Effects of density-and momentum-dependent potentials in Au+Au collisions at intermediate energies

  • Based on an isospin-dependent transport model, the effects of the density-and momentum-dependent potentials are studied by simulating Au on Au collisions at 90, 120, 150 and 400 MeV/nucleon. It is found that the calculated results overestimate the experimental data on the directed flow and underestimate the data on the elliptic flow for protons. The impact of the density-and momentum-dependent potentials is observed in the mid-rapidity region of the final spectra. At 90 MeV/nucleon, the momentum-dependent potential has a larger impact on the observables than the density-dependent potential, and the elliptic flow has a higher value with the positive effective mass splitting. At 400 MeV/nucleon, however, the opposite is observed. The rapidity dependence of the elliptic flow for protons is sensitive to the symmetry energy. A soft symmetry energy corresponds to a higher value of the proton elliptic flow.
      PCAS:
  • 加载中
  • [1] Isospin Physics in Heavy-Ion Collisions at Intermediate Energies, edited by B. A. Li and W. Udo Schrder (Nova Science, New York, 2001)
    [2] B. A. Li, L. W. Chen, C. M. Ko, Phys. Rep., 464:113 (2008)
    [3] V. Baran, M. Colonna, V. Greco, and M. Di Toro, Phys. Rep., 410:335 (2005)
    [4] M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, A. W. Steiner, Phys. Rev. Lett., 102:122701 (2009)
    [5] G. Ferini, T. Gaitanos, M. Colonna, M. Di Toro, H. H. Wolter, Phys. Rev. Lett., 97:202301 (2006)
    [6] L. W. Chen, C. M. Ko, B. A. Li, Phys. Rev. Lett., 94:032701 (2005)
    [7] J. B. Natowitz, G. Rpke, S. Typel, D. Blaschke, A. Bonasera, K. Hagel, T. Klhn, S. Kowalski, L. Qin, S. Shlomo, R. Wada, H. H. Wolter, Phys. Rev. Lett., 104:202501 (2010)
    [8] Z. G. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and M. Zhang, Phys. Rev. Lett., 102:062502 (2009)
    [9] Z. Q. Feng, G. M. Jin, Phys. Lett. B, 683:140 (2010)
    [10] W. J. Xie, J. Su, L. Zhu, and F. S. Zhang, Phys. Lett. B., 718:1510 (2013)
    [11] P. Russotto, P. Z. Wu, M. Zoric, M. Chartier, Y. Leifels, R. C. Lemmon, Q. Li, J. Lukasik, A. Pagano, P. Pawlowski, and W. Trautmann, Phys. Lett. B, 697:471 (2011)
    [12] F. Amorini, et al, Phys. Rev. Lett., 102:112701 (2009)
    [13] T. X. Liu et al, Phys. Rev. C, 86:024605 (2012)
    [14] Z. Kohley et al, Phys. Rev. C, 82:064601 (2010)
    [15] M. B. Tsang et al, Phys. Rev. Lett., 92:062701 (2004)
    [16] W. Reisdorf et al, Nucl. Phys. A, 781:459 (2007)
    [17] W. Reisdorf et al, Nucl. Phys. A, 876:1 (2012)
    [18] Topical issue on nuclear symmetry energy, editted by B. A. Li, . Ramos, G. Verde and I. Vidaa (Eur. Phys. J. A, volume 50, 2014)
    [19] V. Giordano, M. Colonna, M. Di Toro, V. Greco, and J. Rizzo, Phys. Rev. C, 81:044611 (2010)
    [20] Z. Q. Feng, Phys. Lett. B, 707:83 (2012)
    [21] W. J. Xie, J. Su, L. Zhu, F. S. Zhang, Phys. Rev. C, 88:061601(R) (2013)
    [22] W. J. Xie and F. S. Zhang, Phys. Lett. B, 735:250 (2014)
    [23] B. A. Li, B. J. Cai, L. W. Chen, and J. Xu, Prog. Part. Nucl. Phys., 99:29 (2018)
    [24] C. Gale, G. M. Welke, M. Prakash, S. J. Lee, and S. Das Gupta, Phys. Rev. C, 41:1545 (1990)
    [25] C. B. Das, S. D. Gupta, C. Gale, and B. A. Li, Phys. Rev. C., 67:034611 (2003)
    [26] B. A. Li, C. B. Das, S. D. Gupta, C. Gale, Phys. Rev. C, 69:011603(R) (2004)
    [27] J. Rizzo, M. Colonna, and M. Di Toro, Phys. Rev. C, 72:064609 (2005)
    [28] Y. Zhang, M. B. Tsang, Z. Li, H. Liu, Phys. Lett. B, 732:186 (2014)
    [29] J. Aichelin, A. Rosenhauer, G. Peilert, H. Stoecker, and W. Greiner, Phys. Rev. Lett., 58:1926 (1987)
    [30] Z. Q. Feng, Phys. Rev. C, 84:024610 (2011)
    [31] L. W. Chen, F. S. Zhang, and G. M. Jin, Phys. Rev. C, 58:2283 (1998)
    [32] J. Su, K. Cherevko, W. J. Xie, and F. S. Zhang, Phys. Rev. C, 89:014619 (2014)
    [33] B. A. Bian, F. S. Zhang, and H. Y. Zhou, Phys. Lett. B, 665:314 (2008)
    [34] L. Zhu, J. Su, W. J. Xie, and F. S. Zhang, Nucl. Phys. A, 915:90 (2013)
    [35] J. Su and F. S. Zhang, Phys. Rev. C, 84:037601 (2011)
    [36] J. Su, L. Zhu, W. J. Xie, and F. S. Zhang, Phys. Rev. C, 85:017604 (2012)
    [37] Z. Q. Feng, Phys. Rev. C, 85:014604 (2012)
    [38] W. J. Xie, Z. Q. Feng, J. Su, F. S. Zhang, Phys. Rev. C, 91:054609 (2015)
    [39] G. F. Bertsch and S. Das Gupta, Phys. Rep., 160:189 (1988)
    [40] J. Cugnon, D. L'Hte, and J. Vandermeulen, Nucl. Instrum. Meth. Phys. Res. B, 111:215 (1996)
    [41] G. D. Westfall, et al, Phys. Rev. Lett., 71:1986 (1993)
    [42] M. Papa, T. Maruyama, and A. Bonasera, Phys. Rev. C, 64:024612 (2001)
    [43] B. A. Li, A. T. Sustich, B. Zhang, Phys. Rev. C, 64:054604 (2001)
    [44] Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, and W. Trautmann, Phys. Rev. C, 89:034606 (2014); Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, and W. Trautmann, Phys. Rev. C, 83:044617 (2011)
  • 加载中

