-
Abstract:
The connections between geometric quantization and path integral quantization of bosonic strings are investigated.The Polyakov path integral formulation and its measure are manifestly deduced from the Blattner-Kostant-Sternberg(BKS) kernel of geometric quantization.
-
-
References
[1]
|
J. Scherk, Rev. Mod. Phys .47 (1975),123.[2] A. M. Polyakov,Phys. Lett., 103B (1981) 207; 211.[3] J. Sniatychki, Geometric Quantization and Quantum Mechanics (Springer- Verlag, New York,1980; N. J. M. Woodhouse, Geometric Quantization (Claredon Press, Oxford , UK. 1980).[4] C. Crnkovic and E. Witten, in Newton's Tercentenary Volume, eds., S. Hawking and W. I.Isreal; C. Crnkovic, Nucl. Phys. B288 (1987), 431; Y. Yu, BIHEP preprint, BIHEP-TH-26. |
-
[1] |
YE Wei
. Possible Dependence of Dissipation Strength on Angular Momentum. Chinese Physics C,
2006, 30(8): 759-760. |
[2] |
Guo Hua
. In-medium QMC Model Parameters and Quark Condensation in Nuclear Matter. Chinese Physics C,
1999, 23(5): 459-468. |
[3] |
Li Yangguo
. Antiproton -Nucleus Charge Exchange Reaction and Inelastic Scattering. Chinese Physics C,
1996, 20(11): 1021-1027. |
[4] |
Sa Ben-hao
, Zhang Xi-zhen
, Li Zhu-xia
, Shi Yi-jin
. A PRIMARY RESEARCH OF THE PHONON RENORMALIZATION OF NUCLEAR FIELD THEORY. Chinese Physics C,
1980, 4(3): 398-400. |
[5] |
WU SHI-SHU
. ON NUCLEAR SINGLE-PARTICLE POTENTIALS(Ⅲ)SINGLEPARTICLE ENERGIES DETERMINED BY THE NONHERMITIAN POTENTIAL Uαβ=Mαβ(εβ). Chinese Physics C,
1979, 3(4): 469-483. |
-
Access
-
-