-
The action integral for
$ f(T) $ theory is [70-72]:$ I = \int {\rm d}x^{4} e\left\{ \frac{1}{2k^{2}} f(T)+{\cal{L}}_{(M)}\right\}, $
(1) where
$ e = {\rm det}\left( e_{\mu}^{A}\right) = \sqrt{-g} $ and$ k^{2} = 8\pi G = 1 $ . The variation of the above action results in the general form of the field equations:$ e_{i} {}^{\alpha}S_{\alpha}{}^{\mu\nu}f_{TT}\partial_{\mu}T+e^{-1}\partial_{\mu}(ee_{i}{}^{\alpha}S_{\alpha}{}^{\mu\nu})f_{T}- e_{\nu}{}^{i}T^{\alpha}{}_{\mu i}S_{\alpha}{}^{\nu\mu}f_{T}-\frac{1}{4}e_{i}{}^{\nu}f = -4\pi e_{\nu}{}^{i}\overset{ e-m}{{\cal{T}}}_{i}^{\nu}, $
(2) where
$ \overset{ e-m}{{\cal{T}}}_{i}^{\nu} $ is the energy momentum tensor,$ f_{T} $ is the derivative of$ f(T) $ w.r.t T and$ f_{TT} $ is the double derivative w.r.t T,$ \overset{ e-m}{{\cal{T}}}_{i}^{\nu} = \overset{ matter}{{\cal{T}}}_{i}^{\nu}+\overset{ q}{{\cal{T}}}_{i}^{\nu} $ , and$ \overset{ q}{{\cal{T}}}_{i}^{\nu} $ is the energy-momentum for the quintessence field equations with energy density$ \rho_{q} $ and equation of state parameter$ w_{q} $ $\left( -1<w_{q}<-\dfrac{1}{3} \right)$ . Here the components of$ \overset{ q}{{\cal{T}}}_{i}^{\nu} $ are defined as:$ \overset{ q}{{\cal{T}}}_{t}^{t} = \overset{ q}{{\cal{T}}}_{r}^{r} = -\rho_{q}, $
(3) $ \overset{ q}{{\cal{T}}}_{\theta}^{\theta} = \overset{ q}{{\cal{T}}}_{\phi}^{\phi} = \frac{(3 w_{q}+1)\rho_{q}}{2}. $
(4) The torsion and the super-potential tensors used in Eq. (2) are given in general as:
$ T^{\lambda}_{\mu\nu} = e_{B}{}^{\lambda}(\partial_{\mu}e^B{}_\nu-\partial_{\nu}e^B{}_{\mu}), $
(5) $ K^{\mu\nu}_{\lambda} = -\frac{1}{2}\left(T^{\mu\nu}{}_{\lambda}-T^{\nu\mu}{}_{\rho}-T_{\lambda} {}^{\mu\nu}\right), $
(6) $ S_{\lambda}{}^{\mu\nu} = \frac{1}{2}\left(K^{\mu\nu}{}_{\lambda}+\delta^{\mu}{}_{\lambda}{T^{\alpha\mu}{}_{\alpha}}-\delta^{\nu}{}_{\lambda} {T^{\alpha\mu}{}_{\alpha}}\right). $
(7) The density of the teleparallel Lagrangian is defined by the torsion scalar as
$ T = T^{\lambda}{}_{\mu\nu}S_{\lambda}{}^{\mu\nu}. $
(8) For the present investigation, the character of the scalar torsion T is of crucial importance.
Due to the flatness of the manifold, the Riemann curvature tensor turns out to be zero. Containing the two fragments, one part of the curvature tensor defines the Levi-Civita connection, while the second part provides the Weitzenböck connection. Similarly, the Ricci scalar R also delivers two dissimilar geometrical entities. Keeping this in view, the torsion-less Ricci scalar R in the Einstein- Hilbert action, in the shape of the torsion, which may be viewed as an expression of T, as given above, can be reproduced. It should be noted that the teleparallel theory of gravity has been found similar to GR under the two separate contexts of local Lorentz transformation and arbitrary transformation coordinates. The first part is non-trivial to observe, and the second Lorentz part adequately delivers the geometry in such way that the construction of the teleparallel action of the GR fluctuates from its metric formulation because of its surface expression. Likewise, one can envision that the modified
$ f(R) $ and$ f(T) $ theories of gravity display a resemblance to their surface geometries, which are due to the local Lorentz invariance, affected by the$ f(R) $ theory of gravity.Here we build stellar structures by taking the spherically symmetric spacetime
$ {\rm d}s^{2} = {\rm e}^{a(r)}{\rm d}t^{2}-{\rm e}^{b(r)} {\rm d}r^{2}-r^{2} {\rm d}\theta^{2}-r^{2}\sin^{2}\theta {\rm d}\phi^{2}, $
(9) where
