## Just Accepted

Display Method:

Published:

**Abstract:**

We discuss the proper definition for the chiral crossover at finite temperature, based on the Goldstone's theorem. Different from the usually used maximum change of chiral condensate, we propose to define the crossover temperature by the Mott transition of pseudo-Goldstone bosons, which, by definition, guarantees the Goldstone's theorem. We analytically and numerically demonstrate this property in the frame of a Pauli-Villars regularized NJL model. In external magnetic field, we find that the Mott transition temperature shows an inverse magnetic catalysis effect.

Published:

**Abstract:**

By applying the Error PDF Updating Method, we analyze the impact of the absolute and normalized single differential cross-sections for top-quark pair production data from the ATLAS and CMS experiments at the Large Hadron Collider, at a centre-of-mass energy of

Published:

**Abstract:**

The mean total kinetic energy as a function of fission fragments, <TKE> distribution, was presented for neutron-induced fission of

Published:

**Abstract:**

We propose a new dihedral angle observable to measure the CP property of the interaction of top quark and Higgs boson in the

Published:

**Abstract:**

The strong coupling constants of hadronic multiplets are fundamental parameters which carry information of the strong interactions among participating particles. These parameters can help us construct the hadron-hadron strong potential and gain information about the structure of the involved hadrons. Motivated by the recent observation of the doubly charmed

*K*,

Published:
, doi: 10.1088/1674-1137

**Abstract:**

The next-to minimal supersymmetric standard model (NMSSM) with non-universal Higgs masses, or the semi-constrained NMSSM (scNMSSM), extend the minimal supersymmetric standard model (MSSM) by a singlet superfield and assume universal conditions except for the Higgs sector. It can not only keep the simpleness and grace of the fully constrained MSSM and NMSSM, and relax the tension that they face after the 125-GeV Higgs boson discovered, but also allow for an exotic phenomenon that Higgs decay to a pair of light (

*CP*-odd scalars). This condition can be classified into three scenarios according to the identities of the SM-like Higgs and the light scalar: (i) the light scalar is

*CP*-odd, and the SM-like Higgs is

*CP*-odd, and the SM-like Higgs is

*CP*-even, and the SM-like Higgs is

Published:

**Abstract:**

We present a SUSY model with four Higgs doublets of the “private type”, where each fermion type (up, down, and charged leptons) obtain their masses from a different Higgs doublet

*h*), and identify viable regions of parameter space. These constraints are then used to evaluate the prospects to detect the FCNC decay mode

Published:

**Abstract:**

The

Published:

**Abstract:**

Using a dedicated data sample taken in 2018 on the

*J*/

*ψ*peak, we perform a detailed study of the trigger efficiencies of the BESIII detector. The efficiencies are determined from three representative physics processes, namely Bhabha-scattering, dimuon production and generic hadronic events with charged particles. The combined efficiency of all active triggers approaches 100% in most cases with uncertainties small enough as not to affect most physics analyses.

Published:

**Abstract:**

In this paper, the Joule-Thomson expansion of Born-Infeld AdS black holes is studied in the extended phase space, where the cosmological constant is identified with the pressure. The Joule-Thomson coefficient, the inversion curves and the isenthalpic curves are discussed in detail by 4-dimensional black hole. The critical point of Born-Infeld black hole is depicted with varying parameter

*Q*. In

*Q*. We find that the missing negative slope is still conserved in Born-Infeld black holes. We also extend our discussion to arbitrary dimension higher than 4. The critical temperature and the minimum of inversion temperature are compared, and the ratio is asymptotically

*Q*increases or

Published:

**Abstract:**

A universal relation between the leading correction to the entropy and extremality was gotten in the work of Goon and Penco. In this paper, we extend this work to the massive gravity and investigate thermodynamic extremality relations in a topologically higher-dimensional black hole. A rescaled cosmological constant is added to the action of the massive gravity as a perturbative correction. This correction modifies the extremality bound of the black hole and leads to the shifts of the mass, entropy, etc. Regarding the cosmological constant as a variable related to pressure, we get the thermodynamic extremality relations between the mass and entropy, pressure, charge, parameters

*c*by accurate calculations, respectively. Finally, these relations are verified by a triple product identity, which shows that the universal relation exists in black holes.

_{i}
Published:

**Abstract:**

The precise determination of the

*Z*pole operation, the channel signal can achieve five

*Z*decays, and the signal strength accuracies for

*Z*pole statistics of one trillion

*Z*decays assuming the total

Published:

**Abstract:**

We study the self conjugate dark matter (DM) particles interacting primarily with the standard model leptons in an effective field theoretical frame work. We consider SM gauge invariant effective contact interactions between the Majorana fermion, real scalar and a real vector DM with leptons by evaluating the Wilson coefficients appropriate for interaction terms upto dimension-8 and obtain constraints on the parameters of the theory from the observed relic density, indirect detection observations and from the DM-electron scattering cross-sections in the direct detection experiments. Low energy LEP data has been used to study sensitivity in the pair production of such low mass

Published:

**Abstract:**

We probe the universality of acceleration scale

Published:

