Search for Cabibbo-suppressed decays ${\boldsymbol\Lambda_{\boldsymbol c}^{\bf +} }$ → Σ0K+π0 and $ {\boldsymbol\Lambda_{\boldsymbol c}^{\bf +} }$ → Σ0K+π+π

Figures(5) / Tables(4)

Get Citation
M. Ablikim, M. N. Achasov, P. Adlarson, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, M. H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, Z. K. Chen, S. K. Choi, X. Chu, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, Y. X. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, G. F. Fan, J. J. Fan, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Y. N. Gao, Y. Y. Gao, Yang Gao, S. Garbolino, I. Garzia, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, K. D. Hao, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, Q. P. Hu, S. L. Hu, T. Hu, Y. Hu, Z. M. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, P. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. J. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, Q. Lan, W. N. Lan, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, C. K. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, K. L. Li, L. J. Li, Lei Li, M. H. Li, M. R. Li, P. L. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, T. Li, T. Y. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. Li, Y. G. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. B. Liao, M. H. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, C. X. Lin, D. X. Lin, L. Q. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, J. J. Liu, K. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, W. T. Liu, X. Liu, X. Liu, X. Y. Liu, Y. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, Y. Lu, Y. H. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, J. S. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, Y. H. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, Q. M. Ma, R. Q. Ma, R. Y. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Y. H. Meng, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. R. Qi, M. Qi, S. Qian, W. B. Qian, C. F. Qiao, J. H. Qiao, J. J. Qin, J. L. Qin, L. Q. Qin, L. Y. Qin, P. B. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, A. Rivetti, M. Rolo, G. Rong, S. S. Rong, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, J. L. Shi, J. Y. Shi, S. Y. Shi, X. Shi, H. L. Song, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, Y. C. Sun, Y. H. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, L. F. Tang, M. Tang, Y. A. Tang, L. Y. Tao, M. Tat, J. X. Teng, V. Thoren, J. Y. Tian, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, B. Wang, B. Wang, Bo Wang, C. Wang, D. Y. Wang, H. J. Wang, J. J. Wang, K. Wang, L. L. Wang, L. W. Wang, M. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Yuan Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, Lianjie Wu, S. G. Wu, S. M. Wu, X. Wu, X. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, H. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, K. J. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, F. Yan, H. Y. Yan, L. Yan, W. B. Yan, W. C. Yan, W. P. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, J. H. Yang, R. J. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. Q. Yang, Y. X. Yang, Y. Z. Yang, M. Ye, M. H. Ye, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, Y. C. Yu, C. Z. Yuan, H. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, Ying Yue, A. A. Zafar, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, N. Zhang, P. Zhang, Q. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. L. Zhang, Z. X. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, Zh. Zh. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. L. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, X. R. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, W. J. Zhu, W. Z. Zhu, Y. C. Zhu, Z. A. Zhu, X. Y. Zhuang, J. H. Zou, J. Zu and (BESIII Collaboration). Search for the Cabibbo-suppressed decays Λc+ → Σ0K+π0 and Λc+ → Σ0K+π+π[J]. Chinese Physics C. doi: 10.1088/1674-1137/adc88d
M. Ablikim, M. N. Achasov, P. Adlarson, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, M. H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, Z. K. Chen, S. K. Choi, X. Chu, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, Y. X. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, G. F. Fan, J. J. Fan, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Y. N. Gao, Y. Y. Gao, Yang Gao, S. Garbolino, I. Garzia, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, K. D. Hao, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, Q. P. Hu, S. L. Hu, T. Hu, Y. Hu, Z. M. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, P. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. J. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, Q. Lan, W. N. Lan, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, C. K. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, K. L. Li, L. J. Li, Lei Li, M. H. Li, M. R. Li, P. L. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, T. Li, T. Y. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. Li, Y. G. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. B. Liao, M. H. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, C. X. Lin, D. X. Lin, L. Q. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, J. J. Liu, K. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, W. T. Liu, X. Liu, X. Liu, X. Y. Liu, Y. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, Y. Lu, Y. H. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, J. S. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, Y. H. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, Q. M. Ma, R. Q. Ma, R. Y. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Y. H. Meng, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. R. Qi, M. Qi, S. Qian, W. B. Qian, C. F. Qiao, J. H. Qiao, J. J. Qin, J. L. Qin, L. Q. Qin, L. Y. Qin, P. B. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, A. Rivetti, M. Rolo, G. Rong, S. S. Rong, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, J. L. Shi, J. Y. Shi, S. Y. Shi, X. Shi, H. L. Song, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, Y. C. Sun, Y. H. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, L. F. Tang, M. Tang, Y. A. Tang, L. Y. Tao, M. Tat, J. X. Teng, V. Thoren, J. Y. Tian, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, B. Wang, B. Wang, Bo Wang, C. Wang, D. Y. Wang, H. J. Wang, J. J. Wang, K. Wang, L. L. Wang, L. W. Wang, M. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Yuan Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, Lianjie Wu, S. G. Wu, S. M. Wu, X. Wu, X. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, H. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, K. J. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, F. Yan, H. Y. Yan, L. Yan, W. B. Yan, W. C. Yan, W. P. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, J. H. Yang, R. J. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. Q. Yang, Y. X. Yang, Y. Z. Yang, M. Ye, M. H. Ye, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, Y. C. Yu, C. Z. Yuan, H. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, Ying Yue, A. A. Zafar, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, N. Zhang, P. Zhang, Q. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. L. Zhang, Z. X. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, Zh. Zh. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. L. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, X. R. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, W. J. Zhu, W. Z. Zhu, Y. C. Zhu, Z. A. Zhu, X. Y. Zhuang, J. H. Zou, J. Zu and (BESIII Collaboration). Search for the Cabibbo-suppressed decays Λc+ → Σ0K+π0 and Λc+ → Σ0K+π+π[J]. Chinese Physics C.  doi: 10.1088/1674-1137/adc88d shu
Milestone
Received: 2025-02-16
Article Metric