$ a(r) $ and$ b(r) $ solely depend on the radial coordinate r. We will deal with these metric potentials using the Karmarkar condition in the later part of this work. Nicola and Bohmer [73] have shown some reservations by declaring the diagonal tetrad to be an incorrect choice in torsion based theories of gravity, as this bad tetrad raises certain solar system limitations. They have also mentioned in their study that a good tetrad has no restrictions on the choice of the model of$ f(T) $ being linear or non-linear, while the diagonal tetrad restricts the$ f(T) $ model to a linear one. The off-diagonal tetrad is a correct choice due to its boosted and rotated behavior [38]. Here we calibrate the field equations by using the off-diagonal tetrad matrix:$ e_\mu ^\nu = \left( {\begin{array}{*{20}{c}} {{{\rm e}^{\frac{{a(r)}}{2}}}}&0&0&0\\ 0&{{{\rm e}^{\frac{{b(r)}}{2}}}\sin \theta \cos \phi }&{r\cos \theta \cos \phi }&{ - r\sin \theta \sin \phi }\\ 0&{{{\rm e}^{\frac{{b(r)}}{2}}}\sin \theta \sin \phi }&{r\cos \theta \sin \phi }&{ - \sin \theta \cos \phi }\\ 0&{{{\rm e}^{\frac{{b(r)}}{2}}}\cos \theta }&{ - r\sin \theta }&0 \end{array}} \right). $
(10) Here e is the determinant of
$ e_{\mu}^{\nu} $ , given as$ {\rm e}^{a(r)+b(r)}r^{2} \sin\theta $ . The energy momentum tensor for an anisotropic fluid defining the interior of a compact star is$ \overset{ e-m}{{\cal{T}}}_{\gamma\beta} = (\rho+p_{t})u_{\gamma}u_{\beta}-p_{t}g_{\gamma\beta}+(p_{r}-p_{t})v_{\gamma}v_{\beta}, $
(11) where
$ u_{\gamma} = {\rm e}^{\frac{\mu}{2}}\delta_{\gamma}^{0} $ ,$ v_{\gamma} = {\rm e}^{\frac{\nu}{2}}\delta_{\gamma}^{1} $ , and$ \rho $ ,$ P_{r} $ and$ P_{t} $ are the energy density, radial pressure and tangential pressure respectively. -
Manipulating Eqs. (2)-(11), we have the following important expressions:
$ \begin{aligned}[b]&\rho +\rho_q = -\frac{{\rm e}^{-\frac{b(r)}{2}}}{r}\left({\rm e}^{-\frac{b(r)}{2}}-1\right)F' T'- \left(\frac{T(r)}{2}-\frac{1}{r^2}-\frac{{\rm e}^{-b(r)}}{r^2} \left(1-r b'(r)\right)\right)\frac{F}{2}+\frac{f}{4}, \\ &p_r-\rho_q = \left(\frac{T(r)}{2}-\frac{1}{r^2}-\frac{{\rm e}^{-b(r)}}{r^2}\left(1+r a'(r)\right)\right)\frac{F}{2}-\frac{f}{4}, \end{aligned} $
(12) $ \begin{aligned}[b] p_t+\frac{1}{2} (3w_q+1)\rho_q =& \frac{{\rm e}^{-b(r)}}{2}\left(\frac{a'(r)}{2}+\frac{1}{r}-\frac{{\rm e}^{\frac{b(r)}{2}}}{r}\right)F' T'\\&+ \left({\rm e}^{-b(r)} \left(\frac{a''(r)}{2}+\left(\frac{a'(r)}{4}+\frac{1}{2 r}\right) \left(a'(r)-b'(r)\right)\right)\right. + \left.\frac{T(r)}{2}\right)\frac{F}{2}-\frac{f}{4} . \end{aligned} $
(13) In the above equations F is the derivative of f with respect to the torsion scalar
$ T(r) $ , and the prime on F again is the derivative of F with respect to$ T(r) $ . The torsion$ T(r) $ and its derivative with respect to the radial coordinate r are given as:$ \begin{aligned}[b] T(r) =& \frac{1}{r^2}\left(2 {\rm e}^{-b(r)} \left({\rm e}^{\frac{b(r)}{2}}-1\right) \left({\rm e}^{\frac{b(r)}{2}}-1-r a'(r)\right)\right. ,\\ T' =& \frac{{\rm e}^{-\frac{b(r)}{2}} b'(r) \left(-r a'(r)+{\rm e}^{\frac{b(r)}{2}}-1\right)}{r^2}-\frac{2 {\rm e}^{-b(r)} \left({\rm e}^{\frac{b(r)}{2}}-1\right) b'(r) \left(-r a'(r)+{\rm e}^{\frac{b(r)}{2}}-1\right)}{r^2} \\ &-\frac{4 {\rm e}^{-b(r)} \left({\rm e}^{\frac{b(r)}{2}}-1\right) \left(-r a'(r)+{\rm e}^{\frac{b(r)}{2}}-1\right)}{r^3}\\&+\frac{2 {\rm e}^{-b(r)} \left({\rm e}^{\frac{b(r)}{2}}-1\right) \left(-r a''(r)-a'(r)+\dfrac{1}{2} {\rm e}^{\frac{b(r)}{2}} b'(r)\right)}{r^2}. \end{aligned} $
(14) The diagonal tetrad provides the linear algebraic form of the
$ f(T) $ function. The off-diagonal tetrad, however, does not result in any parameter which restricts the construction of a consistent model in$ f(T) $ gravity. The following extended teleparallel$ f(T) $ power law viable model [74] is given as:$ f(T) = \beta T^{k}, $
(15) where
