mp}\chi^{\pm}} -\mathrm{i}\lambda_{H\Phi} =\mathrm{i}\dfrac{2(\mu_1^2-M_{H^\pm}^2)}{v^2}
      K^{\pm\pm}K^{\mp\mp}\chi^{\mp}\chi^{\pm} g_{K^{\pm\pm}K^{\mp\mp}\chi^{\mp}\chi^{\pm}} -\mathrm{i}\lambda_{K\Phi} =\mathrm{i}\dfrac{2(\mu_2^2-M_{K^{\pm\pm} }^2)}{v^2}

      Table 3.  Additional couplings from the ZB model. Some of these are considered in the processes under investigation.

      Note that the Yukawa Lagrangian {\cal{L}}_{ZB} part presented above is not related to the computed processes. Thus, the parameter space of the Zee-Babu model for our next phenomenological studies is included as {\cal{P}}_{\text{ZB}} = \{M_{H^\pm}^2, M_{K^{\pm\pm}}, \lambda_{K\Phi}, \lambda_{H\Phi} \}. For the updated parameter space in the Zee-Babu, refer to [112117].

      We now discuss the phenomenological results for the Zee-Babu model. To the best of our knowledge, all the phenomenological results presented in the following paragraphs for the Zee-Babu model can be considered to be first results from this study. First, cross-sections are presented as functions of center-of-mass (CoM) energies ( \sqrt{\hat{s}} ). For this plot, we fix M_{H^\pm} = 400 GeV, M_{K^{\pm\pm}} = 800 GeV, and \lambda_{K\Phi} = \pm 0.7, \lambda_{H\Phi} = \pm 2 . In the following plot, the CoM energies are varied from 500 to 2000 GeV. The red line presents cross sections with \lambda_{K\Phi} = +0.7, \lambda_{H\Phi} = 2 , the blue line presents data with \lambda_{K\Phi} = +0.7, \lambda_{H\Phi} = -2 , and the green line corresponds to the results for \lambda_{K\Phi} = -0.7, \lambda_{H\Phi} = -2 (and pink line for the data at \lambda_{K\Phi} = -0.7, \lambda_{H\Phi} = +2 ). The black line represents the data of the process in the SM. Generally, we observe two peaks of cross sections at \sqrt{\hat{s}}\sim 2M_{H^{\pm} } = 800 GeV and \sqrt{\hat{s}}\sim 2M_{K^{\pm\pm} } = 1600 GeV. We find that production cross-sections are proportional to \hat{s}^{-2} as in Eq. (15). Therefore, the production cross-sections generally decrease with increasing CoM energies. The cross-sections are enhanced near the thresholds of producing the pair of charged Higgses. Depending on the signs of \lambda_{H\Phi} and \lambda_{K\Phi} , the threshold enhanced cross-sections exhibit different behaviors in each case. This can be explained as follows. If we consider the same input configurations for both singly charged Higgs and doubly charged Higgs in the loop, e.g., the same values for the masses and the couplings. The one-loop amplitude with doubly charged Higgs internal lines may be estimated at four times that with the singly charged Higgs in the loop. This is owing to the couplings of g_{A K^{\pm\pm} K^{\mp\mp} } = 2g_{A H^{\pm}H^{\mp} } . The contributions of the doubly charged Higgs are domimant compared with the corresponding ones from singly charged Higgs. Further examining the contributions from doubly charged Higgs in the loop, we find that the couplings g_{h K^{\pm\pm} K^{\mp\mp}}^2 appear in the one-loop box diagrams. However, the couplings g_{h K^{\pm\pm}K^{\mp\mp}} are only considered in one-loop triangle diagrams. Consequently, the squared amplitudes of one-loop box diagrams may cancel those from the mixing of one-loop triangle diagrams and box diagrams when the couplings g_{h K^{\pm\pm}K^{\mp\mp}} have negative values. This explains why the cross-sections for \lambda_{K\Phi} = +0.7, \lambda_{H\Phi} = 2 (\lambda_{K\Phi} = -0.7, \lambda_{H\Phi} = 2 as same reason) tend to the SM case. In other cases, we find that the large contributions from charged scalars in the loop are around the peaks.

      We next study the enhancement factor, which is given by

      \mu_{hh}^{\rm{ZB}} = \dfrac{\hat{\sigma}_{hh}^{\rm{ZB}} }{\hat{\sigma}_{hh}^{\rm{SM}} } (\sqrt{\hat{s}}, {\cal{P}}_{\text{ZB}})

      (24)

      over the parameters of the Zee-Babu model.

      In Fig. 8, the factors are scanned over the singly charged Higgs masses M_{H^\pm} and \lambda_{H\Phi} . In the scatter plots, we fix M_{K^{\pm\pm}} = 800 GeV, \lambda_{K\Phi} = -0.7 (left panel plots), and \lambda_{K\Phi} = +0.7 (right panel plots). In the following plots, we set \sqrt{\hat{s}} = 1000 GeV (for all top plots) and \sqrt{\hat{s}} = 1500 GeV (for the bottom plots). We vary 200 GeV \leq M_{H^\pm} \leq 1000 GeV and 0\leq \lambda_{H\Phi} \leq 5 . We find that the factors tend to 1 (tend to the SM case) when \lambda_{H\Phi}\rightarrow 0 . In this limit, the contributions of singly charged Higgses approach zero, because of the small contributions of doubly charged Higgs due to the large value of M_{K^{\pm\pm}} and the small value of the couplings \lambda_{K\Phi} . At \sqrt{\hat{s}} = 1 TeV, we observe a narrove peak of producing two charged Higgses at 500 GeV. The factors are sensitive to \lambda_{H\Phi} in the M_{H^\pm} regions of the below the peak. Above the peak region of M_{H^{\pm}} , the factor depends slightly on \lambda_{H\Phi} , and its value approaches 1. This shows that the contributions of singly and doubly charged Higgses are small in the concerned regions. We note that, for \lambda_{K\Phi} = +0.7 , the factors are larger than those for \lambda_{K\Phi} = -0.7 . This can be explained by the same reason as that for Fig. 9. We obtain the same behavior for the enhancement factors at \sqrt{\hat{s}} = 1.5 TeV.

      Figure 8.  (color online) Scatter plots as functions of (M_{H^\pm}^2, \lambda_{H\Phi}). In these plots, we vary 200 GeV \leq M_{H^\pm} \leq 1000 GeV and 0\leq \lambda_{H\Phi}\leq 5.

      Figure 9.  (color online) Cross sections as functions of CoM. M_{H^\pm} = 400 GeV, M_{K^{\pm\pm}} =800 GeV and \lambda_{K\Phi}=\pm 0.7,~\lambda_{H\Phi}=\pm 2. In the following plots, we vary \sqrt{\hat{s}} =500 GeV to \sqrt{\hat{s}} =2 TeV.

      We now investigate the enhancement factors in the parameter space of (M_{H^\pm},\; M_{K^{\pm\pm}}) . For this study, we take \lambda_{K\Phi} = \lambda_{H\Phi} = \pm 0.7 . In the following plots, we vary 200 GeV \leq M_{H^\pm},\; M_{K^{\pm\pm}} \leq 1000 GeV at a fixed \sqrt{\hat{s}} = 1 TeV (for all plots in Fig. 10) and \sqrt{\hat{s}} = 1.5 TeV (for all plots in Fig. 11). Generally, the factors are inversly propotional to M_{H^\pm},\; M_{K^{\pm\pm}} . For \lambda_{H\Phi} = \mp 0.7 and \lambda_{K\Phi} = - 0.7 (in the left panels), the enhancements are domimant at low mass regions of M_{H^\pm},\; M_{K^{\pm\pm}} . We have no peak of the factor around 500 GeV in this case. The factors tend to 1 beyond the regions of M_{K^{\pm\pm}}> 500 GeV. For \lambda_{H\Phi} = \mp 0.7 , \lambda_{K\Phi} = + 0.7 (in the right panels), the factors are suppressed in the low mass regions of M_{H^\pm},\; M_{K^{\pm\pm}} . They develop to the peak 2M_{K^{\pm\pm}} = 2M_{H^\pm} = 500 GeV. The factors are in the range of [\sim 1.0, \sim 1.15] beyond the peak regions.

      Figure 10.  (color online) Scatter plots as functions of (M_{H^\pm},~M_{K^{\pm\pm}}) at 1 TeV of CoM. In these plots, we vary 200 GeV \leq M_{H^\pm},~M_{K^{\pm\pm}} \leq 1000 GeV.

      The enhancement factors are examined in the parameter space of (M_{H^\pm},\; M_{K^{\pm\pm}}) at 1.5 TeV of CoM. We observe the same behavior of the factors as previous 1 TeV of CoM. In both CoM energies, the factors for (\lambda_{H\Phi} = + 0.7 , \lambda_{K\Phi} = + 0.7) are the smallest compared with those in other cases. This is explained by the data in Fig. 9.

      Figure 11.  (color online) Scatter plots as functions of (M_{H^\pm},~M_{K^{\pm\pm}}) at 1.5 TeV of CoM. In these plots, we vary 200 GeV \leq M_{H^\pm},~M_{K^{\pm\pm}} \leq 1000 GeV.

      As mentioned in the introduction, we use the convolution of the partonic processes with the photon energy spectrum in lepton beams or with the parton distribution functions for initial gluons. Subsequently, we can obtain the corresponding cross-sections for scalar boson pair productions at future colliders including multi-TeV muon collider or the HL-LHC in many of HESMs. These topics are beyond the scope of this study and will be addressed in future studies.

    IV.   CONCLUSIONS
    • General one-loop formulas for loop-induced processes gg/\gamma \gamma\rightarrow \phi_i\phi_j with CP-even Higgses \phi_i,\phi_j = h,\; H_j , which are valid for a class of HESMs, e.g., Inert Doublet Higgs Models, Two Higgs Doublet Models, Zee-Babu Models, and Triplet Higgs Models, are presented in this paper. Analytic expressions for one-loop form factors are presented in terms of the basic scalar one-loop functions. The scalar functions are output in the packages {\tt LoopTools} and {\tt Collier}. Hence, physical results are evaluated numerically using one of these packages. Analytic results are tested using several checks such as the ultraviolet finiteness, infrared finiteness of the one-loop amplitudes. Furthermore, the amplitudes obey the ward identity owing to massless gauge bosons in the initial states. This identity is also verified numerically. Additionally, both the packages {\tt LoopTools} and {\tt Collier} are used for cross-checking for the final results before generating physical results. Regarding applications, we show phenomenological results for the studied processes in the Zee-Babu model as a typical example. We study the production cross-section for the processes \gamma \gamma\rightarrow hh scanned over the masses of singly and doubly charged Higgses as well as their couplings to SM-like Higgs.