Article Views(485)
PDF Downloads(15)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Search for Cabibbo-suppressed decays ${\boldsymbol\Lambda_{\boldsymbol c}^{\bf +} }$ → Σ0K+π0 and $ {\boldsymbol\Lambda_{\boldsymbol c}^{\bf +} }$ → Σ0K+π+π

  • 1. Institute of High Energy Physics, Beijing 100049, China
  • 2. Beihang University, Beijing 100191, China
  • 3. Bochum Ruhr-University, D-44780 Bochum, Germany
  • 4. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
  • 5. Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
  • 6. Central China Normal University, Wuhan 430079, China
  • 7. Central South University, Changsha 410083, China
  • 8. China Center of Advanced Science and Technology, Beijing 100190, China
  • 9. China University of Geosciences, Wuhan 430074, China
  • 10. Chung-Ang University, Seoul, 06974, Republic of Korea
  • 11. COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
  • 12. Fudan University, Shanghai 200433, China
  • 13. GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
  • 14. Guangxi Normal University, Guilin 541004, China
  • 15. Guangxi University, Nanning 530004, China
  • 16. Hangzhou Normal University, Hangzhou 310036, China
  • 17. Hebei University, Baoding 071002, China
  • 18. Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
  • 19. Henan Normal University, Xinxiang 453007, China
  • 20. Henan University, Kaifeng 475004, China
  • 21. Henan University of Science and Technology, Luoyang 471003, China
  • 22. Henan University of Technology, Zhengzhou 450001, China
  • 23. Huangshan College, Huangshan 245000, China
  • 24. Hunan Normal University, Changsha 410081, China
  • 25. Hunan University, Changsha 410082, China
  • 26. Indian Institute of Technology Madras, Chennai 600036, India
  • 27. Indiana University, Bloomington, Indiana 47405, USA
  • 28A. INFN Laboratori Nazionali di Frascati, INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy
  • 28B. INFN Laboratori Nazionali di Frascati, INFN Sezione di Perugia, I-06100, Perugia, Italy
  • 28C. INFN Laboratori Nazionali di Frascati, University of Perugia, I-06100, Perugia, Italy
  • 29A. INFN Sezione di Ferrara, INFN Sezione di Ferrara, I-44122, Ferrara, Italy
  • 29B. INFN Sezione di Ferrara, University of Ferrara, I-44122, Ferrara, Italy
  • 30. Inner Mongolia University, Hohhot 010021, China
  • 31. Institute of Modern Physics, Lanzhou 730000, China
  • 32. Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
  • 33. Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
  • 34. Jilin University, Changchun 130012, China
  • 35. Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
  • 36. Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
  • 37. Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
  • 38. Lanzhou University, Lanzhou 730000, China
  • 39. Liaoning Normal University, Dalian 116029, China
  • 40. Liaoning University, Shenyang 110036, China
  • 41. Nanjing Normal University, Nanjing 210023, China
  • 42. Nanjing University, Nanjing 210093, China
  • 43. Nankai University, Tianjin 300071, China
  • 44. National Centre for Nuclear Research, Warsaw 02-093, Poland
  • 45. North China Electric Power University, Beijing 102206, China
  • 46. Peking University, Beijing 100871, China
  • 47. Qufu Normal University, Qufu 273165, China
  • 48. Renmin University of China, Beijing 100872, China
  • 49. Shandong Normal University, Jinan 250014, China
  • 50. Shandong University, Jinan 250100, China
  • 51. Shanghai Jiao Tong University, Shanghai 200240, China
  • 52. Shanxi Normal University, Linfen 041004, China
  • 53. Shanxi University, Taiyuan 030006, China
  • 54. Sichuan University, Chengdu 610064, China
  • 55. Soochow University, Suzhou 215006, China
  • 56. South China Normal University, Guangzhou 510006, China
  • 57. Southeast University, Nanjing 211100, China
  • 58. State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, China
  • 59. Sun Yat-Sen University, Guangzhou 510275, China
  • 60. Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
  • 61. Tsinghua University, Beijing 100084, China
  • 62A. Turkish Accelerator Center Particle Factory Group, Istinye University, 34010, Istanbul, Turkey
  • 62B. Turkish Accelerator Center Particle Factory Group, Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey
  • 63. University of Bristol, H H Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
  • 64. University of Chinese Academy of Sciences, Beijing 100049, China
  • 65. University of Groningen, NL-9747 AA Groningen, The Netherlands
  • 66. University of Hawaii, Honolulu, Hawaii 96822, USA
  • 67. University of Jinan, Jinan 250022, China
  • 68. University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
  • 69. University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
  • 70. University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
  • 71. University of Science and Technology Liaoning, Anshan 114051, China
  • 72. University of Science and Technology of China, Hefei 230026, China
  • 73. University of South China, Hengyang 421001, China
  • 74. University of the Punjab, Lahore-54590, Pakistan
  • 75A. University of Turin and INFN, University of Turin, I-10125, Turin, Italy
  • 75B. University of Turin and INFN, University of Eastern Piedmont, I-15121, Alessandria, Italy
  • 75C. University of Turin and INFN, INFN, I-10125, Turin, Italy
  • 76. Uppsala University, Box 516, SE-75120 Uppsala, Sweden
  • 77. Wuhan University, Wuhan 430072, China
  • 78. Yantai University, Yantai 264005, China
  • 79. Yunnan University, Kunming 650500, China
  • 80. Zhejiang University, Hangzhou 310027, China
  • 81. Zhengzhou University, Zhengzhou 450001, China
  • a. Deceased
  • b. Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
  • c. Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
  • d. Also at the NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia
  • e. Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
  • f. Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, China
  • g. Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, China
  • h. Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • i. Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
  • j. Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
  • k. Also at MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
  • l. Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, China
  • m. Also at the Department of Mathematical Sciences, IBA, Karachi 75270, Pakistan
  • n. Also at Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • o. Also at Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
  • p. Also at Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China