$ \beta $ , and k are any real constants. For the power-law model, if we put$ k = 1 $ , we get teleparallel gravity. If we put$ k>1 $ , we get generalized teleparallel gravity. In this study, we take$ k = 2 $ , which is a well fitted value with the off-diagonal tetrad choice. For$ f(T) $ gravity, the underlying scenario gives realistic solutions for stellar objects with normal matter except in a particular range of radial coordinates with observed data.Now we discuss the Karmarkar condition, which is an integral tool for the current study. The groundwork with regard to the Karmarkar condition has been established for class-I space-time. Eisenhart [75] provided a sufficient condition for the symmetric tensor of rank two as well as the Riemann Christoffel tensor, and it is defined as
$ \begin{array}{l} \Sigma(\Lambda_{\mu\eta}\beta_{\upsilon\gamma} - \Lambda_{\mu\gamma}\Lambda_{\nu\eta}) = R_{\mu\upsilon\eta\gamma}, \\ \;\;\;\;\;\;\;\; \Lambda_{\mu\nu};n-\Lambda_{\nu\eta};\nu = 0. \end{array} $
Here, ";" stands for the covariant derivative and
$ \Sigma = \pm1 $ . These values signify a space-like or time-like manifold, depending whether the sign is$ - $ or$ + $ . Now, by taking into account Riemann curvature components, which are non-zero for the geometry of the space-time and by also conferring non-zero components of the symmetric tensor$ \Lambda_{\nu\eta} $ , which is of order two, we incorporate a relation as follows. Now the relation for the Karmarkar condition is defined as:$ R_{0101}R_{2323} = R_{0202}R_{1313}-R_{1202}R_{1303}, $
(16) and we have the following Riemannian non-zero components:
$ \begin{aligned}[b] &R_{0101} = -\frac{1}{4}{\rm e}^{a(r)}\left(-a'(r)b'(r)+a'^{2}(r)+2a''(r)\right),\\ &R_{2323} = -r^{2}\sin^{2}\theta\left(1-{\rm e}^{-b(r)}\right),\quad R_{0202} = -\frac{1}{2}ra'(r){\rm e}^{a(r)-b(r)},\\ &R_{1313} = -\frac{1}{2}b'(r) r\sin^{2}\theta,\quad R_{1202} = 0,\quad R_{1303} = 0. \end{aligned} $
(17) Fitting the above values of the Riemannian components in Eq. (16) gives rise to a differential equation having form
$ a'(r)+\frac{2 a''(r)}{a'(r)} = \frac{{\rm e}^{b(r)} b'(r)}{{\rm e}^{b(r)}-1}. $
(18) Embedding class one solutions are obtained from Eq. (18), as they can be embedded in 5-dimensional Euclidean space. By the integration of Eq. (18), we have
$ {\rm e}^{a(r)} = \left(A+B \int \sqrt{{\rm e}^{b(r)}-1} \, {\rm d}r\right)^2 , $
(19) $ b(r) = \log \left(a r^2 {\rm e}^{b r^2+c r^4}+1\right), $
(20) or exclusively
$ a(r) = \log \left[\left(\frac{B \sqrt{a r^2 {\rm e}^{b r^2+c r^4}} {\rm{Dawson}}F\left(\dfrac{2 c r^2+b}{2 \sqrt{2} \sqrt{c}}\right)}{\sqrt{2} \sqrt{c} r}+A\right)^2\right], $
(21) where A and B are the integration constants. The final expressions for energy density and pressure components are calculated as:
$ \begin{aligned}[b] \rho = &-\frac{1}{(\gamma +1) \left(f_1 r-1\right) \left(\sqrt{2} a B f_3 r r \left(f_1 r-1\right) {\rm e}^{b r^2+c r^4}-2 \sqrt{c} \left(2 a B r^3 {\rm e}^{b r^2+c r^4}-A \sqrt{f_7 r} \left(f_1 r-1\right)\right)\right){}^2}\\ &\times\Biggr[\beta f_4^2 f_5 2^{\kappa -1} \kappa r \Biggr[\frac{1}{\sqrt{f_7} f_2^2}\Biggr[2 \left(f_1-1\right) r \Biggr[2 c \left(2 a B f_4 (\kappa -1) r^3 {\rm e}^{b r^2+c r^4}+A^2 \sqrt{f_7} \left(2 \left(f_1-1\right) \kappa -2 f_1+1\right)\right)\\ & +2 \sqrt{2} a B \sqrt{c} f_3 r {\rm e}^{b r^2+c r^4} \left(A \left(2 \left(f_1-1\right) \kappa -2 f_1+1\right)+B \sqrt{f_7} (\kappa -1) r \left(b r^2+2 c r^4+1\right)\right)+\frac{B^2 f_3^2 f_7^{3/2} \left(2 \left(f_1-1\right) \kappa -2 f_1+1\right)}{r^2}\Biggr]\Biggr] \\ &-\frac{1}{\left(f_7+1\right) f_2}\Big[\sqrt{f_7} \left(b r^2+2 c r^4+1\right) \Big[2 \sqrt{c} \left(2 a B r^3 \left(\left(f_1-2\right) \kappa -f_1+3\right) {\rm e}^{b r^2+c r^4}+A \sqrt{f_7} \left(f_1-1\right) (2 \kappa -3)\right) \\ &+\sqrt{2} a B \left(f_1-1\right) f_3 (2 \kappa -3) r {\rm e}^{b r^2+c r^4}\Big]\Big]+\frac{8 a B^2 c r^5 {\rm e}^{b r^2+c r^4}}{f_2^2 r}-\frac{2 a B \sqrt{c} r^2 \left(2 \left(f_1-1\right) \kappa -f_1-1\right) {\rm e}^{b r^2+c r^4}}{f_4}\Biggr]\Biggr], \end{aligned} $
