×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

ON THE HERMITIAN OF THE HAMILTONIAN OF RADIAL EQUATION

  • The Hamiltonian of a radial equation is defined on a half-line,and there is a close relation between its hermitian and the boundary condition of the wave functions at the origin.If the wave functions are nonvanishing and convergent at the origin,the Hamiltonian has a one-parameter family of self-adjoint extensions which are related with the vanishness of the radial probability current at the origin.In this paper the problem on the hermitian of the Hamiltonian of a radial equation is studied systematically.Some methods for determining the parameter for the fermion moving in the magnetic monopole field are discussed.
  • 加载中
  • [1] M. Reed and B. Simon, Methods of Modern Mathematical Physics-Vol. II: Fourier Analysis, Self-Adjoin-tness, subsect. 10.1 (New York, N.Y., 1975).[2] C. Burnap, H. Brysk and P. F. Zweifel, Nuoao Cimenso, 64B(1981), 407.[3] A. S. Goldhaber, Phys. Rea., DI6(1977), 1815 C.J.Callias, ibid,D16(1977), 3068 .[4] Y. Kazama, C. N. Yang and A. S. Goldhaber, Phys. Rev., D15(1977), 2287.[5] H. J. Lipkin, W. I. Weisberger and M. Peshkin, Ann. Phys. (N. Y.) 53(1969), 203[6] 戴显熹和倪光炯, 高能物理与核物理, 2(1978), 225.[7] H. Yamagishi, Phys. Rev., D27(1983), 2383.[8] E. Witten, Phys.Lett, 86B(1979), 283; F. Wilezek, Phys. Rev. Lett., 48(1982), 1146.[9] T. T. Wu and C. N. Yang, Properties of Matter under Unusual Conditions, Ed. H. Mark and S. Fernbach, 1969 (New York: Interscience) p. 344.[10] T. T. Wu and C. N. Yang, Nucl. Phys.,B107(1976), 365.[11] Y. Kazama and C. N. Yang, Phys. Rev.,D15(1977), 2300.[12] 作者感谢倪光炯、汪荣泰教授在1986年大连会议上有启发性的讨论.[13] G.Hooft, Nucl. Phyr., B79(1974), 276; A. M. Polyakov, JETP Lett, 20(1974), 194.[14] W. J. Marciano and I. J. Muzinich, Phys. Rev. Lett., 50(1983), 1035; Z. Q. Ma, Phys. Rev., D32(1985),2203.[15] M. K. Prasad and C. M. Sommerfield, Phys. Rev. Lett., 35(1975), 760[16] T. F. Walsh, P. Weisz and T. T. Wu, Nucl. Phys.,B332(1984), 349.
  • 加载中

Get Citation
MA Zhong-Qi and DAI An-Ying. ON THE HERMITIAN OF THE HAMILTONIAN OF RADIAL EQUATION[J]. Chinese Physics C, 1988, 12(1): 42-49.
MA Zhong-Qi and DAI An-Ying. ON THE HERMITIAN OF THE HAMILTONIAN OF RADIAL EQUATION[J]. Chinese Physics C, 1988, 12(1): 42-49. shu
Milestone
Received: 1900-01-01
Revised: 1900-01-01
Article Metric

Article Views(2542)
PDF Downloads(473)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

ON THE HERMITIAN OF THE HAMILTONIAN OF RADIAL EQUATION

    Corresponding author: MA Zhong-Qi,
  • Institute of High Energy Physics,Academia Sinica,Beijing2 Institute of Industry of Beijing

Abstract: The Hamiltonian of a radial equation is defined on a half-line,and there is a close relation between its hermitian and the boundary condition of the wave functions at the origin.If the wave functions are nonvanishing and convergent at the origin,the Hamiltonian has a one-parameter family of self-adjoint extensions which are related with the vanishness of the radial probability current at the origin.In this paper the problem on the hermitian of the Hamiltonian of a radial equation is studied systematically.Some methods for determining the parameter for the fermion moving in the magnetic monopole field are discussed.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return