Abstract: Utilizing 4.5 $ \text{fb}^{-1} $ of $ e^+e^- $ annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider, we searched for singly Cabibbo-suppressed hadronic decays $ \Lambda_{c}^{+}\to\Sigma^{0} K^{+}\pi^{0} $ and $ \Lambda_{c}^{+}\to\Sigma^{0}K^{+} \pi^+ \pi^- $ with a single-tag method. No significant signals were observed for both decays. The upper limits on the branching fractions at the 90% confidence level were determined to be $ 5.0\times 10^{-4} $ for $ \Lambda_{c}^{+}\to\Sigma^{0} K^{+}\pi^{0} $ and $ 6.5\times 10^{-4} $ for $ \Lambda_c^{+}\to\Sigma^0K^{+}\pi^{+}\pi^{-} $.

    HTML

    I.   INTRODUCTION
    • The experimental investigation of the decays of charmed baryons plays a critical role in understanding the complex dynamics of strong and weak interactions involving heavy quarks. The charmed baryon, $ \Lambda_{c}^{+} $, was first observed by the Mark II experiment in 1979 [1]. However, after decades of research, the sum of the known $ \Lambda^+_c $ decay branching fractions (BFs) is still limited to approximately 70%, with the remaining decays yet to be measured [2, 3]. The hadronic decay amplitudes of $ \Lambda^+_c $ include both factorizable and nonfactorizable contributions [4], given that its weak decays are not suppressed by color or helicity [5]. These nonfactorizable effects, such as those from W-exchange diagrams, play a crucial role in understanding the decay dynamics. In contrast, these effects are negligible in heavy meson decays [6]. Improving measurements of the BFs of $ \Lambda_{c}^{+} $ decays is essential for better understanding the internal dynamics of charmed baryon decays.

      Study of the three-body hadronic decays $ \Lambda_{c}^{+} \to B_{n}PP' $ is an important research area; $ B_{n} $ and P($ P' $) denote an octet baryon and a pseudoscalar meson, respectively. To date, Cabibbo-suppressed (SCS) hadronic decay $ \Lambda_{c}^{+} \to \Sigma^{0} K^{+}\pi^{0} $ has not been observed. This decay can proceed via the Feynman diagrams shown in Fig. 1. Predictions of the decay BF range from $ 0.8 \times 10^{-3} $ to $ 1.2 \times 10^{-3} $ with the SU(3) flavor symmetry framework [79], under the assumption that the $ PP' $ system is in an S-wave state. The most recent prediction, reported in Ref. [9], considers the complete effective Hamiltonian contribution. By contrast, Ref. [10] predicts the BF of $\Lambda^+_c\to \Sigma^0K^+\pi^0$ to be $ (2.1\pm0.6) \times 10^{-3} $ using the statistical isospin model. Experimentally, the BESIII experiment searched for this decay for the first time using a double-tag method and set the upper limit on its BF at the 90% confidence level (C.L.) to be $ 1.8\times 10^{-3} $ [11].

      Figure 1.  Feynman diagrams of $ \Lambda_{c}^{+}\to\Sigma^{0} K^{+}\pi^{0} $: (a) and (b) W-exchange diagrams, (c) internal W-emission diagram, and (d) external W-emission diagram.

