-
Abstract:
In this paper high-order adiabatic approximate method is proposed to study the evolution of degenerate quantum systums with slowly-changing parameters and varying symmetry.We ont only prove the quantum adiabatic theorem for degenerate cases and discuss the corresponding non-abelian induced gauge structure,but also point out the non-adiabatic corrections resulting from higher-order approximations.With nuclear quadrupole resonance as an explicit example,we use this method to analyse observable effects of non-abelian Berry's phases in adiabatic and non-adiabatic experimental process.
-
-
References
[1]
|
M. V. Berry, Proc. R. Soc. Lond.; A392(1984), 45.R. Jackiw, Com. Atom. Mole, Phys.; 21(1988), 71, and therein.[2] R. Tycko, Phys. Rev, Lett., 58(1987), 2281.D. J. Richardson et. al. Phys. Pev, Lett., 61(1988),2030.[3] M. V. Betty, Proc. R. Soc. Lond., A414(1987), 47[4] N. Nakagawa, Ann. Phys., 179(1987), 145.[5] C.P. Sun, Chinese Phys. Lett., 6(1989), 97.[6] N. Papanicolaou. J. Phys. France, 49(1988), 1493.[7] C.P. Sun, J. Phys. A21(1988), 1595.[8] 孙昌璞,高能物理与核物理,12(1988),352.
|
-
[1] |
SHEN Shui-Fa
, YU Xiao-Han
. Decay of 83Sr and Discussion of Its Daughter's Band Structures. Chinese Physics C,
2004, 28(S1): 78-80. |
[2] |
Medina Ablikim
, HUANG Wei-Cheng
,
. New Realization of N=2 Supersymmetric QuantumMechanics and Shape Invariance. Chinese Physics C,
2002, 26(4): 338-345. |
[3] |
Chen Zhongqiu
, Shao Changgui
, Ma Weichuan
. Calculation of Wilson Loop Functionals for Classical and Quantum Gravities. Chinese Physics C,
1998, 22(3): 217-224. |
[4] |
Yang Jianjun
, Ma Boqiang
, Li Guanglie
. Non-perturbative Quark Propagator and the Study of the Non-trivial Q2 Dependence in the Nucleon Structure Functions. Chinese Physics C,
1997, 21(2): 146-156. |
[5] |
ZHU Xiang
, SHEN Wen-Qing
, HU Xiao-Qing
, ZHU Yong-Tai
, WANG Bing
. A SIMPLE MODEL ANALYSIS OF THE INCOMPLETE DIC REACTION. Chinese Physics C,
1990, 14(9): 835-841. |
[6] |
WU SHI-SHU
. ON NUCLEAR SINGLE-PARTICLE POTENTIALS(Ⅲ)SINGLEPARTICLE ENERGIES DETERMINED BY THE NONHERMITIAN POTENTIAL Uαβ=Mαβ(εβ). Chinese Physics C,
1979, 3(4): 469-483. |
-
Access
-
-