Get Citation
Wen-Jie Xie and Feng-Shou Zhang. Effects of density-and momentum-dependent potentials in Au+Au collisions at intermediate energies[J]. Chinese Physics C, 2018, 42(10): 104103. doi: 10.1088/1674-1137/42/10/104103
Wen-Jie Xie and Feng-Shou Zhang. Effects of density-and momentum-dependent potentials in Au+Au collisions at intermediate energies[J]. Chinese Physics C, 2018, 42(10): 104103.  doi: 10.1088/1674-1137/42/10/104103 shu
Milestone
Received: 2018-05-04
Fund

    Supported by National Natural Science Foundation of China (11505150), China Postdoctoral Science Foundation (2015M582730) and Yuncheng University Research Project (YQ-2014014).

Article Metric

Article Views(1475)
PDF Downloads(40)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Effects of density-and momentum-dependent potentials in Au+Au collisions at intermediate energies

  • 1.  Department of Physical and Electronic Engineering, Yuncheng University, Yuncheng 044000, China
  • 2.  The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Fund Project:  Supported by National Natural Science Foundation of China (11505150), China Postdoctoral Science Foundation (2015M582730) and Yuncheng University Research Project (YQ-2014014).

Abstract: Based on an isospin-dependent transport model, the effects of the density-and momentum-dependent potentials are studied by simulating Au on Au collisions at 90, 120, 150 and 400 MeV/nucleon. It is found that the calculated results overestimate the experimental data on the directed flow and underestimate the data on the elliptic flow for protons. The impact of the density-and momentum-dependent potentials is observed in the mid-rapidity region of the final spectra. At 90 MeV/nucleon, the momentum-dependent potential has a larger impact on the observables than the density-dependent potential, and the elliptic flow has a higher value with the positive effective mass splitting. At 400 MeV/nucleon, however, the opposite is observed. The rapidity dependence of the elliptic flow for protons is sensitive to the symmetry energy. A soft symmetry energy corresponds to a higher value of the proton elliptic flow.

    HTML

Reference (44)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return