      Currently, there are no theoretical predictions of the four-body hadronic decay $ \Lambda_c^{+} \to \Sigma^0K^{+}\pi^{+}\pi^{-} $. The BaBar experiment performed the first search for this decay and reported an upper limit on the BF ratio expressed as$ \dfrac{{\cal{B}} (\Lambda_c^{+} \to \Sigma^0K^{+}\pi^{+}\pi^{-})}{{\cal{B}} (\Lambda_{c}^{+} \to \Sigma^{0}\pi^+)} < 2.0 \times 10^{-2} $ at the 90% C.L. [12].

      In this study, we searched for hadronic decays $ \Lambda_{c}^{+} \to \Sigma^{0} K^{+} \pi^{0} $ and $ \Lambda_{c}^{+} \to \Sigma^{0} K^{+} \pi^{+} \pi^{-} $, with subsequent decays $ \Sigma^{0} \to \gamma \Lambda $ and $ \Lambda\to p \pi^- $, utilizing 4.5 fb$ ^{-1} $ of $ e^{+}e^{-} $ annihilation data collected at center-of-mass (c.m.) energies ranging from 4599.53 MeV to 4698.82 MeV [1315]. The results could be employed to test theoretical models and provide important input to them. Throughout this paper, the charge-conjugate state is always implied.

    II.   BESIII DETECTOR AND MONTE CARLO SIMULATION
    • The BESIII detector [16] records symmetric $ e^+e^- $ collisions provided by the BEPCII storage ring [17] in the c.m. energy range from 1.84 to 4.95 GeV, with a peak luminosity of $ 1.1\times 10^{33}\;\text{cm}^{-2}\text{s}^{-1} $ achieved at $ \sqrt{s} = $ 3.773 GeV. BESIII has collected large data samples in this energy region [21]. The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identification modules interleaved with steel. The charged-particle momentum resolution at $ 1\; {\rm GeV}/c $ is $ 0.5 $%, and the $ {\rm d}E/{\rm d}x $ resolution is $ 6 $% for electrons from Bhabha scattering. The EMC measures photon energies with a resolution of $ 2.5 $% ($ 5 $%) at $ 1 $GeV in the barrel (end-cap) region. The time resolution in the TOF barrel region is 68 ps, while that in the end-cap region is 110 ps. The end-cap TOF system was upgraded in 2015 using multigap resistive plate chamber technology. As a result of this upgrading, a time resolution of 60 ps was achieved [1820]. Approximately 87% of the data used in this analysis benefit from this upgrade.

      Simulated samples, generated by the GEANT4-based [22] Monte Carlo (MC) package, which includes the geometric description of the BESIII detector and the detector response, are used to determine the detection efficiency and to estimate the backgrounds. The simulations include the beam energy spread and initial state radiation (ISR) in the $ e^+e^- $ annihilation, modeled with the generator KKMC [23]. For ISR simulation, the Born cross section line shape of $ e^+e^-\to\Lambda_c^{+}\bar{\Lambda}_c^{-} $ measured by BESIII is used [24]. Signal MC samples are generated as $ \Lambda_c^{+}\to\Sigma^0K^{+}\pi^{0} $, $ \Lambda_c^{+}\to\Sigma^0\pi^{+}\pi^{0} $, $ \Lambda_c^{+}\to\Sigma^0K^{+}\pi^{+}\pi^{-} $, and $ \Lambda_c^{+}\to\Sigma^0\pi^{+}\pi^{+}\pi^{-} $, with the $ \bar{\Lambda}_c^{-} $ baryon decays inclusively. The signal decays are produced using the phase space (PHSP) model. To calculate the detection efficiencies, one million signal MC events are generated for each energy point, where $ \Lambda_c^+ $ ($ \bar{\Lambda}_c^- $) decays into the signal mode, and $ \bar{\Lambda}_c^- $ ($ \Lambda_c^+ $) decays into all possible states. Additionally, to study the peaking background, exclusive MC samples of $ \Lambda_c^{+}\to\Xi^{0} K^{+} $ and $ \Lambda_c^{+}\to\Lambda K^{*+} $ are generated. Inclusive MC samples consist of open-charm states, ISR production of the $ J/\psi $ and $ \psi(3686) $ states, and continuum processes $ e^+e^-\to q\bar{q} (q = u, d, s) $, used to study backgrounds. The known decay modes of charmed hadrons and charmonium states are modeled with EVTGEN [25, 26] using BFs taken from the Particle Data Group (PDG) [2]; the remaining unknown decays are modeled with LUNDCHARM [27, 28]. Final state radiation from charged final-state particles is incorporated with the PHOTOS package [29].

    III.   EVENT SELECTION AND DATA ANALYSIS
    • Owing to the limited availability of data statistics, we adopted a single-tag approach to improve signal efficiencies, where only one $ \Lambda_c^{+} $ is reconstructed in each event, with no requirement on the recoil side. To avoid potential bias and validate the analysis procedure, a blind analysis was adopted to examine pseudodata; in this analysis, for instance, the inclusive MC sample featured an equivalent size to that of the data. The real data were unblinded after fixing the analysis procedure.

