Center-of-mass correction and rotational correction in covariant density functional theory

  • Center-of-mass (c.m.) correction and rotational correction in even-even Ge isotopes are systematically investigated within the triaxially deformed relativistic Hartree-Bogoliubov model using the PC-PK1 force. The shell effect and deformation effect on the microscopic c.m. correction and rotational correction are discussed, and the importance of both corrections on reproducing the binding energy is demonstrated.
      PCAS:
  • 加载中
  • [1] Bender M, Heenen P H, Reinhard P G. Rev. Mod. Phys., 2003, 75: 121-180
    [2] Ring P. Prog. Part. Nucl. Phys., 1996, 37: 193-263
    [3] MENG J, Toki H, ZHOU S G et al. Prog. Part. Nucl. Phys., 2006, 57: 470-563
    [4] MENG J, GUO J Y, LI J et al. Prog. Phys., 2011, 31: 199-336
    [5] Ginocchio J N. Phys. Rep., 2005, 414: 165-261
    [6] MENG J, Sugawara-Tanabe K, Yamaji S et al. Phys. Rev. C, 1998, 58: R628-R631
    [7] LIANG H Z, ZHAO P W, ZHANG Y et al. Phys. Rev. C, 2011, 83: 041301
    [8] LI F Q, ZHAO P W, LIANG H Z. Chin. Phys. C, 2011, 35: 825-828
    [9] Koepf W, Ring P. Nucl. Phys. A, 1989, 493: 61-82
    [10] Afanasjev A V, RING P, Konig J. Nucl. Phys. A, 2000, 676: 196-244
    [11] ZHAO P W, ZHANG S Q, PENG J et al. Phys. Lett. B, 2011, 699: 181-186
    [12] ZHAO P W, PENG J, LIANG H Z et al. Phys. Rev. Lett., 2011, 107: 122501
    [13] Berger J F, Girod M, Gogny D. Nucl. Phys. A, 1984, 428: 23-36
    [14] MENG J. Nucl. Phys. A, 1998, 635: 3-42
    [15] TIAN Y, MA Z Y, Ring P. Phys. Lett. B, 2009, 676: 44-50
    [16] Niksic T, Ring P, Vretenar D et al. Phys. Rev. C, 2010, 81: 054318
    [17] Bender M, Rutz K, Reinhard P G et al. Eur. Phys. J. A, 2000, 7: 467-478
    [18] Butler M, Sprung D, Martorell J. Nucl. Phys. A, 1984, 422: 157-166
    [19] Friedrich J, Reinhard P G. Phys. Rev. C, 1986, 33: 335-351
    [20] YAO J M, MENG J, Ring P et al. Phys. Rev. C, 2009, 79: 044312
    [21] Girod M, Grammaticos B. Nucl. Phys. A, 1979, 330: 40-52
    [22] Vretenar D, Afanasjev A V, Lalazissis G A et al. Phys. Rep., 2005, 409: 101-259
    [23] LI Z P, Niksic T, Vretenar D et al. Phys. Rev. C, 2010, 81: 064321
    [24] Niksic T, Paar N, Vretenar D et al. Comput. Phys. Comm., 2014, 185: 1808-1821
    [25] ZHAO P W, LI Z P, YAO J M et al. Phys. Rev. C, 2010, 82: 054319
    [26] ZHAO P W, SUN B Y, MENG J. Chin. Phys. Lett., 2009, 26: 112102
    [27] Audi G, Wapstra A H, Thibault C. Nucl. Phys. A, 2003, 729: 337-676
  • 加载中

Get Citation
LI Zhao-Xi and LI Zhi-Pan. Center-of-mass correction and rotational correction in covariant density functional theory[J]. Chinese Physics C, 2015, 39(11): 114101. doi: 10.1088/1674-1137/39/11/114101
LI Zhao-Xi and LI Zhi-Pan. Center-of-mass correction and rotational correction in covariant density functional theory[J]. Chinese Physics C, 2015, 39(11): 114101.  doi: 10.1088/1674-1137/39/11/114101 shu
Milestone
Received: 2015-03-18
Fund

    Supported by Major State Basic Research Development (973) (201310635059), NSFC (11175002, 11105110, 11475140) and Research Fund for the Doctoral Program of Higher Education (20110001110087)

Article Metric

Article Views(789)
PDF Downloads(17)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Center-of-mass correction and rotational correction in covariant density functional theory

    Corresponding author: LI Zhi-Pan,
Fund Project:  Supported by Major State Basic Research Development (973) (201310635059), NSFC (11175002, 11105110, 11475140) and Research Fund for the Doctoral Program of Higher Education (20110001110087)

Abstract: Center-of-mass (c.m.) correction and rotational correction in even-even Ge isotopes are systematically investigated within the triaxially deformed relativistic Hartree-Bogoliubov model using the PC-PK1 force. The shell effect and deformation effect on the microscopic c.m. correction and rotational correction are discussed, and the importance of both corrections on reproducing the binding energy is demonstrated.

    HTML

Reference (27)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return