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Abstract: Center-of-mass (c.m.) correction and rotational correction in even-even Ge isotopes are systematically

investigated within the triaxially deformed relativistic Hartree-Bogoliubov model using the PC-PK1 force. The shell

effect and deformation effect on the microscopic c.m. correction and rotational correction are discussed, and the

importance of both corrections on reproducing the binding energy is demonstrated.
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1 Introduction

Nuclear energy density functional theory (DFT)
plays a significant role in the microscopic and universal
description of nuclei and has been the most promising
tool for the global investigation of the properties of nu-
clei [1].

During the past few decades, covariant density func-
tional theory (CDFT) has received widespread attention
due to its great successes in the description of many
nuclear phenomena [2–4]. There exist a number of at-
tractive features in CDFT, especially in its practical
applications in the self-consistent relativistic mean-field
framework [2–4]. It gives naturally the spin-orbit po-
tential. The relativistic effects are responsible for the
pseudospin symmetry [5–8] in the nuclear single-particle
spectra. Moreover, it is of particular importance that
CDFT includes a consistent description of currents and
time-odd fields which play important roles in the nuclear
rotations [9–12].

In the framework of the CDFT, the relativistic
Hartree-Bogoliubov (RHB) model [2] has been estab-
lished by treating the mean-field and pairing correlation
in a unified and self-consistent way and applied to the
quantitative description of open-shell nuclei. In most
RHB applications, the Gogny force [13] or the zero-range
δ force [14] is employed in the pairing part. Recently, the
separable pairing force [15] has attracted more and more

attention due to its simplicity and reliability. Moreover,
the triaxially deformed RHB (3DRHB) model with this
separable pairing force has been developed in Ref. [16],
which allows calculations for nuclei with triaxial shapes.

As a mean-field approach, however, the RHB model
violates the translational symmetry of the ground-state
wave function due to the localization of the center-of-
mass (c.m.) in the mean-field potential. Of course, the
restoration of this broken symmetry will introduce more
correlation in the energy density functional and make the
nucleus more binding. Therefore, the c.m. correction en-
ergy is usually considered in the RHB calculation either
in a microscopic [17] or in a phenomenological [18, 19]
way.

Moreover, for a deformed nucleus, the rotational sym-
metry is further violated in the RHB model and thus the
corresponding rotational correction energy should also
be considered. On one hand, the rotational symmetry,
in principle, can be restored with the sophisticated an-
gular momentum projection method [20]. However, this
method can hardly be applied to systematical investiga-
tions because of the numerical complexity. On the other
hand, the rotational correction can be approximately cal-
culated in a much more economic way by using the crank-
ing approximation [21].

In this paper, both the c.m. correction and the rota-
tional correction are systematically investigated within
the 3DRHB model by taking even-even Ge isotopes as
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examples, which present a rich shape structure, includ-
ing spherical, prolate, oblate, and triaxially deformed
shapes.

2 Theoretical framework

The RHB model has been introduced in detail in
Ref. [22]. The formulism and corresponding computer
code for the 3DRHB model with the separable pairing
force can be found in Refs. [16, 23, 24]. In the following,
we will present the framework very briefly in order to
clarify the notations and relevant physical quantities.

The starting point of the point-coupling RHB model
is an effective relativistic point-coupling Lagrangian (see
e.g., Ref. [25]). For a ground-state even-even nucleus,
the RHB equation can be derived as

(

hD−λ ∆

−∆∗ λ−h∗

D

)(

Uµ

Vµ

)

=Eµ

(

Uµ

Vµ

)

, (1)

where the single-nucleon Dirac Hamiltonian hD reads

hD=α·p+β(M+S)+V, (2)

with the scalar S and vector V potentials [25]. The pair-
ing field ∆ is determined by the two-body pairing inter-
action, i.e. the separable pairing force, and the pairing
tensor κ. The chemical potential λ is determined by the
desired particle number. By solving the RHB Eq. (1)
self-consistently, one obtains quasiparticle energies Eµ

and the corresponding quasiparticle wave functions |µ〉
(the column vectors).