    APPENDIX A: TENSOR REDUCTION FOR ONE-LOOP INTEGRALS
    • We apply the tensor reduction method developed in Ref. [118] for this computation. The method is described briefly. With the technique, tensor one-loop integrals of rank P with N-external legs can be decomposed into the basic scalar one-loop functions with N\leq 4 (they are labeled as A_0 , B_0 , C_0 , D_0 ). The tensor integral with rank P (taking N\leq 4 external legs for examples) is defined as

      \begin{aligned}[b] \{A; B; C; D\}^{\mu_1\mu_2\cdots \mu_P} = \;&(\mu^2)^{2-d/2} \int \frac{\mathrm{d}^dk}{(2\pi)^d} \\& \dfrac{k^{\mu_1}k^{\mu_2}\cdots k^{\mu_P}}{\{D_1;\; D_1 D_2;\; D_1D_2D_3; \; D_1D_2D_3D_4\}}. \end{aligned}

      (A1)

      In this formula, D_j (j = 1,\,2,\,3,\, 4) denotes the inverse Feynman propagators:

      D_j = (k+ q_j)^2 -m_j^2 +i\rho,

      (A2)

      q_j = \displaystyle\sum\limits_{i = 1}^j p_i , p_i are the external momenta, and m_j are internal masses in the loops. One-loop integrals are solved in the space-time dimension d = 4-2\varepsilon . Note that one-loop integrals contain the ultraviolet divergences. The divergent part is defined as C_{UV} = 1/\varepsilon - \log(4\pi) +\gamma_E with the EulerGamma \gamma_E\sim 0.57721\cdots . Furthermore, a fictitious mass λ is introduced for a virtual photon to regularize the infrared divergences. The parameter \mu^2 plays a key role as a renormalization scale. Explicit reduction formulas for one-loop one-, two-, three-, and four-point tensor integrals up to rank P = 3 [118] are presented as follows. For one-loop one-, two-, three-point tensor integrals, we have

      A^{\mu} = 0,

      (A3)

      A^{\mu\nu} = g^{\mu\nu} A_{00},

      (A4)

      A^{\mu\nu\rho} = 0,

      (A5)

      B^{\mu} = q^{\mu} B_1,

      (A6)

      B^{\mu\nu} = g^{\mu\nu} B_{00} + q^{\mu}q^{\nu} B_{11},

      (A7)

      B^{\mu\nu\rho} = \{g, q\}^{\mu\nu\rho} B_{001} + q^{\mu}q^{\nu}q^{\rho} B_{111},

      (A8)

      and

      C^{\mu} = q_1^{\mu} C_1 + q_2^{\mu} C_2 = \sum\limits_{i = 1}^2q_i^{\mu} C_i,

      (A9)

      C^{\mu\nu} = g^{\mu\nu} C_{00} + \sum\limits_{i,j = 1}^2q_i^{\mu}q_j^{\nu} C_{ij},

      (A10)

      C^{\mu\nu\rho} = \sum\limits_{i = 1}^2 \{g,q_i\}^{\mu\nu\rho} C_{00i}+ \sum\limits_{i,j,k = 1}^2 q^{\mu}_i q^{\nu}_j q^{\rho}_k C_{ijk}.

      (A11)

      For one-loop four-point tensor functions, the reduction formulas are given by

      D^{\mu} = q_1^{\mu} D_1 + q_2^{\mu} D_2 + q_3^{\mu}D_3 = \sum\limits_{i = 1}^3q_i^{\mu} D_i,

      (A12)

      D^{\mu\nu} = g^{\mu\nu} D_{00} + \sum\limits_{i,j = 1}^3q_i^{\mu}q_j^{\nu} D_{ij},

      (A13)

      D^{\mu\nu\rho} = \sum\limits_{i = 1}^3 \{g,q_i\}^{\mu\nu\rho} D_{00i}+ \sum\limits_{i,j,k = 1}^3 q^{\mu}_i q^{\nu}_j q^{\rho}_k D_{ijk}.

      (A14)

      The tensor \{g, q_i\}^{\mu\nu\rho} [118] is given by \{g, q_i\}^{\mu\nu\rho} = g^{\mu\nu} q^{\rho}_i + g^{\nu\rho} q^{\mu}_i + g^{\mu\rho} q^{\nu}_i . The scalar Passarino-Veltman functions (PV-functions) [118] are A_{00}, B_1, \cdots, D_{333} on the right hand side. The PV-functions are calculated in terms of the basic scalar one-loop functions with N\leq 4 , e.g., A_0 -, B_0 -, C_0 -, and D_0 - scalar functions, which are implemented into {\tt LoopTools} [101] and {\tt Collier} [102] for numerical computation.

    APPENDIX B: ANALYTIC RESULTS FOR ONE-LOOP FORM FACTORS
    • In this appendix, we show the analytic results for the one-loop form factors given in the Eqs. (11) and (12). In the analytic expressions, we use the following kinematic variables:

      x_{t(u)} = \dfrac{\hat{t}(\hat{u})}{\hat{s} }, \quad x_{\phi_{i,j,k}} = \dfrac{M_{\phi_{i,j,k}}^2 } {\hat{s} },

      (B1)

      x_{f} = \dfrac{m_f^2}{\hat{s}}, \quad x_{W} = \dfrac{M_W^2} {\hat{s} }, \quad x_{S} = \dfrac{M_S^2}{\hat{s} }

      (B2)

      for S\equiv S^Q \equiv H^{\pm} , K^{\pm\pm} in the following results. We first arrive at the factors F_{12,f/W/S}^{\text{Trig}} calculated from one-loop triangle with connecting to \phi_k^* -poles. The factors are expressed in terms of scalar one-loop three-point functions C_0 . We first consider all fermions propagating in the loop; as plotted in Fig. 1 ( G_1 ), the factors are given explicitly as

      F_{12,f}^{\text{Trig}} = \dfrac{1 }{4 \pi ^2} \Big[ 4 x_f + 2 m_f^2 \big( 4 x_f-1 \big) C_0(0,\hat{s},0; m_f^2,m_f^2,m_f^2) \Big].

      (B3)

      We next consider one-loop diagrams with the W boson exchanged in the loop in connection with \phi_k^* -poles ( G_2 ), as shown in Fig. 1. The corresponding factors are given by

      \begin{aligned}[b] F_{12,W}^{\text{Trig}} = \;&\dfrac{e^2}{8\pi^2\; M_W^2} \Big[ x_{\phi_k} + 6 x_W + 2M_W^2 \big( x_{\phi_k} + 6 x_W - 4 \big) \\& C_0(0,\hat{s},0;M_W^2,M_W^2,M_W^2) \Big]. \end{aligned}

      (B4)

      Furthermore, considering singly (as well as doubly) charged Higgses in the loop, as plotted in Fig. 1 ( G_3 ), the respective factors are determined as

      F_{12,S}^{\text{Trig}} = - \dfrac{ e^2 Q_S^2 }{4 \pi ^2 \; \hat{s} } \Big[ 1 + 2 M_S^2 \, C_0(0,\hat{s},0; M_S^2,M_S^2,M_S^2) \Big].

      (B5)

      Here, Q_S denotes charged quantum numbers for charged scalars (S).

      We then determine the factors contributing from the one-loop box diagrams with fermions f, W-bosons, and singly (doubly) charged Higgs S internal lines, denoted as F_{ab, P}^{\text{Box}} with ab \equiv 12, 33 and P = f,\; W,\; S . For all fermions propagating in the loop, the factors are in the form

      \begin{array}{l} F_{ab,f}^{\text{Box}} = \dfrac{1}{4 \pi ^2} \Bigg[ \delta_{ab}^f + \eta_{ab,f}^{(0)} \cdot C_0(0,\hat{s},0; m_f^2,m_f^2,m_f^2) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \eta_{ab,f}^{(1)} \cdot C_0(M_{\phi_i}^2,M_{\phi_j}^2, \hat{s};m_f^2,m_f^2,m_f^2) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \eta_{ab,f}^{(2)} \cdot C_0(\hat{t},M_{\phi_i}^2,0 ;m_f^2,m_f^2,m_f^2) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \eta_{ab,f}^{(3)} \cdot C_0(M_{\phi_i}^2,0, \hat{u};m_f^2,m_f^2,m_f^2) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \eta_{ab,f}^{(4)} \cdot C_0(0,M_{\phi_j}^2,\hat{t} ;m_f^2,m_f^2,m_f^2) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \eta_{ab,f}^{(5)} \cdot C_0(\hat{u},M_{\phi_j}^2,0 ;m_f^2,m_f^2,m_f^2) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \zeta_{ab,f}^{(0)} \cdot D_0(0,M_{\phi_j}^2,M_{\phi_i}^2,0 ;\hat{t},\hat{s}; m_f^2,m_f^2,m_f^2,m_f^2) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \zeta_{ab,f}^{(1)} \cdot D_0(0,M_{\phi_i}^2,M_{\phi_j}^2,0 ;\hat{u},\hat{s}; m_f^2,m_f^2,m_f^2,m_f^2) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \zeta_{ab,f}^{(2)} \cdot D_0(M_{\phi_i}^2,0,M_{\phi_j}^2,0 ;\hat{u},\hat{t}; m_f^2,m_f^2,m_f^2,m_f^2) \Bigg]. \end{array}

      (B6)

      In this formulas, we have used the notations \delta_{12}^f = 4 x_f , \delta_{33}^f = 0 . All presented coefficients in the above-mentioned factors are given by

      \begin{aligned}[b] \eta_{12,f}^{(0)} =\;& \dfrac{ m_f^2 }{ \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) +x_t \Big]^2 } \\ & \times \Bigg\{ 2 x_{\phi_i}^2 \Big[ 4 x_f [ 1 + (x_{\phi_j}-x_t)^2 ] -2 x_{\phi_j}+x_t+1 \Big] \\& + 8 x_t^2 x_f ( 1-x_{\phi_j}+x_t )^2 - x_{\phi_i}^3 \\ & + x_{\phi_i} \Big[ 2 x_t^2 [ 8 x_f (2 x_{\phi_j} - x_t - 1) - 1 ] + (1 - x_{\phi_j}) \\& \big( 16 x_{\phi_j} x_t x_f - 8 x_f - 2 x_t + x_{\phi_j} - 1 \big) \Big] \Bigg\}, \end{aligned}