      All charged tracks were required to have a polar angle (θ) range within $ |{\rm{cos}}\theta|<0.93 $, where θ is defined with respect to the z axis, which is the symmetry axis of the MDC. For those charged tracks not originating from Λ decays, the distance of closest approach to the interaction point (IP) was set to be less than 10 cm along the z-axis, $ |V_{z}| $, and less than 1 cm in the transverse plane, $ V_{xy} $. Particle identification (PID) for charged tracks combines measurements of the energy deposited in the MDC (dE/dx) and the flight time in the TOF to form likelihoods $ {\cal{L}}(h)\; (h=p,K,\pi) $ for each hadron h hypothesis. Tracks are identified as protons when the proton hypothesis has the greatest likelihood ($ {\cal{L}}(p)>{\cal{L}}(K) $ and $ {\cal{L}}(p)>{\cal{L}}(\pi) $), while charged kaons and pions are identified by comparing the likelihoods for the kaon and pion hypotheses, $ {\cal{L}}(K)>{\cal{L}}(\pi) $ and $ {\cal{L}}(\pi)>{\cal{L}}(K) $, respectively.

      The Λ particles were reconstructed from a pair of oppositely charged proton and pion candidates satisfying $ |V_{z}|< $ 20 cm. The same PID requirements as mentioned before were imposed to select the proton candidates. Other charged tracks were assigned to be π candidates without any PID requirements. These charged tracks were constrained to originate from the common decay vertex by requiring the $ \chi^{2} $ of the vertex fit to be less than 100, and the decay length was required to be greater than twice the vertex resolution away from the IP. To ensure reconstruction reliability, the Λ candidates were required to have an invariant mass within $ 1.111 < M(p\pi^{-}) < 1.121 $ GeV/$ c^{2} $, which corresponds to three times the mass resolution around the known Λ mass [2].

      Photon candidates were identified using isolated showers in the EMC. The deposited energy of each shower was set to be more than 25 MeV in the barrel region ($ |\cos \theta|< 0.80 $) and more than 50 MeV in the end cap region ($ 0.86 <|\cos \theta|< 0.92 $). To exclude showers that originate from charged tracks, the angle subtended by the EMC shower and the position of the closest charged track at the EMC were set to be greater than $ 10^\circ $ as measured from the IP. To suppress electronic noise and showers unrelated to the event, the difference between the EMC time and event start time was required to be within [0, 700] ns. The $ \pi^{0} $ candidates were reconstructed from photon pairs with an invariant mass within $ 0.115 < M(\gamma\gamma) < 0.150 $ GeV/$ c^{2} $. To improve momentum resolution, a one-constraint kinematic fit was utilized to constrain $ M(\gamma\gamma) $ to the known $ \pi^0 $ mass [2]. Only combinations that satisfy $ \chi^{2}<200 $ were retained, and the refined momenta were then employed for subsequent analysis. Then, the $ \Sigma^{0} $ candidates were reconstructed from the $ \Lambda\gamma $ final states, with an invariant mass in the range $ 1.179 < M(\Lambda\gamma) < 1.203 $ GeV/$ c^{2} $.

      To reduce the effect from the noise produced by $ \bar{p} $ in the EMC, the opening angle between photon and antiproton was required to be greater than $ 20^\circ $, which was obtained by optimizing the figure-of-merit defined as Punzi FOM $ = \dfrac{\varepsilon}{2.5+\sqrt{B}} $ [30]. Here, ε is the signal efficiency and B denotes the background yield from the inclusive MC samples. By utilizing the generic event-type analysis tool TopoAna [31], the study of inclusive MC samples shows that the peaking backgrounds for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ result from $ \Lambda_c^+ \to \Xi^0 K^+ $ and $ \Lambda_c^+ \to \Lambda K^{*+} $ decays. These backgrounds involve one less photon in the final state than the signal process. To suppress these backgrounds, we defined the energy difference $ \Delta E_{p \pi^- K^{+}\gamma\gamma} \equiv E_{p} + E_{ \pi^-} + E_{K^+} + E_{\gamma1} + E_{\gamma2} - E_{\text{beam}} $, where $ E_{p} $, $ E_{ \pi^-} $, $ E_{K^+} $, and $ E_{\gamma1/2} $ are the energies of a proton, pion, kaon, and two photons (coming from $ \pi^0 $), respectively, while $ E_{\text{beam}} $ represents the beam energy. Candidate events for $ \Lambda^+_c\to \Sigma^0K^+\pi^0 $ were required to satisfy $ -160 < \Delta E_{p \pi^- K^{+}\gamma\gamma} <-30 $ MeV, while candidate events for $ \Lambda^+_c\to \Sigma^0K^+\pi^+\pi^- $ were required to satisfy $ \Delta E_{p \pi^- K^{+} \pi^+ \pi^-} <-40 $ MeV. The distributions of $ \Delta E_{p \pi^- K^{+}\gamma\gamma} (\Delta E_{p \pi^- K^{+} \pi^+ \pi^-}) $ are shown in Fig. 2.