(22) $ \begin{aligned}[b] \rho_q =& \frac{\beta f_5 2^{\kappa -2} }{\gamma +1}\left[\frac{8 \gamma \sqrt{f_7} (\kappa -1) \kappa}{\left(f_7+1\right) \left(f_1-1\right) \left(\sqrt{2} a B \left(f_1-1\right) f_3 r {\rm e}^{b r^2+c r^4}-2 \sqrt{c} \left(2 a B r^3 {\rm e}^{b r^2+c r^4}-A \sqrt{f_7} \left(f_1-1\right)\right)\right){}^2}\right. \\ &\times \Biggr[2 c \Big[a^2 r^4 {\rm e}^{2 r^2 \left(b+c r^2\right)} \left(A^2 \sqrt{f_7}+A B r \left(b r^2+2 c r^4-f_1+2\right)-B^2 \sqrt{f_7} \left(f_1-1\right) r^2\right)+f_7 \Big[A^2 \sqrt{f_7} \\ &\times \left(-b \left(f_1-1\right) r^2-2 c \left(f_1-1\right) r^4-3 f_1+4\right)+A B \left(f_1-1\right) r^3 \left(b+2 c r^2\right)-B^2 \sqrt{f_7} \left(f_1-1\right) r^2\Big]-2 A^2 \sqrt{f_7} \\ &\times \left(f_1-1\right)\Big]+\sqrt{2} a B \sqrt{c} f_3 r \Biggr[2 A {\rm e}^{b r^2+c r^4} \Big[a^2 r^4 {\rm e}^{2 r^2 \left(b+c r^2\right)}-f_7 \left(b \left(f_1-1\right) r^2+2 c \left(f_1-1\right) r^4+3 f_1-4\right)-2 f_1 \\ &\left.+2\Big]+\frac{B f_7^{3/2} r \left(-a {\rm e}^{b r^2+c r^4} \left(-2 c r^4+f_1-2\right)+b \left(f_1+f_7-1\right)+2 c \left(f_1-1\right) r^2\right)}{a}\right]-\frac{B^2 f_3^2 f_7^{3/2}}{r^2} \\ &\times\Big[-a^2 r^4 {\rm e}^{2 r^2 \left(b+c r^2\right)}+f_7 \left(b \left(f_1-1\right) r^2+2 c \left(f_1-1\right) r^4+3 f_1-4\right)+2 f_1-2\Big]\Biggr] \\ &+\frac{\kappa}{\left(f_7+1\right) \left(f_1-1\right) \left(\sqrt{2} a B \left(f_1-1\right) f_3 r {\rm e}^{b r^2+c r^4}-2 \sqrt{c} \left(2 a B r^3 {\rm e}^{b r^2+c r^4}-A \sqrt{f_7} \left(f_1-1\right)\right)\right)} \Big[2 \sqrt{c} \\ &\times \left(2 a^2 B r^5 {\rm e}^{2 r^2 \left(b+c r^2\right)}+f_7 \left(A \sqrt{f_7} \left(2 b \gamma r^2+4 c \gamma r^4+\gamma +1\right)+2 B r\right)-A (\gamma -1) \sqrt{f_7}\right)+\sqrt{2} a B f_3 r {\rm e}^{b r^2+c r^4} \\ &\left.\times \left(f_7 \left(2 b \gamma r^2+4 c \gamma r^4+\gamma +1\right)-\gamma +1\right)\Big]+(\gamma +1) \kappa -(\gamma +1) \left(\frac{\sqrt{f_7} \left(f_7+1\right) \kappa {\rm{f}}_2}{f_6}+1\right)\right], \end{aligned}$
(23) $ \begin{aligned}[b] p_r =& -\frac{\beta \gamma f_4^2 f_5 2^{\kappa -1} \kappa r}{(\gamma +1) \left(f_1-1\right) \left(\sqrt{2} a B \left(f_1-1\right) f_3 r {\rm e}^{b r^2+c r^4}-2 \sqrt{c} \left(2 a B r^3 {\rm e}^{b r^2+c r^4}-A \sqrt{f_7} \left(f_1-1\right)\right)\right){}^2} \left[\frac{2 \left(f_1-1\right) r}{\sqrt{f_7} f_2^2} \right.\\ &\times \Biggr[2 c \left(2 a B f_4 (\kappa -1) r^3 {\rm e}^{b r^2+c r^4}+A^2 \sqrt{f_7} \left(2 \left(f_1-1\right) \kappa -2 f_1+1\right)\right)+2 \sqrt{2} a B \sqrt{c} f_3 r {\rm e}^{b r^2+c r^4} \Big[A \Big[2 \left(f_1-1\right) \\ &\times\kappa -2 f_1+1\Big]+B \sqrt{f_7} (\kappa -1) r \left(b r^2+2 c r^4+1\right)\Big]+\frac{B^2 f_3^2 f_7^{3/2} \left(2 \left(f_1-1\right) \kappa -2 f_1+1\right)}{r^2}\Biggr] \\ &-\frac{2 a B \sqrt{c} r^2 \left(2 \left(f_1-1\right) \kappa -f_1-1\right) {\rm e}^{b r^2+c r^4}}{\sqrt{2} a B {\rm{rf}}_3 {\rm e}^{b r^2+c r^4}+2 A \sqrt{c} \sqrt{f_7}}-\frac{\sqrt{f_7} \left(b r^2+2 c r^4+1\right)}{\left(f_7+1\right) f_2} \Big[2 \sqrt{c} \Big[2 a B r^3 \left(\left(f_1-2\right) \kappa -f_1+3\right) \\ &\left.\times {\rm e}^{b r^2+c r^4}+A \sqrt{f_7} \left(f_1-1\right) (2 \kappa -3)\Big]+\sqrt{2} a B \left(f_1-1\right) f_3 (2 \kappa -3) r {\rm e}^{b r^2+c r^4}\Big]+\frac{8 a B^2 c r^5 {\rm e}^{b r^2+c r^4}}{f_2^2 r}\right], \end{aligned} $