      (B7)

      \begin{aligned}\\[-8pt] \eta_{12,f}^{(1)} = \dfrac{ m_f^2 \; x_{\phi_i} \big( x_{\phi_i}+x_{\phi_j}- 8 x_f-1 \big) \Big[ x_{\phi_i}^2 + x_{\phi_j}^2 + 1 + 2 (x_t + 1) \big( x_t - x_{\phi_i} - x_{\phi_j} \big) \Big] }{\Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2}, \end{aligned}

      (B8)

      \begin{aligned}[b] \eta_{12,f}^{(2)} =& \dfrac{ m_f^2 \; (x_{\phi_i}-x_t)^2 }{\Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ (8 x_f-x_{\phi_i}-x_{\phi_j}) \Big[ x_t^2 (x_{\phi_i}+2 x_{\phi_j} - x_t - 2) + x_{\phi_i} x_{\phi_j}^2 \Big] + x_t \Big[ (2 x_{\phi_i} +x_{\phi_j}-2) \\& \big[ x_{\phi_j} (x_{\phi_i}+x_{\phi_j}) - 8 x_f x_{\phi_j} \big] - 8 x_f + x_{\phi_j} \Big] + x_{\phi_i} x_{\phi_j} \Bigg\}. \end{aligned}

      (B9)

      We also have the following coefficients:

      \begin{aligned}[b] \zeta_{12,f}^{(0)} = \;& \dfrac{ \hat{s}^2 \; x_f } { \Big[ (x_{\phi_i} - x_t) (x_{\phi_j} - x_t) + x_t \Big]^2} \Bigg\{ 16 x_f^2 \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) +x_t \Big] \times \Big[ x_{\phi_i} (x_{\phi_j} + 1) - x_t (x_{\phi_i}+x_{\phi_j} - x_t - 1) \Big] \\& +2 x_f \Big\{ -x_{\phi_i}^2 x_{\phi_j} \Big[ x_{\phi_j} (x_{\phi_i}+x_{\phi_j}+2) + x_{\phi_i} - 1 \Big] + x_t^3 (x_{\phi_i}+x_{\phi_j}+1) \Big[ - x_t + 2 \big( x_{\phi_i} +x_{\phi_j}-1 \big) \Big] \\& -x_t^2 \Big[ x_{\phi_i} \big[ x_{\phi_j} \big( 5 x_{\phi_i} + 5 x_{\phi_j} + 1 \big) + x_{\phi_i}^2 + 2 \big] +(x_{\phi_j}-1)^2 (x_{\phi_j}+1) \Big] \\& + x_{\phi_i} x_t (x_{\phi_i}+x_{\phi_j}-1) \Big[ x_{\phi_i} (2 x_{\phi_j} + 1) + x_{\phi_j} (2 x_{\phi_j}+3) - 1 \Big] \Big\} + x_{\phi_i} x_t \big( x_{\phi_i} x_{\phi_j}+x_t^2 \big) \Bigg\}, \end{aligned}

      (B10)

      \begin{aligned}[b] \zeta_{12,f}^{(2)} =\;& \dfrac{ \hat{s}^2 \, x_f }{\Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]} \Bigg\{ 16 x_f^2 \Big[ -x_t (x_{\phi_i}+x_{\phi_j}-x_t-1) + x_{\phi_i} (x_{\phi_j}+1) \Big] -2 x_f \Big\{ x_t^2 \Big[ 4 \big( x_{\phi_i}^2+x_{\phi_j}^2 \big) \\ & - 7 \big( x_{\phi_i}+x_{\phi_j} \big) + 16 x_{\phi_i} x_{\phi_j} + 5 \Big] + x_{\phi_i} \Big[ x_{\phi_i} \big( 4 x_{\phi_j}^2+x_{\phi_j}+1 \big) + x_{\phi_j} (x_{\phi_j}+2)-1 \Big] -x_t (x_{\phi_i}+x_{\phi_j}-1) \\ & \Big[ x_{\phi_i} \big( 8 x_{\phi_j} + 1 \big) + x_{\phi_j} + 1 \Big] + 4 x_t^3 \big[ x_t - 2 (x_{\phi_i} + x_{\phi_j} -1 ) \big] \Big\} + (x_{\phi_i}+x_{\phi_j}) \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2 \Bigg\}. \end{aligned}

      (B11)

      The corresponding coefficients for the factors F_{33,f}^{\text{Box}} are expressed as follows:

      \begin{aligned}[b] \eta_{33,f}^{(0)} =\; &\dfrac{ m_f^2 }{\Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \Bigg\{ 8 x_f (x_{\phi_i}+x_{\phi_j}-1) + x_{\phi_i} \big( 2 x_t -4 x_{\phi_j}-x_{\phi_i} + 2 \big) + 2 x_t (x_{\phi_j}-x_t-1) - (x_{\phi_j}-1)^2 \Bigg\}, \end{aligned}

      (B12)

      \eta_{33,f}^{(1)} = \dfrac{1}{x_{\phi_i}} \times \eta_{12,f}^{(1)},

      (B13)

      \eta_{33,f}^{(2)} = \dfrac{ m_f^2 \; \big( x_{\phi_i}-x_t \big) \Big[ x_t \big(x_t-8 x_f \big) + x_{\phi_i} x_{\phi_j} \Big] }{\Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2},

      (B14)

      \begin{aligned}[b] \zeta_{33,f}^{(0)} =\;& \dfrac{ s^2 \, x_f }{\Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ 16 x_f^2 \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big] + x_t \big( x_{\phi_i} x_{\phi_j} + x_t^2 \big) +2 x_f \Big[ -x_t^2 (x_{\phi_i}+x_{\phi_j}+3)\\& + \big[ x_t (x_{\phi_i}+x_{\phi_j}-1) - x_{\phi_i} x_{\phi_j} \big] (x_{\phi_i}+x_{\phi_j}-1) \Big] \Bigg\}, \end{aligned}

      (B15)

      and we also have

      \zeta_{33,f}^{(2)} = \dfrac{ 2m_f^4 \; \big( 8 x_f-x_{\phi_i}-x_{\phi_j}+1 \big) }{\Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]}.

      (B16)

      We next consider one-loop box diagrams with vector boson W in the loop. The factors are presented as follows:

      \begin{aligned}[b] F_{ab,W}^{\text{Box},1} =\;& \dfrac{e^2}{(4 \pi)^2} \dfrac{1}{ M_W^2 } \Bigg\{ \delta_{ab}^W + \varepsilon_{ab}^W \Big[ B_0(\hat{s}; M_W^2,M_W^2) - B_0(0; M_W^2,M_W^2) \Big] + \eta_{ab,W}^{(0)} \cdot C_0(0,\hat{s},0; M_W^2,M_W^2,M_W^2) + \eta_{ab,W}^{(1)} \\& \cdot C_0(M_{\phi_i}^2, M_{\phi_j}^2,\hat{s}; M_W^2,M_W^2,M_W^2) + \eta_{ab,W}^{(2)} \cdot C_0(\hat{t},M_{\phi_i}^2,0; M_W^2,M_W^2,M_W^2) + \eta_{ab,W}^{(3)} \\&\cdot C_0(M_{\phi_i}^2,0,\hat{u}; M_W^2,M_W^2,M_W^2) + \eta_{ab,W}^{(4)} \cdot C_0(0,M_{\phi_j}^2,\hat{t}; M_W^2,M_W^2,M_W^2) + \eta_{ab,W}^{(5)} \cdot C_0(\hat{u},M_{\phi_j}^2,0; M_W^2,M_W^2,M_W^2) \\& + \zeta_{ab,W}^{(0)} \cdot D_0(0,M_{\phi_j}^2,M_{\phi_i}^2,0 ;\hat{t},\hat{s}; M_W^2,M_W^2,M_W^2,M_W^2) + \zeta_{ab,W}^{(1)} \cdot D_0(0,M_{\phi_i}^2,M_{\phi_j}^2,0 ;\hat{u},\hat{s}; M_W^2,M_W^2,M_W^2,M_W^2) \\ &+ \zeta_{ab,W}^{(2)} \cdot D_0(M_{\phi_i}^2,0,M_{\phi_j}^2,0 ;\hat{u},\hat{t}; M_W^2,M_W^2,M_W^2,M_W^2) \Bigg\}, \end{aligned}

      (B17)

      \begin{array}{l} F_{12,W}^{\text{Box, 2}} = \dfrac{e^2}{(4\pi)^2} \dfrac{2}{\hat{s} } \Bigg\{ 5 +2 \Big[ B_0(\hat{s},M_W^2,M_W^2) - B_0(0,M_W^2,M_W^2) \Big] + 2 \hat{s} \big( 5 x_W - 2 \big) C_0(0,\hat{s},0,M_W^2,M_W^2,M_W^2) \Bigg\}, \end{array}

      (B18)

      F_{12,W}^{\text{Box, 3}} = -\dfrac{e^2}{(4\pi)^2} \dfrac{4}{\hat{s}} \Bigg[ 1 + 2 x_W \; \hat{s} \; C_0(0,\hat{s},0; M_W^2,M_W^2,M_W^2) \Bigg].