      Figure 2.  (color online) Distributions of $ \Delta E_{p \pi^- K^{+}\gamma\gamma} (\Delta E_{p \pi^- K^{+} \pi^+ \pi^-}) $ for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $($ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{+}\pi^{-} $). The histograms of the signal MC are normalized to make the distribution more intuitive when compared to the inclusive MC.

      After applying the above requirements, the $ \Sigma^{0} $, $ K^+ $ , and $ \pi^0(\pi^{\pm} $) candidates were combined to reconstruct $ \Lambda_c^{+} $. Kinematic variables, including energy difference $ \Delta E $, defined as $ \Delta E \equiv E_{\text{rec}-\Lambda_c^{+}} - E_{\text{beam}} $, and the beam-constrained mass $ M_{\text{BC}} $, defined as $ M_{\text{BC}} \equiv \sqrt{E^2_{\text{beam}}/^{}c^4 - {|\vec{p}|}^2/^{}c^2} $, were utilized to identify $ \Lambda_c^{+} $ candidates. Here, $ E_{\text{rec}-\Lambda_c^{+}} $ and $ \vec{p} $ are the energy and momentum of a $ \Lambda_c^{+} $ candidate, respectively. If there were multiple combinations satisfying these requirements in an event, the one with the minimum $ |\Delta E| $ was retained. Candidate events for $ \Lambda_{c}^{+}\to\Sigma^{0} K^{+}\pi^{0} $ and $ \Lambda^+_c\to \Sigma^0K^+\pi^+\pi^- $ were required to satisfy $ \Delta E \in [-27,\; 6] $ MeV and $ \Delta E \in [-21,\; 7] $ MeV, respectively, with the ranges optimized according to the Punzi FOM. The signal efficiency and background yield were obtained within the $ M_{\rm BC} $ signal region given by $ M_{\text{BC}} \in $ [2.282, 2.291] GeV/$ c^2 $. To obtain a pure signal, we employed the truth-match method [32]. This method involves comparing two photons in $ \pi^{0} $, one photon in $ \Sigma^{0} $, and the charged tracks $ K^{\pm} $ and $ \pi^{\pm} $ with their corresponding truth information. The angle $ \theta_{\text{truth}} $ is defined as the opening angle between each reconstructed track (showers) and its corresponding simulated track (showers). The signal shape was derived from events where $ \theta_{\text{truth}} $ was less than $ 20^\circ $ for all tracks (showers).

      Table 1 lists the signal efficiencies obtained at different energy points. Figures 3 and 5 show the $ M_{\text{BC}} $ distributions of the simultaneous fit performed between different energy points for each of the signal decays; no evident $ \Lambda_c^+ $ signals were observed. A likelihood scan method was employed after incorporating the systematic uncertainties, as discussed in the next section, to estimate the upper limits.

      $\sqrt{s} / \,\text{MeV}$ $ \varepsilon_{\Lambda_c^+ \to \Sigma^{0}K^+\pi^{0}} $ $ \varepsilon_{\Lambda_c^+ \to \Sigma^{0}K^+ \pi^+ \pi^-} $
      4599.53 5.17$ \pm $0.04 3.44$ \pm $0.03
      4611.86 4.89$ \pm $0.03 3.10$ \pm $0.03
      4628.00 4.76$ \pm $0.03 3.14$ \pm $0.03
      4640.91 4.76$ \pm $0.03 3.21$ \pm $0.03
      4661.24 4.71$ \pm $0.03 3.32$ \pm $0.03
      4681.92 4.68$ \pm $0.03 3.43$ \pm $0.03
      4698.82 4.65$ \pm $0.03 3.44$ \pm $0.03

      Table 1.  Single-tag efficiencies (%) for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ and $ \Lambda_c^+ \to \Sigma^{0}K^+ \pi^+ \pi^- $ at different energy points; the uncertainties are statistical only.

      Figure 3.  (color online) Fit to the $ M_{\rm BC} $ distributions of $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ (left) and $ \Lambda_c^+ \to \Sigma^{0}K^+ \pi^+ \pi^- $ (right) of the combined data. For $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $, the violet histograms represent the signal MC samples normalized with a product BF of 1.2 $ \times 10^{-3} $ [7]. The ARGUS function includes seven sub-ARGUS functions. The black point with the error bar represents data, the blue solid line represents the total fit function, the gray dashed line represents the combinatorial background, the violet dash line represents the signal function, the navy blue dashed line represents the unmatched component, the cyan dashed line represents the background shape extracted from $ \Lambda_c^{+}\to\Lambda K^{*+} $ MC samples, and the red dashed line represents the background shape extracted from $ \Lambda_c^{+}\to\Xi^{0} K^{+} $ MC samples.