(24) $\begin{aligned}[b] p_t =& \frac{2^{\kappa -4} \beta f_5 }{\gamma +1}\Biggr[-6 (w_q+1) (\gamma +1)+\kappa \Biggr[6 (w_q+1) (\gamma +1)\\ &+\frac{4 f_7}{\left(f_7+1\right) \left(f_1-1\right) \left(\sqrt{2} a B {\rm e}^{c r^4+b r^2} r \left(f_1-1\right) f_3-2 \sqrt{c} \left(2 a B {\rm e}^{c r^4+b r^2} r^3-A \sqrt{f_7} \left(f_1-1\right)\right)\right)} \Big[2 \Big[B r \Big[2 c r^4+2 c \gamma r^4\\ &+b (\gamma +1) r^2+3 w_q+2 \gamma +(3 w_q+\gamma +2) f_7+3\Big]+A \left(2 c r^4+b r^2+1\right) (3 w_q \gamma -1) \sqrt{f_7}\Big] \sqrt{c}+a B {\rm e}^{c r^4+b r^2} r \\ &\times \left(2 c r^4+b r^2+1\right) (3 w_q \gamma -1) \sqrt{2} f_3\Big] \\ &-\frac{16 r (\kappa -1)}{\left(f_7+1\right) \left(f_1-1\right){}^2 f_2 \left(\sqrt{2} a B {\rm e}^{c r^4+b r^2} r \left(f_1-1\right) f_3-2 \sqrt{c} \left(2 a B {\rm e}^{c r^4+b r^2} r^3-A \sqrt{f_7} \left(f_1-1\right)\right)\right){}^2} \Big[2 \sqrt{c} \Big[a B {\rm e}^{c r^4+b r^2} \\ &\times r^3 (\gamma +1)-A \sqrt{f_7} \left(f_1-1\right) ((3 w_q+2) \gamma +1)\Big]-\sqrt{2} a B {\rm e}^{c r^4+b r^2} r \left(f_1-1\right) ((3 w_q+2) \gamma +1) f_3\Big] \\ &\times\Biggr[-\frac{B^2 \left(-a^2 {\rm e}^{2 r^2 \left(c r^2+b\right)} r^4+2 f_1+\left(2 c \left(f_1-1\right) r^4+b \left(f_1-1\right) r^2+3 f_1-4\right) f_7-2\right) f_3^2 f_7^{3/2}}{r^2}+2 c \Big[a^2 {\rm e}^{2 r^2 \left(c r^2+b\right)} \\ &\times\left(\sqrt{f_7} A^2+B r \left(2 c r^4+b r^2-f_1+2\right) A-B^2 r^2 \sqrt{f_7} \left(f_1-1\right)\right) r^4-2 A^2 \sqrt{f_7} \left(f_1-1\right)+\Big[A B \left(2 c r^2+b\right)\end{aligned} $
$ \begin{aligned}[b] \qquad\qquad &\times\left(f_1-1\right) r^3-B^2 \sqrt{f_7} \left(f_1-1\right) r^2+A^2 \sqrt{f_7} \left(-2 c \left(f_1-1\right) r^4-b \left(f_1-1\right) r^2-3 f_1+4\right)\Big] f_7\Big]+a B r \sqrt{2} \sqrt{c} \\ &\times\Biggr[\frac{B r \left(2 c \left(f_1-1\right) r^2-a {\rm e}^{c r^4+b r^2} \left(-2 c r^4+f_1-2\right)+b \left(f_1+f_7-1\right)\right) f_7^{3/2}}{a}+2 A {\rm e}^{c r^4+b r^2} \Big[a^2 {\rm e}^{2 r^2 \left(c r^2+b\right)} r^4 \\ &\times-f_7 \left(2 c \left(f_1-1\right) r^4+b \left(f_1-1\right) r^2+3 f_1-4\right)-2 f_1+2\Big]\Biggr] f_3\Biggr]\Biggr]-\frac{2 \sqrt{f_7} (3 w_q+1) \left(2 \gamma +(\gamma +1) f_7\right) \kappa {\rm{f}}_2}{f_6}\Biggr] \end{aligned}$
(25) $ \Delta = p_t-p_r, $
(26) where
$ \begin{aligned}[b]& f_1 = \sqrt{f_7+1},\;\;\;\;f_2 = 2 A \sqrt{c} r+\sqrt{2} B \sqrt{f_7} f_3,\;\;\;\;f_3 = F\left(\frac{2 c r^2+b}{2 \sqrt{2} \sqrt{c}}\right),\;\;\;\;f_4 = A b r^2+2 A c r^4+A-B \sqrt{f_7} r,\\ &f_5 = \left(\frac{\left(f_1-1\right) \left(\sqrt{2} a B \left(f_1-1\right) f_3 r {\rm e}^{b r^2+c r^4}-2 \sqrt{c} \left(2 a B r^3 {\rm e}^{b r^2+c r^4}-A \sqrt{f_7} \left(f_1-1\right)\right)\right)}{\sqrt{f_7} \left(f_7+1\right) f_2 r}\right){}^{\kappa },\\ &f_6 = \left(f_1-1\right) r \left(\sqrt{2} a B \left(f_1-1\right) f_3 r {\rm e}^{b r^2+c r^4}-2 \sqrt{c} \left(2 a B r^3 {\rm e}^{b r^2+c r^4}-A \sqrt{f_7} \left(f_1-1\right)\right)\right),\;\;\;\;f_7 = a r^2 {\rm e}^{b r^2+c r^4}. \end{aligned} $
-
No matter what remains of the geometrical structure of the star, whether exterior or from the interior, the inner boundary metric does not change. This requires that the metric components remain continuous along the entire boundary. In GR, the Schwarzschild solution associated with the stellar remnants is understood to be the top choice from all the available options for the matching conditions. Any suitable choice when working with theories of modified gravity must consider the non-zero pressure and the energy density. Several researchers [76-77] have produced significant work on the boundary conditions. Goswami et al. [78] worked out the matching conditions while investigating modified gravity by incorporating some special limitations to stellar compact structures along with the thermodynamically associated properties. Many researchers [79-82] have effectively employed Schwarzschild geometry while working out the diverse stellar solutions. To obtain the expressions for the field equations, a few restrictions are applied at the boundary