**Abstract:**

Various quantum theories of gravity predict the existence of a minimal measurable length. In this paper, we study effects of the minimal length on the motion of a particle in the Rindler space under a harmonic potential. This toy model captures key features of particle dynamics near a black hole horizon, and allows us to make three observations. First, we find that the chaotic behavior is stronger with the increases of the minimal length effects, which manifests that the maximum Lyapunov characteristic exponents mostly grow, and the KAM curves on Poincaré surfaces of section tend to disintegrate into chaotic layers. Second, in the presence of the minimal length effects, it can take a finite amount of Rindler time for a particle to cross the Rindler horizon, which implies a shorter scrambling time of black holes. Finally, it shows that some Lyapunov characteristic exponents can be greater than the surface gravity of the horizon, violating the recently conjectured universal upper bound. In short, our results reveal that quantum gravity effects may make black holes prone to more chaos and faster scrambling.

Published:

**Abstract:**

The inclusive

Published:

**Abstract:**

We obtain an exact slowly rotating Einstein-bumblebee black hole solution by solving the corresponding

*a*. Till now there seems to be no full rotating black hole solution, so one can't use the Newman-Janis algorithm to generate a rotating solution in Einstein-bumblebee theory. It is similar as that in Einstein-aether theory where there exists only some slowly rotating black hole solutions. In order to study the effects of this Lorentz symmetry broken, we consider the black hole greybody factor and find that when angular index

Published:

**Abstract:**

Heavy ion collisions near the Fermi energy produce a ‘freezout’ region where fragments appear and later decay emitting mainly neutrons, protons, alphas and gamma rays. These products carry information on the decaying nuclei in the medium. Fragmentation events might result in high yields of boson particles, especially alpha particles, and carry important information on the nuclear Bose Einstein Condensate (BEC). We study ‘in medium’ 4

*α*correlations and link them to the ‘fission’ of

^{16}O in two

^{8}Be in the ground state or

^{12}C

^{*}(Hoyle State)+

*α*. Using novel techniques for the correlation functions we confirm a resonance of

^{16}O at 15.2 MeV excitation energy and the possibility of a lower resonance close to 14.72 MeV. The latter resonance is the result of all

*α*particles having 92 keV relative kinetic energies.

Published:

**Abstract:**

The Geiger-Nuttall (GN) law of

*α*decay is commonly explained in terms of the quantum tunneling phenomenon. In this study, we show that such an explanation is actually not enough regarding the

*α*particle clustering. Such an inference is drawn from the exploration on the involved coefficients of the GN law based on the conventional recognition of

*α*decay, namely the formation of

*α*cluster and its subsequential penetration. The specific roles of the two former processes, played in the GN law, are manifested themselves via the systematical analysis of the calculated and experimental

*α*decay half-lives versus the decay energies across the

*Z*=82 and

*N*=126 shell closures. The

*α*-cluster preformation probability is then found to behave as a GN-like pattern. This previously ignored point is explicitly demonstrated as the product of the interplay between the mean-field and pairing effect, which in turn reveals the structural influence on the formation of

*α*cluster in a simple and clear way. Besides providing an effective way to evaluate the amount of surface

*α*clustering in heavy nuclei, the present conjecture supports other theoretical treatments of the

*α*preformation probability.

Published:

**Abstract:**

We studied the potential of the LHCb 13 TeV single

*W*

^{±}and

*Z*boson pseudo-data on constraining the Parton Distribution Functions (PDFs) of the proton. As an example, we demonstrated the sensitivity of the LHCb 13 TeV data, collected with an integrated luminosity of 5

*x*region. The double differential cross section measurement on

*Z*boson

*p*

_{T}and rapidity can greatly reduce the uncertainty bands of

*u*and

*d*quarks in almost all

*x*range, as compared to various single observable measurements.

Published:

**Abstract:**

The temperature dependence of the shell corrections to the energy

Published:

**Abstract:**

The new measurements of the neutron energy spectra of the

^{9}Be(d,n)

^{10}B reaction with a thick beryllium target are carried out by the fast neutron time-of-flight (TOF) spectrometer for the neutron emission angles

^{9}Be(d,n)

^{10}B reaction are distributed relatively independently for the ground state of

^{10}B, 1st, 2nd, and 3rd excited state of

^{10}B. The branching ratio of the

^{9}Be(d,n)

^{10}B reaction for different excited states of

^{10}B are obtained for the neutron emission angles

^{9}Be(d,n)

^{10}B reaction for the 3rd excited state is decreasing with increasing of the incident deuteron energy, and the branching ratio for the ground state and 2nd excited state are rising with increasing of the neutron emission angles.

Published:

**Abstract:**

We studied the instability of the regularized 4D charged Einstein-Gauss-Bonnet de-Sitter black holes under charged scalar perturbations. The unstable modes satisfy the superradiant condition, but not all modes satisfying the superradiant condition are unstable. The instability occurs when the cosmological constant is small and the black hole charge is not too large. The Gauss-Bonnet coupling constant makes the unstable black hole more unstable when both the black hole charge and cosmological constant are small, and makes the stable black hole more stable when the black hole charge is large.