      (B19)

      where we define the functions \varepsilon_{12}^W = \dfrac{2}{\hat{s} } , \delta_{12}^W = - \dfrac{1}{\hat{s} } , \varepsilon_{33}^W = 0 , and \delta_{33}^W = 0 . All coefficients involved with one-loop form factors are calculated from the W -boson box diagram contributions. The coefficients are given explicitly as follows:

      \begin{aligned}[b] \eta_{12,W}^{(0)} =\;& \dfrac{1}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ - 2 x_t^2 x_W \big(x_W+2\big) \big(1 -x_{\phi_j}+x_t \big)^2 + x_{\phi_i}^2 \Big\{ x_{\phi_j} - x_{\phi_j}^2 \Big[ 2 x_W \big(x_W+2 \big) + 1 \Big]\\& + 4 x_{\phi_j} x_W \Big[ x_t \big(x_W+2 \big) + 3 \Big] - 2 x_W \Big[ x_t \big( 2 x_t +4 \big) + \big( x_t^2 + 6 \big) x_W + 3 \Big] \Big\} + 2 x_{\phi_i} x_W \Big\{ x_{\phi_j}^2 \Big[ 2 x_t \big(x_W+2 \big) + 1 \Big] \\ & - x_{\phi_j} \Big[ 2 x_t \big( 2 x_t x_W + 4 x_t+x_W+4 \big) +6 x_W+3 \Big] + 2 x_t \big(x_t+1\big) \Big[ x_t \big(x_W+2\big) +2 \Big] +6 x_W+2 \Big\} - x_{\phi_i}^3 \big( x_{\phi_j} - 2 x_W \big) \Bigg\}, \end{aligned}

      (B20)

      \begin{array}{l} \eta_{12,W}^{(1)} = \dfrac{ x_{\phi_i} } { x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2 } \times \Big[ x_{\phi_i} x_{\phi_j} - 2 x_W (x_{\phi_i}+x_{\phi_j}-6 x_W-2) \Big] \times \Big[ x_{\phi_i}^2 + x_{\phi_j}^2 + 1 + 2 \big( x_t - x_{\phi_i} - x_{\phi_j} \big) \big( x_t+1 \big) \Big], \end{array}

      (B21)

      \begin{aligned}[b] \eta_{12,W}^{(2)} =\;& - \dfrac{ (x_{\phi_i}-x_t)^2 }{ x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2 } \times \Bigg\{ x_{\phi_i} \big( x_{\phi_j}-x_t \big)^2 \Big[ x_{\phi_i} \big( x_{\phi_j}-2 x_W \big) + 12 x_W^2 \Big] -2 x_{\phi_i} x_W \Big[ x_{\phi_j} \big(x_{\phi_j}^2 + 2 x_t -2 \big) \\& - x_t^2 \big( x_t - 3 x_{\phi_j} + 2 \big) + x_t \big( 1 - 3 x_{\phi_j}^2 \big) \Big] + x_t \big( 1-x_{\phi_j}+x_t \big)^2 \Big[ 2 x_W \big( x_{\phi_j}-6 x_W \big) - x_{\phi_i} x_{\phi_j} \Big] \Bigg\}. \end{aligned}

      (B22)

      All coefficients for scalar one-loop four-point functions in the above equations are given by

      \begin{aligned}[b] \zeta_{12,W}^{(0)} =\;& \dfrac{ \hat{s} }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ 2 x_W x_{\phi_i}^3 \big( x_t - x_{\phi_j} \big) \Big[ x_{\phi_j}^2 - x_{\phi_j} \big(x_t+2 x_W+1 \big) + 2 x_W \big(x_t-1 \big) + 2 x_t \Big] \\& + x_{\phi_i}^2 \Big\{ 2 x_t x_W \Big[ x_{\phi_j}^2 \big(2 x_{\phi_j}-5 \big) + 2 x_t^2 \big(x_{\phi_j}-2 \big) + x_{\phi_j} x_t \big(9-4 x_{\phi_j} \big) + x_{\phi_j}-3 x_t \Big] + 4 x_W^2 \Big[ x_t^2 \big(5 x_{\phi_j}+1 \big) \\& + x_t \big( -4 x_{\phi_j}^2 -4 x_{\phi_j} + 3 \big) + x_{\phi_j} \big( x_{\phi_j}^2 + 3 x_{\phi_j} - 2 \big) - 2 x_t^3 \Big] - 24 x_W^3 \big(x_{\phi_j}-x_t \big) \big(x_{\phi_j}-x_t+1 \big) + x_{\phi_j} x_t^2 \Big\} \\& + 2 x_{\phi_i} x_t x_W \Big\{ x_t \Big[ 2 x_{\phi_j}^2 \big(x_t+2 \big) - x_{\phi_j} \big(x_t^2 + 6x_t + 4 \big) + 2 \big(x_t^2+x_t+1\big) - x_{\phi_j}^3 \Big] \\& + 2 x_W \Big[ x_t^3 - 2 x_t - 2 - 2 x_t^2 \big(2 x_{\phi_j}+1 \big) + 5 x_{\phi_j} x_t \big(x_{\phi_j}+1 \big) + x_{\phi_j} \big(7- 2 x_{\phi_j}^2 - 3 x_{\phi_j} \big) \Big] \\& + 12 x_W^2 \big(x_{\phi_j}-x_t-1 \big) \big(2 x_{\phi_j} -2 x_t+1 \big) \Big\} + 4 x_t^2 x_W^2 \big(x_{\phi_j}-6 x_W+2 \big) \big(1-x_{\phi_j}+x_t \big)^2 \Bigg\}, \end{aligned}

      (B23)

      \begin{aligned}[b] \zeta_{12,W}^{(2)} =\;& \dfrac{\hat{s} } {x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]} \Bigg\{ x_{\phi_i}^3 \big(x_{\phi_j}-2 x_W \big) \big(x_{\phi_j}-x_t \big)^2 + 2 x_{\phi_i}^2 \Big\{ 2 x_W^2 \Big[ x_{\phi_j} \big( 3 x_{\phi_j} - 6 x_t + 1 \big) + x_t \big(3 x_t-1 \big) + 1 \Big] \\& - x_W \Big[ x_{\phi_j}^2 \big(x_{\phi_j}-4 x_t+1 \big) + x_{\phi_j} \big(5 x_t^2+x_t-1\big) - 2 x_t \big(x_t^2+x_t-1\big) \Big] \\& - x_{\phi_j} x_t \big(x_{\phi_j}-x_t \big) \big(x_{\phi_j}-x_t-1 \big) \Big\} + x_{\phi_i} \Big\{ -4 x_W^2 \Big[ x_{\phi_j}^2 \big(6 x_t-1 \big) -x_{\phi_j} \big( 12 x_t^2 + 4 x_t + 3 \big) + x_t \big(6 x_t^2 + 5 x_t + 1 \big) + 2 \Big] \\& + 2 x_t x_W \big(x_{\phi_j}-x_t-1 \big) \Big[ x_t \big( x_t + 1 \big) - 2 + x_{\phi_j} \big( 2 x_{\phi_j} - 3 x_t + 1 \big) \Big] + x_{\phi_j} x_t^2 \big(-x_{\phi_j}+x_t+1 \big)^2 - 24 x_W^3 \big(x_{\phi_j}-x_t+1 \big) \Big\} \\& - 2 x_t x_W \big(x_{\phi_j}-x_t-1 \big) \times \Big[ x_t \big(x_{\phi_j}-6 x_W \big) \big( x_{\phi_j} - x_t - 1 \big) + 2 x_W \big(x_{\phi_j}-6 x_W + 2 \big) \Big] \Bigg\}.\end{aligned}

      (B24)

      Furthermore, the coefficients are as follows in the factors F_{33,W}^{\text{Box}}

      \begin{aligned}[b] \eta_{33,W}^{(0)} =\;& \dfrac{1}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \Bigg\{ \big( 12 x_W^2 + x_{\phi_i} x_{\phi_j} \big) \big( 1-x_{\phi_i}-x_{\phi_j} \big) + 2 x_W \Big[ x_{\phi_i} \big( x_{\phi_i} +6 x_{\phi_j}-4 x_t-3 \big)\\& + \big(x_{\phi_j}-2 x_t \big)^2 - 3 x_{\phi_j} + 4 x_t + 2 \Big] \Bigg\}, \end{aligned}

      (B25)

      \eta_{33,W}^{(1)} = \dfrac{1}{x_{\phi_i}} \times \eta_{12,W}^{(1)},

      (B26)

      \eta_{33,W}^{(2)} = \dfrac{\big(x_{\phi_i}-x_t \big) \Big[ x_{\phi_i} x_{\phi_j} \big(x_t-4 x_W \big) + 2 x_t x_W \big(x_{\phi_j} + x_{\phi_i} - 2 x_t+6 x_W \big) \Big] }{ x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2}.

      (B27)

      Furthermore, we obtain

      \begin{aligned}[b] \zeta_{33,W}^{(0)} = \;&\dfrac{\hat{s} }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) +x_t \Big]^2} \times \Bigg\{ 2 x_{\phi_i}^2 x_W \big(x_{\phi_j}-x_t \big) \big(x_{\phi_j}-2 x_t+2 x_W \big) + 8 x_W^2 x_{\phi_i} x_t \\& + x_{\phi_i} \Big\{ 4 x_W^2 \Big[ x_{\phi_j}^2 + \big(x_t - 2 x_{\phi_j}\big) \big(x_t+1\big) \Big] + 2 x_t x_W \Big[ x_{\phi_j} \big( - 3 x_{\phi_j} + 7 x_t + 1\big) - x_t \big(4 x_t+3\big) \Big] \\& + 24 x_W^3 \big(x_t-x_{\phi_j}\big) + x_{\phi_j} x_t^2 \Big\} +2 x_t x_W \Big\{ x_t \Big[ x_{\phi_j} \big(2 x_{\phi_j} - 4 x_t - 3\big) + 2 \big(x_t^2+x_t+1\big) \Big] \\& +12 x_W^2 \big(x_{\phi_j}-x_t-1 \big) +2 x_W \Big[ x_{\phi_j} \big(-x_{\phi_j}+x_t+3 \big) + x_t-2 \Big] \Big\} \; \Bigg\},\end{aligned}

      (B28)

      \zeta_{33,W}^{(2)} = \dfrac{2 \hat{s} \Big[ x_{\phi_i} \big( x_{\phi_j} - 2 x_t+2 x_W \big) + 2 x_W \big(x_{\phi_j}-6 x_W-2 \big) + 2 x_t \big( x_t - x_{\phi_j} + 1 \big) \Big] }{\Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]}.

      (B29)

      Moreover, the remaining factors with subscripts P \equiv f, W, S are directly expressed by the following relations:

      \eta_{ab,P}^{(3)} \equiv \eta_{ab,P}^{(2)} \, \big(x_t \leftrightarrow x_u \big),\;\;\;\;\;\;\;\; \eta_{ab,P}^{(4)} = \dfrac{x_{\phi_j} - x_t}{x_{\phi_i} - x_t} \times \eta_{ab,P}^{(2)},

      (B30)

      \eta_{ab,P}^{(5)} = \dfrac{x_{\phi_j} - x_u}{x_{\phi_i} - x_u} \times \eta_{ab,P}^{(3)},\;\;\;\;\;\;\;\; \zeta_{ab,P}^{(1)} \equiv \zeta_{ab,P}^{(0)} \, \big(x_t \leftrightarrow x_u \big).

