-
Abstract:
Because the de Rham complex on compact manifolds with boundary must satify the elliptic boundary conditions,their boundary metric must be a product if the structures of supersymmetry satifying the conditions exist in the field manifolds with boundary on 0+1 dimensions.Using the witten index for a supersymmetric field theory,we proved the Gauss-Bonnet-Chern theorem.
-
-
References
[1]
|
E. Witten, Nucl. Phys., B202(1982), 253.[2] E. Witten, J. Diff. Geom., 17(1982), 667.[3] E. Witten, Holomorphic morse inequalities, Priceton Preprint (1982).[4] L. Alvarez-Gzmme, Commun. Math. Phys., 90(1983), 161.[5] P. Windey, CERN Preprint TH3758(1983).[6] E. Getzler, Commun. Mazh. Phys., 92(1983), 163.[7] I. M. Bismat, Orsay Preprint (1983).[8] B. Zumino, LBL Preprint 17972(1982).[9] E. Witten, Phys. Rev., D16(1977), 2991.[10] P. Divecchia and S. Ferrara, Nucl. Phys., B130(1977), 93.[11] D. 2. Freedman and P. K. Townsend, Nucl. Phys., B177(1981), 282.[12] M. F. Atiyah and R. Bott, Diff. Analysis (Bombay Colloquium), Oxford, London (1964).[13] P. B. Gilkey, Adv. Math., 15(1975), 334.[14] S. Cecotti and L. Girardello, Phys. Lett., B110(1982), 39.[15] S. S. Chern, Ann. Math., 46(1942), 46. |
-
[1] |
Medina Ablikim
, HUANG Wei-Cheng
,
. New Realization of N=2 Supersymmetric QuantumMechanics and Shape Invariance. Chinese Physics C,
2002, 26(4): 338-345. |
-
Access
-
-