      Figure 5.  (color online) Fit to the $ M_{\rm BC} $ distributions of $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ (left) and $ \Lambda_c^+ \to \Sigma^{0}K^+ \pi^+ \pi^- $ (right) at different energy points. The black point with the error bar represents data, the blue solid line represents the total fit function, the gray dashed line represents the combinatorial background, the violet dash line represents the signal function, the navy blue dashed line represents the unmatched component, the cyan dashed line represents the background shape extracted from $ \Lambda_c^{+}\to\Lambda K^{*+} $ MC samples, and red dashed line represents the background shape extracted from $ \Lambda_c^{+}\to\Xi^{0} K^{+} $ MC samples.

      The absolute BF of the signal decay is determined by

      $ \begin{aligned} {\cal{B}}^{\rm{sig}} \equiv \frac{N^{\rm{sig}}}{2 \cdot N_{\Lambda_c^+\bar{\Lambda}_c^-}\cdot {\cal{B}}^{\text{inter}} \cdot \varepsilon^{\text{sig}}}, \end{aligned} $

      (1)

      where $ N_{\Lambda_c^{+}\bar{\Lambda}_c^{-}} $ is the total number of $ \Lambda_c^{+}\bar{\Lambda}_c^{-} $ pairs, $ \varepsilon^{\text{sig}} $ is the single-tag efficiency, and $ {\cal{B}}^{\text{inter}} $ is the product BFs of the intermediate states $ \Sigma^0 $, Λ, and $ \pi^0 $.

      Given that there were different distributions of background and signal events at each energy point, a simultaneous fit was performed on individual $ M_{\rm BC} $ distributions. The BF of each signal decay was constrained to be the same value through a maximum likelihood simultaneous fit to individual $ M_{\rm BC} $ distributions across seven energy points. In the fit, the signal shapes were derived from MC simulations convolved with Gaussian functions to account for the potential difference between data and MC simulations. This is because of the imperfect modeling in MC simulations and the beam-energy spread. The control samples of $ \Lambda_c^{+}\to\Sigma^0\pi^{+}\pi^{0} $ and $ \Lambda_c^{+}\to\Sigma^0\pi^{+}\pi^{+}\pi^{-} $ were used to evaluate the resolution. These samples have similar topologies as those of our signal decays. The combinatorial backgrounds are well described by the ARGUS function [33], with the c.m. energy dependent endpoint fixed at $ E_{\text{beam}} $. The remaining peaking backgrounds, $ \Lambda_c^{+}\to\Xi^{0} K^{+} $ and $ \Lambda_c^{+}\to\Lambda K^{*+} $ for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $, were described using exclusive MC simulations with yields determined by the known BFs and the simulated misidentification rates listed in Table 2. For $ \Lambda_c^{+}\to\Sigma^0K^{+}\pi^{+}\pi^{-} $, there was no significant peaking background. Unmatched events, studied through the signal MC samples, exhibited a non-flat distribution. In the simultaneous fit, the yields associated with the unmatched events were determined by evaluating the ratio between the matched signal yields and the unmatched background yields, with the ratio obtained from MC simulation.

      $\sqrt{s} / \text{MeV}$ $ \varepsilon_{\Lambda_c^+\to\Xi^0K^+} $ $ \varepsilon_{\Lambda_c^+\to\Lambda K^{*+}} $
      4599.53 2.34$ \pm $0.03 2.63$ \pm $0.02
      4611.86 1.97$ \pm $0.03 2.59$ \pm $0.02
      4628.00 2.10$ \pm $0.03 2.58$ \pm $0.02
      4640.91 2.06$ \pm $0.03 2.58$ \pm $0.02
      4661.24 2.10$ \pm $0.03 2.57$ \pm $0.02
      4681.92 2.14$ \pm $0.03 2.56$ \pm $0.02
      4698.82 2.25$ \pm $0.03 2.46$ \pm $0.02

      Table 2.  Contamination rates (%) after including the BFs of the secondary decays at each energy point; the uncertainties are statistical only.

    IV.   SYSTEMATIC UNCERTAINTY
    • The systematic uncertainties in the determinations of the upper limits on the BFs are classified into two categories: additive and multiplicative terms.

      The additive terms include the uncertainties introduced by the chosen signal and background shapes. The uncertainty associated with the signal shape was estimated by changing the parameters of the convolved Gaussian functions within their uncertainties. The largest deviation of the individual changes was considered as the uncertainty. The background shape of the non-peaking components was changed from the ARGUS function to be the shape extracted from the inclusive MC samples. The uncertainty due to the fixed contribution of the peaking background yields in the fit was investigated by varying the fixed yields within $ \pm 1 \sigma $ of the PDG BFs of individual background sources. Among all the above terms, the case yielding the largest upper limit was chosen for further analysis. The additive uncertainty for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^+\pi^- $ is dominated by the signal shape uncertainty, while the $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ is mainly influenced by the background shape uncertainty.

