×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

MULTIPLICITY DISTRIBUTIONS, DISPERSION, CORRELATIONS AND KNO SCALING

  • Secondary charged particles produced in hadron-hadron collisions are divided quantitatively into two kinds in the light of the picture given by the authors [1, 2] and the results deduced therefrom. One of these parts, the genuine newborn particles, is analysed by means of the N(Q) dependence in [1]. Under the assumption that the dependence of the fluctuation of the number of newborn quark pairs on the ratio of kinetic to potential energies takes the form of a compound Poisson distribution, it is shown that the multiplicity distributions, dispersions, correlations and KNO scaling in pp collisions can be fitted with a single parameter on a unified basis. General formula of moments c≡<n>k/<n>k are given and their asymptotic properties are studied, resulting in an explanation of the appearance and behavior of the KNO scaling. A brief ldiscussion is given to the possible origin of the multiplicity distribution.
  • 加载中
  • [1] 谢去病,高能物理与核物理,3 (1979). 530[2] 谢去病,高能物理与核物理,4 (1980). 466.[3] K. Zalewaki, 1974 Proc. 17th Int. Conf. on High Energy Physics, London, I-108.[4] J. P. Aurenche and J. E. Paton, Rep. Prog. Phys., 39 (1976), 175. [5]В. С. МурЗин et al., Множественные процессы при высоких Энергиях М. Атомиздат, 1974, P. 200.[6] N. Hasliimoto, Prog. Theor. Phys., 61 (1979),151.[7] A. D'Innocenzo et al., Nuo.Cim.,44A (1978),375.[8] L. Bodini et al., Nuo. Cim., 58A (1968), 475.[9] G. Alexander et al., Phys. Rev., 154 (1967), 1284..[10] S. P. Almeida et al., Phys. Rev., 174 (1968), 1638.[11] V. Blobel et al., Nucl. Phys., 69B (1974), 454.[12] D. B. Smith et al., Phys. Rev. Lett., 23 (1969), 1064.[13] H. Bσggild et al., Nucl. Phys., 27B (1971), 285.[14] W. H. Sima et al., Nucl. Phys., 41B (1972), 317.
  • 加载中

Get Citation
XIE QU-BING and MO WEN-CHUAN. MULTIPLICITY DISTRIBUTIONS, DISPERSION, CORRELATIONS AND KNO SCALING[J]. Chinese Physics C, 1981, 5(1): 55-66.
XIE QU-BING and MO WEN-CHUAN. MULTIPLICITY DISTRIBUTIONS, DISPERSION, CORRELATIONS AND KNO SCALING[J]. Chinese Physics C, 1981, 5(1): 55-66. shu
Milestone
Received: 1979-12-11
Revised: 1900-01-01
Article Metric

Article Views(1691)
PDF Downloads(279)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

MULTIPLICITY DISTRIBUTIONS, DISPERSION, CORRELATIONS AND KNO SCALING

Abstract: Secondary charged particles produced in hadron-hadron collisions are divided quantitatively into two kinds in the light of the picture given by the authors [1, 2] and the results deduced therefrom. One of these parts, the genuine newborn particles, is analysed by means of the N(Q) dependence in [1]. Under the assumption that the dependence of the fluctuation of the number of newborn quark pairs on the ratio of kinetic to potential energies takes the form of a compound Poisson distribution, it is shown that the multiplicity distributions, dispersions, correlations and KNO scaling in pp collisions can be fitted with a single parameter on a unified basis. General formula of moments c≡<n>k/<n>k are given and their asymptotic properties are studied, resulting in an explanation of the appearance and behavior of the KNO scaling. A brief ldiscussion is given to the possible origin of the multiplicity distribution.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return