      (B31)

      For the contributions of singly (doubly) charged Higgses exchanging in the loop, the factors are given by

      \begin{aligned}[b] F_{ab,S}^{\text{Box}, 1} =\;& \dfrac{ e^2 Q_S^2 }{4 \pi ^2} \Bigg\{ \eta_{ab,S}^{(0)} \cdot C_0(0,\hat{s},0 ;M_S^2,M_S^2,M_S^2) + \eta_{ab,S}^{(1)} \cdot C_0(M_{\phi_i}^2,M_{\phi_j}^2 ,\hat{s} ;M_S^2,M_S^2,M_S^2) + \eta_{ab,S}^{(2)} \cdot C_0(\hat{t},M_{\phi_i}^2,0 ;M_S^2,M_S^2,M_S^2) \\& + \eta_{ab,S}^{(3)} \cdot C_0(M_{\phi_i}^2,0,\hat{u} ;M_S^2,M_S^2,M_S^2) + \eta_{ab,S}^{(4)} \cdot C_0(0,M_{\phi_j}^2,\hat{t} ;M_S^2,M_S^2,M_S^2) \\& + \eta_{ab,S}^{(5)} \cdot C_0(\hat{u},M_{\phi_j}^2,0 ;M_S^2,M_S^2,M_S^2) + \zeta_{ab,S}^{(0)} \cdot D_0(0,M_{\phi_j}^2,M_{\phi_i}^2,0 ;\hat{t},\hat{s};M_S^2,M_S^2,M_S^2,M_S^2) \\& + \zeta_{ab,S}^{(1)} \cdot D_0(0,M_{\phi_i}^2,M_{\phi_j}^2,0 ;\hat{u},\hat{s};M_S^2,M_S^2,M_S^2,M_S^2) + \zeta_{ab,S}^{(2)} \cdot D_0(M_{\phi_i}^2,0,M_{\phi_j}^2,0 ;\hat{u},\hat{t};M_S^2,M_S^2,M_S^2,M_S^2) \Bigg\}, \end{aligned}

      (B32)

      F_{12,S}^{\text{Box},2} = \dfrac{ e^2 Q_S^2 }{4 \pi ^2} \Big[ -\dfrac{1}{\hat{s} } - 2 x_{S} \, C_0(0,\hat{s},0,M_S^2,M_S^2,M_S^2) \Big].

      (B33)

      All coefficients related to the above formulas are given explicitly by

      \eta_{12,S}^{(0)} = -\dfrac{x_{\phi_i} \big( x_{\phi_i}+x_{\phi_j}-1 \big)}{s \Big[\big(x_{\phi_i}-x_t\big) \big(x_{\phi_j}-x_t\big) + x_t \Big]^2},

      (B34)

      \eta_{12,S}^{(1)} = \dfrac{x_{\phi_i} \Big[ x_{\phi_i}^2 + x_{\phi_j}^2 + 2 \big( x_t - x_{\phi_i} - x_{\phi_j} \big) \big( x_t+1 \big) + 1 \Big] }{s \Big[\big(x_{\phi_i}-x_t\big) \big(x_{\phi_j}-x_t\big) + x_t \Big]^2},

      (B35)

      \eta_{12,S}^{(2)} = -\dfrac{(x_{\phi_i}-x_t)^2 \Big[ x_{\phi_i} \big( x_{\phi_j}-x_t \big)^2 - x_t \big( -x_{\phi_j}+x_t+1 \big)^2 \Big] }{s \Big[ \big(x_{\phi_i}-x_t\big) \big(x_{\phi_j}-x_t\big) + x_t \Big]^2}.

      (B36)

      The coefficients of scalar one-loop four-point integrals in the above equations are

      \begin{array}{l} \zeta_{12,S}^{(0)} = \dfrac{1}{ \Big[ \big(x_{\phi_i}-x_t\big) \big(x_{\phi_j}-x_t\big) + x_t \Big]^2} \times \Bigg\{ x_{\phi_i} x_t^2 - 2 x_{S} \Big[ \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) + x_t \Big] \times \Big[ -x_t \big( x_{\phi_i}+x_{\phi_j} - 1 \big) +x_{\phi_i} \big( x_{\phi_j}+1 \big) + x_t^2 \Big] \Bigg\}, \end{array}

      (B37)

      \begin{array}{l} \zeta_{12,S}^{(2)} = \dfrac{1}{ \Big[ \big(x_{\phi_i}-x_t\big) \big(x_{\phi_j}-x_t\big) + x_t \Big]} \times \Bigg\{ \Big[ \big(x_{\phi_i}-x_t\big) \big(x_{\phi_j}-x_t\big) + x_t \Big]^2 - 2 x_{S} \Big[ -x_t \big(x_{\phi_i}+x_{\phi_j} - 1\big) + x_{\phi_i} \big(x_{\phi_j}+1\big) + x_t^2 \Big] \Bigg\}. \end{array}

      (B38)

      Other coefficients are calculated as

      \eta_{33,S}^{(0)} = \dfrac{1}{x_{\phi_i}} \times \eta_{12,S}^{(0)},

      (B39)

      \eta_{33,S}^{(1)} = \dfrac{1}{x_{\phi_i}} \times \eta_{12,S}^{(1)},

      (B40)

      \eta_{33,S}^{(2)} = \dfrac{x_t \big(x_{\phi_i}-x_t\big)}{s \Big[ \big(x_{\phi_i}-x_t\big) \big(x_{\phi_j}-x_t\big) + x_t \Big]^2},

      (B41)

      \zeta_{33,S}^{(0)} = \dfrac{x_t^2-2 x_{S} \Big[ \big(x_{\phi_i}-x_t\big) \big(x_{\phi_j}-x_t\big) + x_t \Big]}{ \Big[\big(x_{\phi_i}-x_t\big) \big(x_{\phi_j}-x_t\big) + x_t \Big]^2},

      (B42)

      \zeta_{33,S}^{(2)} = -\dfrac{2 x_{S}}{ \Big[\big(x_{\phi_i}-x_t\big) \big(x_{\phi_j}-x_t\big) + x_t \Big]}.

      (B43)

      We arrive at contributions of mixing charged Higgs H^\pm and vector boson W^\pm in box diagrams as follows:

      \begin{aligned}[b] F_{ab,W, H^\pm}^{\text{Box}} =\;& \dfrac{e^2}{4 \pi^2} \Bigg\{ \delta_{ab}^{W, H^\pm} + \varepsilon_{ab}^{W, H^\pm} \Big[ B_0(\hat{s},M_W^2,M_W^2) - B_0(0,M_W^2,M_W^2) \Big] + \eta_{ab,W, H^\pm}^{(0)} \cdot C_0(0,\hat{s},0 ;M_W^2,M_W^2,M_W^2) \\& + \eta_{ab,W, H^\pm}^{(1)} \cdot C_0(0,\hat{s},0; M_{H^\pm}^2,M_{H^\pm}^2, M_{H^\pm}^2) + \eta_{ab,W, H^\pm}^{(2)} \cdot \Big[ C_0(M_{\phi_i}^2,\hat{s},M_{\phi_j}^2 ;M_{H^\pm}^2,M_W^2,M_W^2) + C_0(\hat{s},M_{\phi_i}^2,M_{\phi_j}^2 ;M_{H^\pm}^2,M_{H^\pm}^2,M_W^2) \Big] \\& + \eta_{ab,W, H^\pm}^{(3)} \cdot \Big[ C_0(\hat{t},0,M_{\phi_i}^2 ;M_{H^\pm}^2,M_W^2,M_W^2) + C_0(0,\hat{t},M_{\phi_i}^2 ;M_{H^\pm}^2,M_{H^\pm}^2,M_W^2) \Big] + \eta_{ab,W, H^\pm}^{(4)} \cdot \Big[ C_0(\hat{t},0,M_{\phi_j}^2 ;M_{H^\pm}^2,M_W^2,M_W^2) \\& + C_0(0,\hat{t},M_{\phi_j}^2 ;M_{H^\pm}^2,M_{H^\pm}^2,M_W^2) \Big] + \eta_{ab,W, H^\pm}^{(5)} \cdot \Big[ C_0(\hat{u},0,M_{\phi_i}^2 ;M_{H^\pm}^2,M_W^2,M_W^2) \\& + C_0(0,\hat{u},M_{\phi_i}^2 ;M_{H^\pm}^2,M_{H^\pm}^2,M_W^2) \Big] + \eta_{ab,W, H^\pm}^{(6)} \cdot \Big[ C_0(\hat{u},0,M_{\phi_j}^2; M_{H^\pm}^2,M_W^2,M_W^2) \\& + C_0(0,\hat{u},M_{\phi_j}^2; M_{H^\pm}^2,M_{H^\pm}^2,M_W^2) \Big] + \zeta_{ab,W, H^\pm}^{(0)} \cdot D_0(\hat{t},0,\hat{s},M_{\phi_i}^2 ;M_{\phi_j}^2,0; M_{H^\pm}^2,M_W^2,M_W^2,M_W^2) \\& + \zeta_{ab,W, H^\pm}^{(1)} \cdot D_0(\hat{u},0,\hat{s},M_{\phi_j}^2 ;M_{\phi_i}^2,0; M_{H^\pm}^2,M_W^2,M_W^2,M_W^2) + \zeta_{ab,W, H^\pm}^{(2)} \cdot D_0(0,\hat{s},M_{\phi_i}^2,\hat{t} ;0,M_{\phi_j}^2; M_{H^\pm}^2,M_{H^\pm}^2, M_{H^\pm}^2,M_W^2) \\& + \zeta_{ab,W, H^\pm}^{(3)} \cdot D_0(0,\hat{s},M_{\phi_j}^2,\hat{u}; 0,M_{\phi_i}^2; M_{H^\pm}^2,M_{H^\pm}^2, M_{H^\pm}^2,M_W^2) + \zeta_{ab,W, H^\pm}^{(4)} \cdot D_0(0,\hat{u},0,\hat{t} ;M_{\phi_i}^2,M_{\phi_j}^2; M_{H^\pm}^2,M_{H^\pm}^2,M_W^2,M_W^2) \Bigg\}. \end{aligned}

      (B44)

