-
Abstract:
The method of stochastic quantization is applied to the lattice gauge field theory and the Langevin equations for the link and Wilson loop variables are established for the U(N) and SU(N) cases. The relation between the Langevin equation and the Schwinger-Dyson equation for the Wilson loop is discussed.
-
-
References
[1]
|
G. Parisi, Nucl. Phys., B180 [FS2] (1981), 378.[2] G. Parisi and Y. S. Wu, Scientia Sinica, 24(1981), 483.[3] G. Parisi et al., Nucl. Phys., B215 (1983), 256.[4] A. Guha and S.-C. Lee, Phys. Letts., 134B (1984), 216.[5] J. Greensite, Phys. Letts., 121B (1983), 169.R. Jengo and N. Parga, Phys. Letts., 134B (1984), 221.[6] C. Brower and M. Nauenberg, Nucl. Phys., B180 [FS2], (1981), 221.[7] G. Aldazabal et al., Phys. Letts., 125B (1983), 305. |
-
[1] |
Chen Zhongqiu
, Shao Changgui
, Ma Weichuan
. Calculation of Wilson Loop Functionals for Classical and Quantum Gravities. Chinese Physics C,
1998, 22(3): 217-224. |
[2] |
CHANG KONG-LIANG
. DIMENSIONAL METHOD TO SOLVE THE DIFFUSION CONVECTION EQUATION OF SOLAR COSMIC RAYS. Chinese Physics C,
1978, 2(3): 200-210. |
-
Access
-
-