The total binding energy is determined by

Eb=ERHB+Ec.m.+Erot , (3)

where ERHB is the energy from the RHB part. The mi-
croscopic c.m. correction energy Ec.m. [17] reads

Ec.m.=
1

2MA
〈P 2

c.m.〉, (4)

with the mass number A and the total momentum Pc.m.

in the c.m. frame. The rotational correction energy Erot

in the cranking approximation [21] reads

Erot=
1

4

∑

i=j=1,−1,−2

Mij

(2)

Mij

(3)

, (5)

Mij

(n)=
∑

µ,ν

|〈µν|Q̂2i|Φ〉〈µν|Q̂2j |Φ〉|

(Eµ+Eν)n
. (6)

Here, |Φ〉 is the quasiparticle vacuum and the intrinsic
quadrupole operators are defined as

Q̂21≡−2iyz ; Q̂2−1≡−2xz ; Q̂2−2≡2ixy. (7)

In the present work, the 3DRHB calculations are per-
formed for even-even Ge isotopes with the point-coupling
effective interaction PC-PK1 [25] in the mean-field part
and the separable pairing force [15] in the pairing part.

The RHB equation (1) is solved by expanding the nu-
cleon spinors Uµ, Vµ in the basis of a three-dimensional
harmonic oscillator with 14 major shells in Cartesian co-
ordinates.

Fig. 1. Microscopic center-of-mass correction en-
ergies EDef

c.m. of the ground state obtained by the
3DRHB model using the PC-PK1 force [25] (open
circles) in comparison with the corresponding re-
sults ESph

c.m. of the spherical state (open triangles)
as well as two phenomenological formulas [17]
(dashed line and dotted line).

Fig. 2. Difference in the microscopic center-of-
mass correction energies ∆Ec.m. = EDef

c.m.−ESph
c.m.

(a), rotational correction energies EDef
rot (b),

quadrupole deformations βDef (c) and γDef (d)
calculated by the 3DRHB model using the PC-
PK1 force, in comparison with the available
data [27] (solid circles).
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3 Results and discussion

Figure 1 displays the calculated microscopic c.m. cor-
rection energies EDef

c.m. of the ground state in comparison
with the corresponding results ESph

c.m. of the spherical state
as well as two phenomenological formulas [17]. Detailed
numbers for EDef

c.m. and ESph
c.m. can be found in the fifth and

sixth columns of Table 1, respectively. The microscopic
c.m. correction energies vary between 5–8 MeV, and gen-
erally decrease as the mass increases. Although the mi-
croscopic and the phenomenological methods give similar
results for the light nuclei, remarkable differences show
up for the nuclei on the neutron-rich side. Moreover,
the kick appearing in the microscopic c.m. corrections
at N =50 (A =82), which is related to the shell effect,
is also absent in these two phenomenological formulas.
One can also see non-negligible differences between EDef

c.m.

and ESph
c.m., which reflect the deformation effect on the

microscopic c.m. correction. This has been specifically
discussed for light nuclei in Ref. [26].

In Fig. 2, the calculated difference of the microscopic
c.m. correction energies ∆Ec.m., rotational correction
energies EDef

rot , quadrupole deformations βDef and γDef

are shown in comparison with the available data [27].
The quantitative values are given in Table 1. Obviously,
∆Ec.m. is highly related to the quadrupole deformation
parameter βDef , and generally speaking larger deforma-
tion drives more difference between EDef

c.m. and ESph
c.m. with

only a few exceptions near the neutron-drip line. How-
ever, the rotational correction energies EDef

rot are rather
stable with the typical values 3–4 MeV even though the
Ge isotopes present a rapid shape evolution. Of course,
there are no rotational corrections for the four spherical
nuclei.

Table 1. Total binding energies EDef
b , rotational correction energies EDef

rot , microscopic center-of-mass correction
energies EDef

c.m. and ESph
c.m. (in MeV), quadrupole deformations βDef and γDef (in degree) calculated by the 3DRHB

model using the PC-PK1 force in comparison with the available data E
Exp
b [28] and βExp [27]. The superscripts

’Def’ and ’Sph’ denote the theoretical results of the ground state and the spherical state, respectively.