$ r = R $ , that is$ p_r(r = R) = 0 $ . Here, we also intend to match the Schwarzschild exterior geometry with the interior geometry:$\begin{aligned}[b] {\rm d}s^2 =& -\bigg(1-\frac{2M}{r}\bigg){\rm d}t^2+\bigg(\frac{1}{1-2M/r}\bigg){\rm d}r^2\\&+r^{2}\bigg({\rm d}{\theta}^2+{\sin}^2{\theta}{\rm d}{\phi}^2\bigg),\end{alilgned} $
(27) where M represents the total stellar mass and R is the total radius of the star. Taking into account the metric potentials, the following relations are employed at the boundary
$ r = R $ :$ g_{tt}^- = g_{tt}^+,\;\;\;\;\;\;\;g_{rr}^- = g_{rr}^+,\; \; \; \; \frac{\partial g_{tt}^- }{\partial r} = \frac{\partial g_{tt}^+}{\partial r}. $
(28) The signatures of the intrinsic geometry and extrinsic geometry are taken as (-,+,+,+) and (+,-,-,-), respectively. The desired restrictions are achieved by comparing the interior and exterior geometry as they are, and working out the following:
$\begin{aligned}[b] &A = -\frac{1}{R^2}{\rm log}_e\bigg(1-\frac{2M}{r}\bigg),\\& B = -\frac{M}{R^2}{\rm log}_e\bigg(1-\frac{2M}{r}\bigg)^{-1} ,\\ &C = {\rm log}_e\bigg(1-\frac{2M}{r}\bigg)-\frac{M}{R}\bigg(1-\frac{2M}{r}\bigg)^{-1}. \end{aligned}$
(29) The approximate values of the mass M and the radius R of the stellar objects
$ {\rm{PSRJ1614}}-2230 $ ,$ 4U 1608-52 $ ,$ {\rm{Cen}} X-3 $ ,$ {\rm{EXO1785}}-248 $ , and$ SMC X-1 $ are considered to determine the unknowns as given in Table 1.Star name Observed mass ( $M_{o}$ )Predicted radius ( $R km$ )a A B PSRJ1614-2230 1.97 12.182 0.0023099 0.734147 0.0233421 4U 1608-52 1.74 11.751 0.00228432 0.758428 0.0231551 CenX-3 1.49 11.224 0.00225723 0.785203 0.0229539 EXO1785-248 1.3 10.775 0.00223401 0.80602 0.0227945 SMCX-1 1.04 10.067 0.00219944 0.835374 0.0225762 Table 1. Values of constants of compact stars by fixing
$ k=2 $ ,$b=0.000015,$ $\gamma =0.333$ ,$w_q=-1.00009$ ,$c=0.000015$ and$\beta =-4$ . -
This section is dedicated to the exploration of some critical properties connected to the compact stars. These comprise the energy density
$ \rho $ , radial pressure$ p_r $ , the tangential pressure$ p_t $ , and the discussions on the quintessence field along with their physical interpretation under$ f(T) $ . This discussion also includes the energy conditions, anisotropic pressure, compactness factor, and the speed of sound in the star with reference to the radial and tangential components. The smooth and regular behavior of the metric components is plotted in Fig. 1. -
The most important stellar environment responsible for the emergence of the compact stars comprises the corresponding profiles of the energy density along with the radial and tangential pressures. We have investigated the profiles of the energy density, quintessence density and pressure terms. It is apparent from the plots, as shown in Figs. 2 and 3, that the energy density acquires its highest value at the center of the star, indicating the ultra-dense nature of the star. The tangential and radial pressure terms are positive and acquire their maximum values at the surface of the compact stars. The profiles of the stars also indicate the presence of an anisotropic matter configuration free from any singularities for our model under
$ f(T) $ gravity. -