      In the above equations, we have used the following functions: \varepsilon_{12}^{W, H^\pm} = 2/\hat{s} , \delta_{12}^{W, H^\pm} = - 1/\hat{s}, \varepsilon_{33}^{W, H^\pm} = 0 , and \delta_{33}^{W, H^\pm} = 0. The other coefficients relating to the formulas are given by

      \begin{aligned}[b] \eta_{12,W, H^\pm}^{(0)} =\;& \dfrac{1}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ x_{\phi_i} x_W \Big[ 2 x_{H^\pm} \big( x_{\phi_i} +x_{\phi_j}-3 x_{H^\pm}+1 \big) + 4 x_{\phi_i} x_{\phi_j} \big( 2 - x_{\phi_j} \big) + x_{\phi_i} \big( x_{\phi_i} - 3 \big) \\& + x_{\phi_j} \big( x_{\phi_j} - 3 \big) + 2 \Big] - 4 x_t^2 x_W \Big[ x_{\phi_i}^2 + x_t^2 + \big( 4 x_{\phi_i} + x_{\phi_j} - 1 \big) \big( x_{\phi_j}-1 \big) \Big] + 8 x_t x_W \big( x_{\phi_i}+x_{\phi_j}-1 \big) \Big[ x_t^2 + x_{\phi_i} \big( x_{\phi_j}-1 \big) \Big] \\& + x_{\phi_i} x_W^2 \Big[ 4 x_t^2 \big( 2 x_{\phi_j}-x_t-1 \big) + \big( 1 - 4 x_{\phi_j} x_t \big) \big( x_{\phi_j}-1 \big) + 6 x_{H^\pm} - 2 \Big] + x_{\phi_i}^2 x_W^2 \Big[ 1 + 2 \big( x_{\phi_j}-x_t \big)^2 \Big] \\& + 2 x_t^2 x_W^2 \big( x_{\phi_j}-x_t-1 \big)^2 + x_{\phi_i} \Big[ \big( x_{H^\pm}-x_{\phi_i} \big) \big( x_{H^\pm}-x_{\phi_j} \big) \big( 2 x_{H^\pm}-x_{\phi_i}-x_{\phi_j}+1 \big) - 2 x_W^3 \Big] \Bigg\}, \end{aligned}

      (B45)

      \begin{aligned}[b] \eta_{12,W, H^\pm}^{(1)} =\;& \dfrac{1}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ x_{\phi_i} x_{H^\pm}^2 \big( x_{\phi_i}+x_{\phi_j} -2 x_{H^\pm}+6 x_W+1 \big) \\& + x_{H^\pm} \Big\{ x_{\phi_i}^2 \Big[ x_{\phi_i} + 2 x_W - 1 - 4 x_W \big( x_{\phi_j}-x_t \big)^2 \Big] - 2 x_W \Big[ 3 x_{\phi_i} x_W + 2 x_t^2 \big( x_{\phi_j}-x_t-1 \big)^2 \Big] \\& + 2 x_{\phi_i} x_W \Big[ 4 x_{\phi_j} x_t \big( x_{\phi_j}+2 x_t-1 \big) + 4 x_t^2 \big( x_t+1 \big) - 3 \Big] + x_{\phi_i} x_{\phi_j} \big( x_{\phi_j}+2 x_W-1 \big) \Big\} \\& - x_{\phi_i} \big( x_{\phi_i} + x_{\phi_j} -2 x_W-1 \big) \Big[ x_{\phi_i} x_{\phi_j} - x_W \big( x_{\phi_i} +x_{\phi_j}-x_W-2 \big) \Big] \Bigg\},\end{aligned}

      (B46)

      \begin{aligned}[b] \eta_{12,W, H^\pm}^{(2)} =\;& \dfrac{x_{\phi_i}}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \big]^2} \times \Big[ x_{\phi_i}^2 + x_{\phi_j}^2 + 2 \big(x_t+1 \big) \big(x_t - x_{\phi_i} - x_{\phi_j} \big) + 1 \Big] \\& \times \Big[ x_{\phi_i} x_{\phi_j} - x_{H^\pm} \big( x_{\phi_i} +x_{\phi_j} -x_{H^\pm} +2 x_W \big) - x_W \big( x_{\phi_i} +x_{\phi_j} -x_W -2 \big) \Big], \end{aligned}

      (B47)

      \begin{aligned}[b] \eta_{12,W, H^\pm}^{(3)} =\;& \dfrac{ (x_{\phi_i}-x_t)^2 }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ x_{H^\pm} \big( x_{\phi_i}+x_{\phi_j} -x_{H^\pm}+2 x_W \big) \Big[ x_{\phi_i} \big( x_{\phi_j}-x_t \big)^2 - x_t \big( x_{\phi_j}-x_t-1 \big)^2 \Big] \\& + x_W x_{\phi_i} \Big[ x_{\phi_j} \big( x_{\phi_j}^2 - 3 x_{\phi_j} x_t + 3 x_t^2 + 2 x_t - 2 \big) - x_t \big( x_t^2 + 2 x_t - 1 \big) \Big] + x_{\phi_j} x_t x_{\phi_i} \big( x_{\phi_j}-x_t-1 \big)^2 - x_W^2 x_{\phi_i} \big( x_{\phi_j}-x_t \big)^2 \\& + \big( x_W-x_{\phi_j} \big) \Big[ x_t x_W \big( x_{\phi_j}-x_t-1 \big)^2 + x_{\phi_i}^2 \big( x_{\phi_j}-x_t \big)^2 \Big] \Bigg\}. \end{aligned}

      (B48)

      Other terms are presented as follows:

      \begin{aligned}[b] \zeta_{12,W, H^\pm}^{(0)} =\;& \dfrac{ \hat{s} }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ x_{\phi_i} x_{H^\pm} \Big[ 2 x_{\phi_i}^2 x_W \big( x_{\phi_j} - x_t \big) \big( x_{\phi_j} - x_t + 1 \big) - x_{H^\pm}^2 \big( x_{\phi_i}+x_{\phi_j} - x_{H^\pm}+2 x_t +4 x_W \big) \Big] \\& - 2 x_{\phi_i}^3 x_W \big( x_{\phi_j}-x_t \big) \Big[ 2 x_t + x_W \big( x_t-1 \big) - x_{\phi_j} \big( x_t+x_W-x_{\phi_j}+1 \big) \Big] + 2 x_W x_t^2 \big( x_{\phi_j}-x_t-1 \big)^2 \Big[ x_W \big( x_{\phi_j}-x_W \big) \\& + x_{H^\pm} \big( x_{\phi_j}+2 x_W-2 \big) \Big] + x_{\phi_i} x_{\phi_j} x_t^2 \big( x_{\phi_i} - x_{H^\pm} \big) + x_{H^\pm}^2 \Big\{ x_{\phi_i}^2 \Big[ x_{\phi_j} + 2 x_t + x_W - 2 x_W \big( x_{\phi_j}-x_t \big) \big( x_{\phi_j}-x_t+1 \big) \Big] \\& + x_{\phi_i} \Big[ x_{\phi_j} x_W \big( 4 x_{\phi_j} x_t + 1 \big) - 2 x_{\phi_j} x_t \big( 4 x_t x_W + x_W-1 \big) + 2 x_W \big( 2 x_t + 1 \big) \big( x_t^2 + 1 \big) + x_t^2 + 6 x_W^2 \Big] - 2 x_t^2 x_W \big( x_{\phi_j}-x_t\\& - 1 \big)^2 \Big\} + x_{\phi_i}^2 x_{H^\pm} \Big\{ 2 x_W \big( x_{\phi_j} - x_t \big) \Big[ x_t \big( 2 x_t - 3 x_{\phi_j} + 3 \big) + x_{\phi_j} \big( x_{\phi_j} - 1 \big) + 1 \Big] + x_W^2 \big( 2 x_{\phi_j} - 2 x_t+1 \big)^2 - x_t \big( 2 x_{\phi_j} +x_t \big) \Big\} \\& + x_{\phi_i} x_{H^\pm} \Big\{ x_W^2 \Big[ x_{\phi_j} - 4 x_W - 2 x_t \big( 4 x_{\phi_j}^2 + 4 x_t^2 + 2 x_t + 1 \big) + 4 x_{\phi_j} x_t \big( 4 x_t+1 \big) - 4 \Big] + 2 x_t x_W \Big[ x_{\phi_j}^2 \big( 5 x_t -2 x_{\phi_j} +5 \big) \\& - x_{\phi_j} \big( 4 x_t^2 +11x_t +5 \big) + x_t \big( x_t^2+6x_t+6 \big) \Big] \Big\} + x_{\phi_i}^2 \Big\{ x_W^3 \Big[ 2 x_t \big( 2 x_{\phi_j}- x_t+1 \big) - 2 x_{\phi_j} \big( x_{\phi_j}+1 \big) - 1 \Big] \\& + x_W^2 \Big[ x_{\phi_j} \big( 2 x_{\phi_j}^2 +2 x_{\phi_j}-7 \big) + 2 x_t^2 \big( 5 x_{\phi_j} - 2 x_t-1 \big) - 8 x_t \big( x_{\phi_j}^2-1 \big) \Big] + x_t x_W \Big[ x_t \big( 18 x_{\phi_j} -8 x_{\phi_j}^2-5 \big) \\& + 2 x_{\phi_j} \big( x_{\phi_j}-2 \big) \big( 2 x_{\phi_j}-1 \big) + 4 x_t^2 \big( x_{\phi_j}-2 \big) \Big] \Big\} + x_{\phi_i} x_W \Big\{ 2 x_t x_W \big( 1-2 x_{\phi_j} \big) \big( x_{\phi_j}^2-x_{\phi_j} x_W-2 \big) \\& + 2 x_t^4 \big( x_W-x_{\phi_j}+2 \big) + 4 x_t^3 \Big[ x_{\phi_j} \big( x_{\phi_j}-3 \big) + x_W \big( x_W-2 x_{\phi_j}+1 \big) + 1 \Big] + x_t^2 \Big[ 2 x_W^2 \big( 1-4 x_{\phi_j} \big) \\& + 2 x_{\phi_j} x_W \big( 5 x_{\phi_j}-3 \big) + x_{\phi_j} \big( 8 x_{\phi_j} -2 x_{\phi_j}^2 -7 \big) - 5 x_W + 2 \Big] + x_W^2 \big( x_W-x_{\phi_j}+2 \big) \Big\} \Bigg\}, \end{aligned}

      (B49)

      \begin{aligned}[b] \zeta_{12,W, H^\pm}^{(2)} = \;&\dfrac{\hat{s}}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2}\times \Big[ x_{\phi_i} x_{\phi_j} - x_{H^\pm} \big( x_{\phi_i} +x_{\phi_j} -x_{H^\pm}+2 x_W \big) - x_W \big( x_{\phi_i} +x_{\phi_j}-x_W -2 \big) \Big] \\& \times \Bigg\{ x_{\phi_i} \Big[ x_{H^\pm}^2 + \big( x_t-x_W \big)^2 \Big] - 2 x_{H^\pm} \Big[ x_{\phi_i}^2 \big( x_{\phi_j}-x_t \big) \big( x_{\phi_j}-x_t+1 \big) \\& - x_{\phi_i} x_t \big(x_{\phi_j} - x_t \big) \big(2 x_{\phi_j} -2 x_t-1 \big) + x_t^2 \big( x_{\phi_j} -x_t-1 \big)^2 + x_{\phi_i} x_W \Big] \Bigg\},\end{aligned}

      (B50)