A E
Exp
b EDef

b EDef
rot EDef

c.m. E
Sph
c.m. βExp βDef γDef

60 487.34 3.20 7.79 7.78 0.13 60.0

62 517.02 3.28 7.83 7.51 0.23 0.0

64 545.84 545.64 4.18 7.88 7.35 0.27 26.5

66 569.27 568.61 3.85 7.57 7.21 0.17 0.25 60.0

68 590.78 589.84 3.96 7.33 7.12 0.21 0.22 60.0

70 610.51 609.58 3.50 7.20 7.07 0.22 0.17 60.0

72 628.67 628.23 3.30 7.19 7.05 0.24 0.19 60.0

74 645.65 645.95 3.43 7.19 6.93 0.28 0.22 28.6

76 661.59 662.68 3.31 7.07 6.91 0.26 0.18 0.0

78 676.38 678.10 2.96 7.13 6.94 0.19 0.0

80 690.19 691.94 3.04 7.20 7.02 0.17 0.0

82 702.21 700.63 0.00 7.15 7.15 0.00 0.0

84 711.09 711.90 3.01 6.90 6.82 0.19 17.1

86 720.34 2.93 6.79 6.56 0.24 23.2

88 727.86 3.13 6.61 6.35 0.25 28.1

90 734.30 3.01 6.40 6.18 0.25 60.0

92 740.36 3.19 6.23 6.03 0.24 60.0

94 745.67 3.26 6.09 5.90 0.23 60.0

96 750.39 3.29 5.98 5.81 0.21 60.0

98 754.60 3.43 5.86 5.74 0.19 60.0

100 755.12 0.00 5.70 5.70 0.00 0.0

102 759.55 0.00 5.72 5.72 0.00 0.0

104 761.70 0.00 5.58 5.58 0.00 0.0

106 767.42 3.60 5.57 5.49 0.14 0.0

108 769.34 3.53 5.53 5.43 0.18 0.0

110 770.62 3.35 5.46 5.38 0.21 0.0

112 771.34 3.11 5.38 5.33 0.24 0.0

114 771.79 3.06 5.29 5.26 0.26 0.0

116 771.89 3.03 5.20 5.16 0.27 0.0
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Fig. 3. Discrepancy of the calculated binding en-
ergies by the 3DRHB model using the PC-PK1
force with the data [28].

Finally, we discuss the effects of the c.m. correc-
tion and rotational correction on the binding energy in
Fig. 3, where the discrepancy of the calculated binding
energies with the data [28] is shown. Obviously, a large
discrepancy (up to ∼10 MeV) is found without both cor-
rections. By taking the c.m. correction into account, the
deviations EExp

b −(EDef
b −EDef

rot ) (open squares) can be sig-
nificantly reduced (below ∼5 MeV). After including the
rotational correction, the total binding energies EDef

b re-
produce the data very well and the deviations E

Exp
b −EDef

b

(open circles) are mostly between ±1 MeV. Furthermore,

we perform a systematic calculation for the binding en-
ergies of the even-even isotopes with 20 6 Z 6 82, and
find that the root-mean-square deviation with respect to
the data is reduced from ∼9 MeV to ∼3 MeV by taking
into account the c.m. correction and further down to ∼1
MeV after including the rotational correction.

4 Summary

In summary, we have carried out a systematic investi-
gation of center-of-mass (c.m.) correction and rotational
correction in even-even Ge isotopes within the 3DRHB
model using the PC-PK1 force. Comparing with the
phenomenological formulas, the microscopic c.m. cor-
rections give a kick at N = 50, which relates to the
shell effect, and remarkable differences show up for the
neutron-rich nuclei. A deformation effect on the c.m.
correction is also found, which is about several hundred
keV. For the rotational correction, the correction ener-
gies are rather stable with the typical values 3–4 MeV,
even though the Ge isotopes present a rapid shape evo-
lution. By taking the c.m. correction and the rotational
correction into account, the calculated binding energies
reproduce the data very well and the deviations are
mostly between ±1 MeV.

The authors are indebted to Professor MENG Jie for

his valuable suggestions and critical review.
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