The role of the energy constraints, among the other physical features in describing the existence of anisotropic compact stars, has been widely acknowledged in the literature, as they allow analysis of the environment to obtain the matter distribution. Moreover, the energy constraints also allow analysis of the distribution of normal and exotic matter contained within the core of the stellar structure. Several fruitful conclusions have been obtained due to these energy constraints. The expressions corresponding to the null energy constraints
$ ({\rm NEC}) $ , strong energy constraints$ ({\rm SEC}) $ , dominant energy constraints$ ({\rm DEC}) $ , and weak energy constraints$ ({\rm WEC}) $ are:$ \begin{aligned}[b] {\rm NEC}:\rho+p_r\geqslant0,\;\;\rho+p_t\geqslant 0,&\\ {\rm WEC}:\rho\geqslant 0,\;\;\rho+p_r\geqslant0,\;\;\rho+p_t\geqslant0,&\\ {\rm SEC}:\rho+p_r\geqslant0,\;\;\rho+p_t\geqslant0,\;\;\rho+p_r+2p_t\geqslant0,&\\ {\rm DEC}:\rho>|p_r|,\;\;\rho>|p_t|.&\\ \end{aligned} $
(30) The evolutions of the energy constraints are plotted in Fig. 4. It is clear from the positive profiles of the energy conditions for all the stars,
$ {\rm{PSRJ1614}}-2230 $ ,$ 4U 1608-52 $ ,$ {\rm{Cen}} X-3 $ ,$ {\rm{EXO1785}}- 248 $ , and$ SMC X-1 $ , that our obtained solutions are physically favorable under$ f(T) $ gravity. -
The expressions
$\dfrac{{\rm d}\rho}{{\rm d}r}$ ,$\dfrac{{\rm d}p_{r}}{{\rm d}r}$ and$\dfrac{{\rm d}p_{t}}{{\rm d}r}$ denote the total derivatives of the energy density, the radial pressure, and the tangential pressure, respectively, with respect to the radius r of the compact star. The graphical description of these radial derivatives is provided in the right-hand plots of Fig. 5, which suggest that the first order derivative gives a negatively increasing evolution:$ \frac{{\rm d}\rho}{{\rm d}r}<0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{\rm d}p_{r}}{{\rm d}r}<0. $
(31) It may be noted that
$\dfrac{{\rm d}\rho}{{\rm d}r}$ and$\dfrac{{\rm d}p_{r}}{{\rm d}r}$ at the core,$ r = 0 $ , of the star are:$ \frac{{\rm d}\rho}{{\rm d}r} = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{\rm d}p_{r}}{{\rm d}r} = 0. $
This confirms the maximum bound of the radial pressure
$ p_r $ along with the central density$ \rho $ . Hence, the maximal value is attained at$ r = 0 $ by$ \rho $ and$ p_r $ . -
The generalized TOV equation in anisotropic matter distribution is given as
$ \frac{{\rm d} p_r}{{\rm d}r}+\frac{a^{'}(\rho+p_r)}{2}-\frac{2(p_t-p_r)}{r} = 0,\\ $
(32) where Eq. (32) provides important information about the stellar hydrostatic-equilibrium under the total effect of three different forces, namely the anisotropic force
$ F_{\rm a} $ , the hydrostatic force$ F_{\rm h} $ , and the gravitational force$ F_{\rm g} $ . The null effect of the combined forces depicts the equilibrium condition such that$ F_{\rm g}+F_{\rm h}+F_{\rm a} = 0, $
with
$ F_{\rm g} = -\frac{a^{'}(\rho+p_r)}{2},\; \; F_{\rm h} = -\frac{{\rm d} p_r}{{\rm d}r},\; \; F_{\rm a} = \frac{2(p_t-p_r)}{r}. $
(33) From the right plot-hand of Fig. 4, it may be deduced that under the combined effect of the forces
$ F_{\rm g} $ ,$ F_{\rm h} $ and$ F_{\rm a} $ , hydrostatic compact equilibrium can be achieved. It is pertinent to mention here that if$ p_{r} = p_{t} $ then the force$ F_{\rm a} $ vanishes, which simply conveys that the equilibrium turns independent of the anisotropic force$ F_{\rm a} $ . -
The stability is constituted by the speed of sound associated with the radial and transverse components, denoted