      \zeta_{12,W, H^\pm}^{(4)} = \dfrac{2 \hat{s} }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \kappa_{12,W, H^\pm}^{(4)},

      (B51)

      with

      \begin{aligned}[b] \kappa_{12,W, H^\pm}^{(4)} = \;& - x_{\phi_i}^2 x_{H^\pm}^3 \Big[ x_{\phi_j} \big( x_{\phi_j} -2 x_t +1 \big) - x_t \big( 1-x_t \big) + 1 \Big] - x_t^2 x_{H^\pm}^3 \big( x_{\phi_j}-x_t-1 \big)^2 - x_{\phi_i} x_{H^\pm}^3 \Big[ x_t^2 \big( 4 x_{\phi_j} -2 x_t-1 \big) + x_{\phi_j} x_t \big( 1-2 x_{\phi_j} \big) \\& + x_t + x_{\phi_j} + 4 x_W - x_{H^\pm} \Big] + x_{H^\pm}^2 x_{\phi_i}^3 \big( x_{\phi_j}-x_t \big) \Big[ x_{\phi_j} \big( x_{\phi_j}-2 x_t +1 \big) + x_t \big( x_t-1 \big) + 1 \Big] + x_{H^\pm}^2 x_{\phi_i}^2 \Big\{ x_{\phi_j}^2 \Big[ x_{\phi_j} \big( 1-3 x_t \big) \\& - x_t \big( 1 - 9 x_t \big) + x_W + 1 \Big] + x_{\phi_j} \Big[ 1 + x_W \big( 1-2 x_t \big) - x_t^2 \big( 1+9 x_t \big) \Big] + x_W \big( 1-x_t \big) + x_t \Big[ x_t^2 \big( 1+3 x_t \big) + x_t \big( x_W-1 \big) + 1 \Big] \Big\} \\& + x_{H^\pm}^2 x_{\phi_i} x_W \Big[ 6 x_W + x_t^2 \big( 4 x_{\phi_j}-2 x_t-1 \big) + x_{\phi_j} x_t \big( 1-2 x_{\phi_j} \big) + x_t + x_{\phi_j} + 2 \Big] + x_t \big( x_{\phi_j}-x_t-1 \big) x_{H^\pm}^2 x_{\phi_i} \Big[ x_{\phi_j}^2 \big( 3 x_t-2 \big)\\& - x_{\phi_j} \big( 1+6 x_t^2 \big) + x_t \big( x_t+1 \big) \big( 3 x_t-1 \big) \Big] + x_t^2 x_{H^\pm}^2 \big( x_{\phi_j}-x_t-1 \big)^2 \Big[ x_t \big( 1+x_t \big) + x_{\phi_j} \big( 1-x_t \big) + x_W \Big] + x_{H^\pm} x_{\phi_i}^3 \big( x_t-x_{\phi_j} \big) \\& \times \Big[ x_{\phi_i} \big( x_{\phi_j}-x_t \big)^2 + x_{\phi_j}^2 \big( x_{\phi_j} -5 x_t +2 x_W +1 \big) - 2 x_W \big( x_{\phi_j}+1 \big) + x_{\phi_j} \big( 7 x_t^2 - 4 x_W x_t + 2 x_t + 1 \big) + x_t \big( x_t+1 \big) \big( 2 x_W-3 x_t \big) \Big] \\& - x_{H^\pm} x_{\phi_i}^2 \Big\{ - x_W^2 \Big[ 1 + x_{\phi_j} \big( x_{\phi_j}-2 x_t +1 \big) + x_t \big( x_t-1 \big) \Big] + 2 x_W \big( x_t-x_{\phi_j} \big) \times \Big[ x_t^2 \big( 3 x_t-6 x_{\phi_j}+5 \big) + 3 x_t \big( x_{\phi_j}-1 \big)^2 \\& + x_{\phi_j} \big( x_{\phi_j}-1 \big) - 1 \Big] + x_t \big( x_{\phi_j}-x_t-1 \big) \times \Big[ x_{\phi_j}^2 \big( 9 x_t-3 x_{\phi_j}-2 \big) + \big( x_t+1 \big) \big( 3 x_t^2-x_{\phi_j} \big) - 9 x_t^2 x_{\phi_j} \Big] \Big\} \\& - x_{H^\pm} x_{\phi_i} \Big\{ x_W^2 \Big[ 2 x_t x_{\phi_j}^2 - x_{\phi_j} \big( 4 x_t^2+x_t+1 \big) + x_t \big( 2 x_t^2+x_t-1 \big) + 4 \big( x_W+1 \big) \Big] + 2 x_t x_W \big( x_{\phi_j}-x_t-1 \big) \\& \times \Big[ x_{\phi_j}^2 \big( 3 x_t+2 \big) - 3 x_{\phi_j} \big( 2 x_t^2+2 x_t+1 \big) + x_t \big( 3 x_t^2 +4 x_t+5 \big) \Big] + x_t^2 \big( x_{\phi_j}-x_t-1 \big)^2 \Big[ x_{\phi_j} \big( 3 x_{\phi_j}-4 x_t +1 \big) \\& + x_t \big( x_t+1 \big) \Big] \Big\} - x_{H^\pm} x_t^2 \big( x_{\phi_j}-x_t-1 \big)^2 \times \Big[ - x_{\phi_j}^2 x_t + x_{\phi_j} \big( x_t+1 \big) \big( x_t-2 x_W \big) + x_W \big( 2 x_t^2 + 2 x_t-x_W+4 \big) \Big] \\& + x_W^2 \Big[ \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) + x_t - x_W \Big] \Big\{ x_{\phi_i}^2 \Big[ 1 + \big( x_{\phi_j}-x_t \big)^2 \Big] - x_{\phi_i} x_W + x_{\phi_i} \Big[ \big( 1-2 x_{\phi_j} x_t \big) \big( x_{\phi_j}-1 \big) \\& + 2 x_t^2 \big( 2 x_{\phi_j}-x_t-1 \big) - 1 \Big] + x_t^2 \big( x_{\phi_j}-x_t-1 \big)^2 \Big\} - x_W \Big[ \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) + x_t - x_W \Big] \Big\{ x_{\phi_i}^2 \Big[ x_{\phi_i} \big( x_{\phi_j}-x_t \big)^2 \\& + 2 x_t + \big( x_{\phi_j}-x_t-1 \big) \big( x_{\phi_j}^2 + x_{\phi_j} + 2 x_t^2 - 3 x_t x_{\phi_j} \big) \Big] + x_t \big( x_{\phi_j}-x_t-1 \big) \times \Big[ x_{\phi_j} x_t \big( x_{\phi_j}-x_t-1 \big) \\& - x_{\phi_i} \big( x_{\phi_j}-x_t+1 \big) \big( 2 x_{\phi_j}-x_t-2 \big) \Big] \Big\} + x_{\phi_i} x_{\phi_j} \Big[ \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) +x_t-x_W \Big] \Big[ \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) + x_t \Big]^2 \Bigg\}, \end{aligned}

      \begin{aligned}[b] \eta_{33,W, H^\pm}^{(0)} =\;& \dfrac{1}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ x_W \Big[ 2 x_{H^\pm} \big( x_{\phi_i} +x_{\phi_j} - 3 x_{H^\pm}+1 \big) + x_{\phi_j} \big( x_{\phi_j} - 3 \big) - 8 x_t \big( x_{\phi_i} +x_{\phi_j}-x_t-1 \big) \\& + x_{\phi_i} \big( x_{\phi_i} + 8 x_{\phi_j} - 3 \big) + 2 \Big] + 2 x_W^2 \big( 4 x_{H^\pm} - x_W - 1 \big) + \big( 2 x_{H^\pm}-x_{\phi_i}-x_{\phi_j}+1 \big) \Big[ \big( x_{H^\pm}-x_{\phi_i} \big) \big( x_{H^\pm}-x_{\phi_j} \big) - x_W^2 \Big] \Bigg\}, \end{aligned}

      (B52)

      \begin{aligned}[b] \eta_{33,W, H^\pm}^{(1)} = \;&- \dfrac{1}{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) +x_t \Big]^2} \Big[ 2 x_{H^\pm}+x_{\phi_i}+x_{\phi_j}-2 x_W-1 \Big] \times \Bigg[ x_{\phi_i} x_{\phi_j} - x_{H^\pm} \big( x_{\phi_i}+x_{\phi_j}-x_{H^\pm}+2 x_W \big) \\& - x_W \big( x_{\phi_i}+x_{\phi_j}-x_W-2 \big) \Bigg], \end{aligned}

      (B53)

      \eta_{33,W, H^\pm}^{(2)} = \dfrac{1}{x_{\phi_i}} \times \eta_{12,W, H^\pm}^{(2)},

      (B54)

      \begin{aligned}[b] \eta_{33,W, H^\pm}^{(3)} =\;& \dfrac{ x_{\phi_i}-x_t }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) +x_t \Big]^2} \Big\{ x_{\phi_i} \big( x_{\phi_j} x_t-2 x_{\phi_j} x_W+x_t x_W \big) + x_t \Big[ x_W \big( x_{\phi_j}-2 x_t+x_W \big) \\& - x_{H^\pm} \big( x_{\phi_i}+x_{\phi_j}-x_{H^\pm}+2 x_W \big) \Big] \Big\}, \end{aligned}

      (B55)

      \begin{aligned}[b] \zeta_{33,W, H^\pm}^{(0)} =\;& \dfrac{\hat{s} }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ x_W^2 x_{H^\pm} \Big[ \big( 1-4 x_t \big) \big( x_{\phi_i} +x_{\phi_j} \big) + 2 x_t \big( 2 x_t-1 \big) + 2 \big( 3 x_{H^\pm} + 2 x_{\phi_i} x_{\phi_j} - 2 \big) \Big] \\& + x_W^2 \big( x_{\phi_i} x_{\phi_j} + x_t^2 \big) \big( 2 x_{\phi_i} + 2 x_{\phi_j} - 7 \big) - 2 x_t x_W^2 \Big[ \big( x_{\phi_i} + x_{\phi_j} - 4 \big) \big( x_{\phi_i} + x_{\phi_j} \big) + 2 \Big] + \big( x_{H^\pm} - x_{\phi_i} \big) \big( x_{H^\pm}-x_{\phi_j} \big) \big( x_{H^\pm}-x_t \big)^2 \\& + x_W \Big\{ x_{H^\pm}^2 \Big[ - 4 x_{H^\pm} - 2 \big( x_{\phi_i} x_{\phi_j} + x_t^2 \big) + \big( 2 x_t + 1 \big) \big( x_{\phi_i}+x_{\phi_j}+2 \big) \Big] + 2 x_{H^\pm} \big( x_{\phi_i}+x_{\phi_j}+1 \big) \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) \\& + 2 x_{\phi_i} x_{\phi_j} \Big[ x_{\phi_i} x_{\phi_j} - x_t \big( 3 x_{\phi_i}+3 x_{\phi_j}-2 \big) \Big] - 4 x_t^3 \big( 2 x_{\phi_i} +2 x_{\phi_j}-x_t-1 \big) + x_t^2 \Big[ 2 x_{\phi_i} \big( 2 x_{\phi_i}+5 x_{\phi_j} \big) \\& + \big( x_{\phi_i} + x_{\phi_j} \big) \big( 4 x_{\phi_j}-5 \big) + 2 \Big] \Big\} - x_W^3 \Big[ 4 x_{H^\pm} - x_W + \big( 1-2 x_t \big) \big( x_{\phi_i}+x_{\phi_j} \big) + 2 \big( x_{\phi_i} x_{\phi_j} + x_t^2 - 1 \big) \Big] \Bigg\},\end{aligned}

