-
Abstract:
We calculate the effective mass and damping rate in φ63 theory at finite temperature by evaluating the real and imaginary parts of the one-loop self energies at the hard thermal loop (HTL) approximation. We show that there is thermal instability above a critical temperature Tc. The effective mass and damping rate are proportional to gT and gT respectively. We compare our results with those in hot QCD.
-
-
References
[1]
|
. Kapusta J I. Finite Temperature Field Theory, Cambridge University Press,1989,35—67 2. Bellac M Le. Thermal Finite Theory, Cambridge University Press,1996,150—188 3. Pisarski R D. Phys. Rev. Lett.,1989,63:1129;Braaten E, Pisarski R D. Nucl. Phys.,1990,B337:569 4. Thoma M H. New Development and Applications of Thermal Field Theory, hep-Ph/000101645. HOU De-Fu et al. Phys. Rev.1996,D54:7634 6. Collins J C. Renormalization, Cambridge University Press,1983,132—147 7. HOU De-Fu et al. European J. Phys.,1998,C4:129 8. GAO Song et al. Phys. Rev.,1994,C49:40 9. ZHANG Ben-Wei et al. Phys. Rev.,2000,C61:051302(R)10. Altherr T et al. Phys. Lett.,1991,B271:183 |
-
[1] |
A.G.Drentje
. Gas-mixing: Ion Cooling or Reduced Turbulent Heating?. Chinese Physics C,
2007, 31(S1): 162-164. |
[2] |
Li Yangguo
. Antiproton -Nucleus Charge Exchange Reaction and Inelastic Scattering. Chinese Physics C,
1996, 20(11): 1021-1027. |
-
Access
-
-