Published:

**Abstract:**

On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of

Published:

**Abstract:**

Hexaquarks constitute a natural extension of complex quark systems like also tetra- and pentaquarks do. To this end the current status of

Published:

**Abstract:**

It is universally acknowledged that the Generalized Liquid Drop Model (GLDM) has two advantages that over other

*α*decay theoretical models: introducing the quasimolecular shape mechanism and proximity energy. In the past few decades, the original proximity energy has been improved by numerous works. In the present work, the different improvements of proximity energy are examined when they are applied to GLDM for enhancing the calculation accuracy and prediction ability of

*α*decay half-lives for known and unsynthesized superheavy nuclei. The calculations of

*α*half-lives have systematic improvements in reproducing experimental data after choosing a more suitable proximity energy applied to GLDM. Encouraged by this, the

*α*decay half-lives of even-even superheavy nuclei with

*Z*=112-122 are predicted by the GLDM with a more suitable proximity energy. The predictions are consistent with calculations by the improved Royer formula and the universal decay law. In addition, the features of predicted

*α*decay half-lives imply that the next double magic nucleus after

^{208}Pb is

^{298}Fl.

Published:

**Abstract:**

The ALICE Collaboration measure the three- and four-pion Bose-Einstein correlations (BECs) in Pb-Pb collisions at the Large Hadron Collider (LHC). It is speculated that the significant suppressions of multi-pion BECs are due to a considerable degree of coherent pion emission in the collisions. In this paper, we study the multi-pion BEC functions in a granular source model with coherent pion-emission droplets. We find that the intercepts of multi-pion correlation functions at the relative momenta near zero are sensitive to droplet number in the granular source. They decrease with decreasing droplet number. The three-pion correlation functions for the evolving granular sources with momentum-dependent partially coherent pion-emission droplets are in basic agreement with the experimental data in Pb-Pb collisions at

Published:

**Abstract:**

Neutrinos stand out among elementary particles through their unusually small masses. Various seesaw mechanisms attempt to explain this fact. In this work applying insights from matrix theory we are in a position to treat variants of seesaw mechanisms in a general manner. Specifically, using Weyl's inequalities we discuss and rigorously prove under which conditions the seesaw framework leads to a mass spectrum with exactly three light neutrinos. We find an estimate on the mass of heavy neutrinos to be the mass obtained by neglecting light neutrinos shifted at most by the maximal strength of the coupling to the light neutrino sector. We provide analytical conditions allowing to prescribe that precisely two out of five neutrinos are heavy. For higher-dimensional cases the inverse eigenvalue methods are used. In particular, for the CP invariant scenarios we show that if the neutrino sector has a valid mass matrix after neglecting the light ones, i.e. the respective mass submatrix is positive definite, then large masses are provided by matrices with large elements accumulated on the diagonal. Finally, the Davis-Kahan theorem is used to show how masses affect the rotation of light neutrino eigenvectors from the standard Euclidean basis. This general observation concerning neutrino mixing together with results on the mass spectrum properties opens directions for further neutrino physics studies using matrix analysis.

Published:

**Abstract:**

The Anti-de Sitter (AdS) black hole with lattice structure plays an essential role in the study of the optical conductivity in holographic approach. We investigate the instability of this sort of black holes which may lead to the holographic description of charge density waves. In the presence of homogeneous axion fields, we show that the instability of AdS-Reissner-Nordström(AdS-RN) black hole is always suppressed. However, in the presence of Q-lattices, we find that the unstable region becomes the smallest in the vicinity of the critical region for metal/insulator phase transition. This novel phenomenon is reminiscent of the behavior of the holographic entanglement entropy during quantum phase transition.

Published:

**Abstract:**

Experimental elastic scattering angular distributions of

^{11}B,

^{12}C and

^{16}O + heavy-ions were used to study the Woods-Saxon potential parameters. The diffuseness parameters were found to have best fitted values for each system, and a linear expression of diffuseness parameters with

^{11}B,

^{12}C and

^{16}O, but also some elastic scattering induced by other heavy-ions.

Published:

**Abstract:**

We study the scattering of J/

Published:

**Abstract:**

We analytically solve the Sudakov suppressed Balitsky-Kovchegov evolution equation with the fixed and running coupling constants in the saturation region. The analytic solution of the

*S*-matrix shows the

Published:

**Abstract:**

In this paper we investigate the medium modifications of girth distributions for inclusive jets and

**ISSN** 1674-1137 **CN** 11-5641/O4

Original research articles, Ietters and reviews Covering theory and experiments in the fieids of

- Particle physics
- Nuclear physics
- Particle and nuclear astrophysics
- Cosmology

Author benefits

- A SCOAP3 participating journal - free Open Access publication for qualifying articles
- Average 24 days to first decision
- Fast-track publication for selected articles
- Subscriptions at over 3000 institutions worldwide
- Free English editing on all accepted articles

News

- The Most Influential Paper Award of Chinese Physics Society in 2020
- CPC authorship won the âIOP Publishing awards top cited Chinese authorsâ
- Notification to our authors â Delay in the production process
- The 2020 summer holiday-Office closure
- Impact factor of Chinese Physics C is 2.463 in 2019

Meet Editor