      (B56)

      \begin{aligned}[b] \zeta_{33,W, H^\pm}^{(2)} =\;& \dfrac{\hat{s} }{x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Big[ x_{\phi_i} x_{\phi_j} - x_{H^\pm} \big( x_{\phi_i}+x_{\phi_j}-x_{H^\pm}+2 x_W \big) - x_W \big( x_{\phi_i}+x_{\phi_j}- x_W-2 \big) \Big] \\& \times \Big\{ x_{H^\pm}^2-2 x_{H^\pm} \Big[ \big(x_{\phi_i}-x_t \big) \big(x_{\phi_j}-x_t \big) +x_W \Big] + \big(x_t-x_W \big)^2 \Big\}, \end{aligned}

      (B57)

      \begin{aligned}[b] \zeta_{33,W, H^\pm}^{(4)} =\;& \dfrac{2 \hat{s} } {x_W \Big[ (x_{\phi_i}-x_t) (x_{\phi_j}-x_t) + x_t \Big]^2} \times \Bigg\{ - x_W^3 \Big[ 4 x_{H^\pm} - x_W + x_{\phi_i} x_{\phi_j} - \big( x_t-1 \big) \big( x_{\phi_i} + x_{\phi_j}-x_t-2 \big) \Big] \\& + x_W^2 \Big\{ x_{H^\pm} \Big[ x_{\phi_i} x_{\phi_j} - 2 \big( 1-3 x_{H^\pm} \big) - \big( x_t-1 \big) \big( x_{\phi_i}+x_{\phi_j}-x_t-2 \big) \Big] + \big( x_{\phi_i}+x_{\phi_j}-4 \big) \Big[ x_{\phi_i} x_{\phi_j} \\& - x_t \big( x_{\phi_i}+x_{\phi_j}-x_t-1 \big) \Big] + x_{\phi_i} x_{\phi_j} \Big\} + x_W \Big\{ x_{H^\pm}^2 \Big[ x_{\phi_i} x_{\phi_j} - 4 \big( x_{H^\pm}-1 \big) - \big( x_t-1 \big) \big( x_{\phi_i} +x_{\phi_j}-x_t-2 \big) \Big] \\& + 2 x_{H^\pm} \Big[ x_{\phi_i} x_{\phi_j} \big( x_{\phi_i} +x_{\phi_j}-1 \big) - x_t \big( x_{\phi_i}+x_{\phi_j} \big) \big( x_{\phi_i}+x_{\phi_j}-x_t-1 \big) \Big] + \Big[ \big( x_{\phi_i}-x_t \big) \big( x_{\phi_j}-x_t \big) + x_t \Big] \Big[ x_{\phi_i} x_{\phi_j} \\& - 2 x_t \big( x_{\phi_i} +x_{\phi_j}-x_t-1 \big) \Big] \Big\} + x_{H^\pm} \big( x_{H^\pm}-x_{\phi_i} \big) \big( x_{H^\pm}-x_{\phi_j} \big) \Big[ x_{H^\pm} - x_t + \big( x_{\phi_i}-x_t \big) \big( x_t-x_{\phi_j} \big) \Big] \Bigg\}. \end{aligned}

      (B58)

      Remaining coefficients are expressed by the following relations:

      \eta_{ab,W, H^\pm}^{(4)} = \dfrac{x_{\phi_j} - x_t}{x_{\phi_i} - x_t} \times \eta_{ab,W, H^\pm}^{(3)}, \quad \eta_{ab,W, H^\pm}^{(5)} = \eta_{ab,W, H^\pm}^{(3)} \big(x_t \leftrightarrow x_u \big),

      (B59)

      \eta_{ab,W, H^\pm}^{(6)} = \dfrac{x_{\phi_j} - x_u}{x_{\phi_i} - x_u} \times \eta_{ab,W, H^\pm}^{(5)}, \quad \zeta_{ab,W, H^\pm}^{(1/3)} = \zeta_{ab,W, H^\pm}^{(0/2)} \big(x_t \leftrightarrow x_u \big).

      (B60)
    APPENDIX C: LAGRANGIAN FOR ZEE-BABU MODELS
    • All the couplings in Zee-Babu models are derived in this appendix. After the EWSB, the hypercharge field B_\mu mixes with the weak isospin field W_\mu^3 . They are decomposed in terms of the mass eigenstates as follows: B_\mu = c_WA_\mu-s_WZ_\mu , where \theta_W is the weak mixing angle. The kinetic term can be expanded as

      \begin{aligned}[b] {\cal{L}}_K^{ZB} =\;& (D_{\mu}H)^{\dagger}(D^{\mu}H) +(D_{\mu}K)^{\dagger}(D^{\mu}K) \;{\supset}\; -\mathrm{i}g_Yc_WQ_{H}A^{\mu}(H^{\mp}\partial_{\mu}H^{\pm}-H^{\pm}\partial_{\mu}H^{\mp}) +\mathrm{i}g_Ys_WQ_{H}Z^{\mu}(H^{\mp}\partial_{\mu}H^{\pm}-H^{\pm}\partial_{\mu}H^{\mp}) \\& + g_Y^2c_W^2Q_{H}^2A^{\mu}A_{\mu}H^{\pm}H^{\mp} + g_Y^2s_W^2Q_{H}^2Z^{\mu}Z_{\mu}H^{\pm}H^{\mp} - g_Y^2s_{2W}Q_{H}^2A^{\mu}Z_{\mu}H^{\pm}H^{\mp} - \mathrm{i}g_Yc_WQ_{K}A^{\mu}(K^{\mp\mp}\partial_{\mu}K^{\pm\pm} - K^{\pm\pm}\partial_{\mu}K^{\mp\mp}) \\& + \mathrm{i}g_Ys_WQ_{K}Z^{\mu} (K^{\mp\mp}\partial_{\mu}K^{\pm\pm} -K^{\pm\pm}\partial_{\mu}K^{\mp\mp}) + g_Y^2c_W^2Q_{K}^2A^{\mu}A_{\mu}K^{\pm\pm}K^{\mp\mp} \\& + g_Y^2s_W^2Q_{K}^2Z^{\mu}Z_{\mu}K^{\pm\pm}K^{\mp\mp} - g_Y^2s_{2W}Q_{K}^2A^{\mu}Z_{\mu}K^{\pm\pm}K^{\mp\mp}. \end{aligned}

      (C1)

      The scalar potentials of H^{\pm} and K^{\pm\pm} are expressed in the mass basis:

      \begin{aligned}[b] -{\cal{V}}_{ZB} =\;& -\mu^2_1H^{\mp}{H^\pm} -\mu^2_2K^{\mp\mp}{K}^{\pm\pm} -\lambda_H(H^\mp{H^\pm})^2 -\lambda_K(K^{\mp\mp}{K^{\pm\pm}})^2 -\lambda_{HK}(H^{\mp}{H^\pm})(K^{\mp\mp}{K^{\pm\pm}}) -\mu_L({H^{\pm}H^{\pm}K^{\mp\mp}} +{H^{\mp}H^{\mp}K^{\pm\pm}}) \\& -\lambda_{K\Phi}(K^{\mp\mp}K^{\pm\pm}) [\chi^{\mp}\chi^{\pm} +\frac{1}{2}(v^2+2vh+hh+\chi_0^2) ] -\lambda_{H\Phi}(H^{\mp\mp}H^{\pm\pm}) [\chi^{\mp}\chi^{\pm}+\frac{1}{2} (v^2+2vh+hh+\chi_0^2)] \end{aligned}

      (C2)

      \begin{aligned}[b] \supset\; &-\mu_LH^{\pm}H^{\pm}K^{\mp\mp} -v\lambda_{H\Phi}hH^{\pm}H^{\mp} -v\lambda_{K\Phi}hK^{\pm\pm}K^{\mp\mp} -\frac{\lambda_{H\Phi}}{2}hhH^{\pm}H^{\mp} -\frac{\lambda_{K\Phi}}{2}hhK^{\pm\pm}K^{\mp\mp} \\ & -\lambda_{HK}H^{\pm}H^{\mp}K^{\pm\pm}K^{\mp\mp} -\lambda_{H\Phi}H^{\pm}H^{\mp}\chi^{\pm}\chi^{\mp} -\lambda_{K\Phi}K^{\pm\pm}K^{\mp\mp}\chi^{\pm}\chi^{\mp}. \end{aligned}

      (C3)

      The Yukawa of Zee-Babu model is given by

      \begin{aligned}[b] {\cal{L}}_{Y}^{ZB} \;&= f_{ij}[\overline{\tilde{L^i}}L^{j}H^\dagger-\mathrm{h.c}]+g_{ij}[\overline{(e_R^c)^i}e_R^jK^\dagger+\mathrm{h.c}] = f_{ij}[\left(\begin{array}{cc} (\overline{e}^c_L)^i -\overline{\nu}_L^c \\ \end{array}\right)\left(\begin{array}{c} \nu_L \\ (e_L)^j \end{array}\right)H^\dagger-\mathrm{h.c}]+g_{ij}[\overline{(e_R^c)^i}e_R^jK^\dagger+\mathrm{h.c}] \\& =f_{ij}\bigg\{[(\overline{e}^c_L)^i\nu_L-\overline{\nu}_L^ce_L^j]H^\dagger-\mathrm{h.c}\bigg\} +g_{ij}[\overline{(e_R^c)^i}e_R^jK^\dagger+\mathrm{h.c}]. \end{aligned}

      (C4)
Reference (118)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return