-
Abstract:
We have applied the theory of the single-particle Schrodinger fluid to the nuclear collective motion of axially deformed nuclei. A counter example of an arbitrary number of independent nucleons in the anisotropic harmonic oscillator potential at the equilibrium deformation has been also given. Moreover, the ground states of the doubly even nuclei in the s-d shell 20Ne,24Mg,28Si,32S and 36Ar are constructed by filling the single particle states corresponding to the possible values of the number of quanta of excitations nx,ny, and nz. Accordingly, the cranking-model, the rigid-body model and the equilibrium-model moments of inertia of these nuclei are calculated as functions of the oscillator parameters ωx,ωyand ωz which are given in terms of the non deformed value ω00 , depending on the mass number A, the number of neutrons N, the number of protons Z, and the deformation parameter β. The calculated values of the cranking-model moments of inertia of these nuclei are in good agreement with the corresponding experimental values and show that the considered axially deformed nuclei may have oblate as well as prolate shapes and that the nucleus 24Mg is the only one which is highly deformed. The rigid body model and the equilibrium model moments of inertia of the two nuclei 20Ne and 24Mg are also in good agreement with the corresponding experimental values.
-
-
References
[1]
|
. Bohr A. Mottelson B R. Nuclear Structure, Vol. 2. Benjamin, New York,1975 2. Shaker M O. Kresnin A A. Nucl. Phys.1967,A92:57 3. Doma S B.Shaker M O. El-Ashlimi A A. Proc. 3rd Inter. Conf. Statis.,Comp. Sci. and Soc. Res.,Ain Shams Univ, Cairo, Egypt,1978,128 4. Doma S B. FCAA Journal,1999,2(5):637 5. Doma S B. Amin M M. Tfiha A D. IJAM Journal,2000,2(6):725 6. Hill D L. Wheeler J A. Phys. Rev.,1953,89(5):11027. Kan K K. Griffin J J. Phys. Rev. 1977,C15:1126 8. Kan K K. Griffin J J. Nucl. Phys. 1978,A301:25 9. Nilsson S G. Kgl. Danske. Videnskab. Mat. Fys. Medd.,1955,29:1 10. Lalazissis G A. Panos C P. Phys. Rev. 1955,C51(3):124711. Inglis D R. Phys. Rev.,1955,96:903;1955,103:1786 12. Dunford C L. Kinsey R R. Nu. Dat. System for Access to Nuclear Data, IAEA-NDS-205(BNL- NCS-65687) IAEA, Vienna, Austria, 1998 13. Ring P. Schuck P. The Nuclear Many-Body Problem. Springer-Verlag, New York, 1980 |
-
[1] |
YE Wei
. Possible Dependence of Dissipation Strength on Angular Momentum. Chinese Physics C,
2006, 30(8): 759-760. |
[2] |
LI Ming-Liang
, ZHU Sheng-Jiang
, CHE Xing-Lai
, YU Ying-Nan
. Research on Two-Quasiparticle Bands in 98Sr. Chinese Physics C,
2004, 28(S1): 75-77. |
[3] |
HU Xi-Duo
, SHAO Ming-Zhu
, LUO Shi-Yu
, LIU Yong-Sheng
, ZHU De-Hai
. Average Field Idea and Single Particle Model for 2 Dimension Crystallization Beams(Ⅱ). Chinese Physics C,
2004, 28(2): 196-199. |
[4] |
Guo Hua
. In-medium QMC Model Parameters and Quark Condensation in Nuclear Matter. Chinese Physics C,
1999, 23(5): 459-468. |
[5] |
Li Yangguo
. Antiproton -Nucleus Charge Exchange Reaction and Inelastic Scattering. Chinese Physics C,
1996, 20(11): 1021-1027. |
[6] |
Sa Ben-hao
, Zhang Xi-zhen
, Li Zhu-xia
, Shi Yi-jin
. A PRIMARY RESEARCH OF THE PHONON RENORMALIZATION OF NUCLEAR FIELD THEORY. Chinese Physics C,
1980, 4(3): 398-400. |
[7] |
WU SHI-SHU
. ON NUCLEAR SINGLE-PARTICLE POTENTIALS(Ⅲ)SINGLEPARTICLE ENERGIES DETERMINED BY THE NONHERMITIAN POTENTIAL Uαβ=Mαβ(εβ). Chinese Physics C,
1979, 3(4): 469-483. |
-
Access
-
-