$ v^{2}_{sr} $ and$ v^{2}_{st} $ , respectively. They must satisfy the constraints$ 0\leqslant{v^{2}_{st}}\leqslant 1 $ and$0\leqslant{v^{2}_{sr}}\leqslant1$ [83], such that$= v^{2}_{sr} = \dfrac{{\rm d}p_{r}}{{\rm d}\rho}$ and$v^{2}_{st} = \dfrac{{\rm d}p_{t}}{{\rm d}\rho}$ . A comprehensive study of the stability of anisotropic spheres has been done by Chan and his coauthors [84]. They have discussed Newtonian and post-Newtonian approximations in the background of anisotropy distribution. The corresponding plots of the speeds of sound as depicted in Fig. 6 confirm that the evolution of the radial and transverse speed of sound for the strange star candidates$ {\rm{PSRJ1614}}-2230 $ ,$ 4U 1608-52 $ ,$ {\rm{Cen}} X-3 $ ,$ {\rm{EXO1785}}-248 $ , and$ SMC X-1 $ remain within the desired constraints of stability as discussed. For all the strange star candidates the bounds of both the radial and the transverse speeds of sound are justified. Within the anisotropic matter distribution, the approximation of the theoretically stable and unstable epochs may be obtained from the modifications of the propagation of the speed of sound, which has the expression$ v^{2}_{st}-v^{2}_{sr} $ satisfying the constraint$ 0<|v^{2}_{st}-v^{2}_{sr}|<1 $ . One may confirm this from Fig. 7. Therefore, the total stability may be obtained for compact stars modelled under$ f(T) $ gravity. -
For the case of anisotropic matter distribution, the EoS parameter incorporating radial and transverse components may be expressed as
$ \omega_{r} = \frac{p_{r}}{\rho},\; \; \; \; \; \; \; \; \omega_{t} = \frac{p_{t}}{\rho}. $
(34) The analysis of the EoS parameters with respect to the increasing stellar radius is graphically represented in Fig. 8 which clearly demonstrates that for all strange star candidates
$ {\rm{PSRJ1614}}-2230 $ ,$ 4U 1608-52 $ ,$ {\rm{Cen}} X-3 $ ,$ {\rm{EXO1785}}-248 $ , and$ SMC X-1 $ , the conditions$ 0<\omega_{r}<1 $ and$ 0<\omega_{t}<1 $ have been obtained. Hence, our stellar model in$ f(T) $ gravity is truly viable. Now, the anisotropy here is expressed by the symbol$ \Delta $ , and is measured as$ \Delta = \frac{2}{r}{(p_t-p_r)}, $
(35) which provides the information regarding the anisotropic conduct of the model under discussion. The term
$ \Delta $ has to be positive if$ p_t>p_r $ , showing that the anisotropy is going outward, and when$ p_r>p_t $ ,$ \Delta $ becomes negative, showing that it will be directed inward. For our model incorporating all the stars$ {\rm{PSRJ1614}}-2230 $ ,$ 4U 1608-52 $ ,$ {\rm{Cen}} X-3 $ ,$ {\rm{EXO1785}}-248 $ , and$ SMC X-1 $ , the evolution of$ \Delta $ when plotted against radius r shows positive increasing behavior (as shown in the left-hand plot of Fig. 5), suggesting some repelling anisotropic force followed by a high-density matter source. -
The stellar mass as a function of radius r is defined by the following integral:
$ m(r) = 4\int_{0}^{r}\pi\acute{r^2}\rho{\rm d}\acute{r}. $
(36) It is evident from the mass-radius graph as shown in Fig. 9 that the mass is directly proportional to the radius r such that as
$ r\rightarrow0 $ ,$ m(r)\rightarrow0 $ , showing that mass function remains continuous at the core of the star. Also, the mass-radius ratio must remain$\dfrac{2M}{r}\leqslant\dfrac{8}{9}$ as determined by Buchdahl [85], which in our case is within the desired range.Now, the following integral defines the compactness
$ \mu(r) $ (plotted in Fig. 9) of the stellar structure as$ \mu(r) = \frac{4}{r}\int_{0}^{r}\pi\acute{r^2}\rho{\rm d}\acute{r}. $
(37) The redshift function
$ Z_{S} $ is$ Z_{S}+1 = [1-2\mu(r)]^{\frac{-1}{2}}. $
(38) The graphical representation is provided in Fig. 10. The numerical estimate of
$ Z_{S} $ remains within the desired condition of$ Z_{S}\leqslant 2 $ , indicating the viability of our model.
Anisotropic stellar structures in the ${{f(T)}} $ theory of gravity with quintessence via embedding approach
- Received Date: 2020-10-29
- Available Online: 2021-04-15
Abstract: This work suggests a new model for anisotropic compact stars with quintessence in