-
Abstract:
The identification of quark and gluon jets produced in e+e-collisions using the artificial neural network method is addressed.The structure and the learning algorithm of the BP(Back Propagation)neural network model is studied.Three characteristic parameters—the average multiplicity and the average transverse momentum of jets and the average value of the angles opposite to the quark or gluon jets are taken as training parameters and are inputed to the BP network for repeated training.The learning process is ended when the output error of the neural network is less than a pre-set precision(σ=0.005).The same training routine is repeated in each of the 8 energy bins ranging from 2.5—22.5 GeV,respectively.The finally updated weights and thresholds of the BP neural network are tested using the quark and gluon jet samples,getting from the non-symmetric three-jet events produced by the Monte Carlo generator JETSET 7.4.Then the pattern recognition of the mixed sample getting from the combination of the quark and gluon jet samples is carried out through applying the trained BP neural network.It turns out that the purities of the identified quark and gluon jets are around 75%—85%,showing that the artificial neural network is effective and practical in jet analysis.It is hopeful to use the further improved BP neural network to study the experimental data of high energy e+e- collisions.
-
-
References
[1]
|
. AMY Coll. Kim Y Ket al. Phys. Rev. Lett., 1989, 63: 172. JADE Coll. Bartel W et al. Phys. Lett., 1983, B123: 4603. OPAL Coll. Alexander G et al. Phys. Lett., 1991, B265: 4624. HU Shou-Ren et al. Neural Networks Introduction. Changsha: National University of Defense Technology Publishers, 1993 (in Chinese)(胡守仁等. 神经网络导论. 长沙: 国防科学技术大学出版社, 1993)5. Bishop C M. Neural Networks for Pattern Recognition. Oxford, UK: Oxford University Press, 19956. Ripey B D. Pattern Recognition and Neural Networks. Combridge, UK: Cambridge University Press, 19967. HAN Jia-Wei. Micheline Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 20028. Dokshitzer YU L. J. Phys., 1991, G17: 15379. ZHANG Kun-Shi, CHEN Gang, YU Mei-Ling et al. HEP NP, 2002, 26(11): 1110 (in Chinese)(张昆实, 陈刚, 喻梅凌等. 高能物理与核物理, 2002, 26(11): 1110)10. YU Mei-Ling, LIU Lian-Shou. Chin. Phys. Lett, 2002, 19: 647
|
-
[1] |
GUO Yun-Jun
, HE Kang-Lin
. Muon Identification Using the Efficiencies Ratio Method at BESⅡ. Chinese Physics C,
2007, 31(11): 1050-1055. |
[2] |
HUANG Wen-Xue
, WANG Yue
, ZHU Zhi-Chao
, TIAN Yu-Lin
, XU Hu-Shan
, SUN Zhi-Yu
, XIAO Guo-Qing
, ZHAN Wen-Long
. Experimental Study of the High-Voltage Breakdown and Simulations for the RFQ Cooler and Buncher RFQ1L. Chinese Physics C,
2006, 30(S2): 261-264. |
[3] |
SHEN Shui-Fa
, YU Xiao-Han
. Decay of 83Sr and Discussion of Its Daughter's Band Structures. Chinese Physics C,
2004, 28(S1): 78-80. |
[4] |
LI Ming-Liang
, ZHU Sheng-Jiang
, CHE Xing-Lai
, YU Ying-Nan
. Research on Two-Quasiparticle Bands in 98Sr. Chinese Physics C,
2004, 28(S1): 75-77. |
[5] |
Guo Hua
. In-medium QMC Model Parameters and Quark Condensation in Nuclear Matter. Chinese Physics C,
1999, 23(5): 459-468. |
[6] |
Yang Jianjun
, Ma Boqiang
, Li Guanglie
. Non-perturbative Quark Propagator and the Study of the Non-trivial Q2 Dependence in the Nucleon Structure Functions. Chinese Physics C,
1997, 21(2): 146-156. |
[7] |
Yu Hong
, Shen Qixing
, Zhang Lin
. Angular Distribution of Process e+e-→τ+τ-,τ-→a1υτ,a1→ρπ and Characteristics of a1 Meson. Chinese Physics C,
1994, 18(7): 583-590. |
[8] |
BES Collaboration
. Experimental Study of Resonance f2(1270) in the J/ψ Hadronic Decay. Chinese Physics C,
1993, 17(2): 97-106. |
[9] |
SANG Jian-Ping
, LIU Chao-Shan
, LIU Yong
. Relation Between the Gap at Z=64 Subshell and the Abrupt Transition in the Region N=88~90. Chinese Physics C,
1991, 15(2): 150-157. |
[10] |
HOU Ren-Chang
, ZHAO Xuan
. QUADRUPOLE-OCTUPOLE TWO-PHONON EXCITATIONS IN INELASTIC SCATTERING. Chinese Physics C,
1983, 7(2): 236-244. |
[11] |
Sa Ben-hao
, Zhang Xi-zhen
, Li Zhu-xia
, Shi Yi-jin
. A PRIMARY RESEARCH OF THE PHONON RENORMALIZATION OF NUCLEAR FIELD THEORY. Chinese Physics C,
1980, 4(3): 398-400. |
-
Access
-
-