      The sources of multiplicative systematic uncertainties include tracking and PID of charged particles, $ \pi^0 $ reconstruction, Λ reconstruction, photon reconstruction, $ \Delta E $ requirement, $ {\cal{B}}^{\text{inter}} $(Quoted BF), MC model, truth matching, MC statistics, $ N_{\Lambda_c^+\bar\Lambda_c^-} $, $ \Delta E_{\Lambda} $($ \Delta E_{ p \pi^- K^{+}\gamma\gamma} $ and $ \Delta E_{p \pi^- K^{+} \pi^+ \pi^-} $), and $ \theta_{\bar{p}\gamma} $ requirement. The total multiplicative systematic uncertainties are summarized in Table 3 and discussed in detail below.

      Source $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ $ \Lambda_c^+ \to \Sigma^{0}K^+ \pi^+ \pi^- $
      Tracking 1.0 3.0
      PID 1.0 3.0
      $ \pi^0 $ reconstruction 3.1 -
      Λ reconstruction 2.5 2.5
      Photon detection 0.5 0.5
      $ \Delta E $ requirement 2.0 3.7
      MC model 5.5 18.5
      $ {\cal{B}}^{\text{inter}} $ 0.8 0.8
      Truth matching 5.5 4.9
      $ N_{\Lambda_c^+\bar\Lambda_c^-} $ 0.9 0.9
      MC statistics 0.5 0.3
      $ \Delta E_{\Lambda} $ requirement 0.4 0.3
      $ \theta_{\bar{p}\gamma} $ requirement 0.1 -
      Total 9.2 20.1

      Table 3.  Multiplicative systematic uncertainties in unit of % for the BF measurement.

      $ \bf (a) $ Tracking and PID: The uncertainties of either PID or tracking of the charged tracks were set to be 1.0$ $% per track according to studies of the control sample of $ e^+e^-\to K^+K^-\pi^+\pi^- $ [34].

      $ \bf (b) $ $ {\pi^{0}} $ reconstruction: The $ \pi^0 $ reconstruction efficiency was studied with the control samples of $ \psi(3686)\to J/\psi\pi^0\pi^0 $ and $ e^+e^-\to \omega\pi^{0} $. The associated systematic uncertainty was assigned to be 3.1$ $% for each $ \pi^{0} $.

      $ \bf (c) $ Λ reconstruction: The systematic uncertainty of Λ reconstruction was assigned to be 2.5% according to the study of $ \Lambda_c^+\to\Lambda\pi^+ $ reported in Ref. [35], which includes the systematics associated with reconstructing the proton and pion daughter particles.

      $ \bf (d) $Photon reconstruction: The systematic uncertainty due to the photon reconstruction was estimated to be 0.5% for photons by analyzing the ISR process $ e^+e^-\to \gamma\mu^+\mu^- $.

      $ \bf (e) $ $ \Delta E $ requirements: Potential differences in the $ \Delta E $ distributions between data and MC simulation were studied with the control samples of $ \Lambda_c^+ \to \Sigma^{0}\pi^+\pi^{0} $ and $ \Lambda_c^+ \to \Sigma^{0}\pi^+\pi^+\pi^- $. The differences between the nominal and alternative acceptance efficiencies, namely 2.0% and 3.7%, were considered as the systematic uncertainties for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ and $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^+\pi^- $, respectively.

      $ \bf (f) $ MC model: The systematic uncertainties associated with the MC model were evaluated with alternative signal MC samples for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ and $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^+\pi^- $. These samples were generated as $ \Lambda_c^+\to \Lambda(1405) K^+ $, with $ \Lambda(1405)\to \Sigma^{0}\pi^0 $ via the PHSP model, and $ \Lambda_c^+\to\Sigma^0 \pi^+ K^{*} $, with $ K^{*}\to K^+ \pi^- $also simulated in the PHSP model. The differences between the efficiencies of these alternative models and the nominal model were considered as the systematic uncertainties: $ 5.5 $% for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ and $ 18.5 $% for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^+\pi^- $, respectively.

      $ \bf (g) $ $ {\cal{B}}^{\text{inter}} $: The BFs of $ \Sigma^{0}\to\Lambda\gamma,\; \Lambda\to p \pi^- \; \text{and}\; \pi^{0}\to\gamma\gamma $ were extracted from results reported by the PDG [2]. The uncertainties of these known BFs add up to a total uncertainty of 0.8%.

      $ \bf (h) $Truth matching: To estimate the uncertainty caused by the angle cut in deriving the signal MC shape, we loosened the cut by $ 5^\circ $ for each angle. The differences between the nominal and new efficiencies were considered as the systematic uncertainties: 5.5% for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ and 4.9% for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^+\pi^- $.

      $ \bf (i) $ $ N_{\Lambda_c^+\bar\Lambda_c^-} $: The uncertainty of $ N_{\Lambda_c^+\bar\Lambda_c^-} $ was extracted from Refs. [13, 15]. Its effect on BF measurement, 0.9%, was assigned as the systematic uncertainty for both decays.

      $ \bf (j) $ MC statistics: The uncertainties due to limited MC statistics were 0.5$ $% for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ and 0.3$ $% for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^+\pi^- $.

      $ \bf (k) $ $ \Delta E_{\Lambda} $ requirement: The uncertainty due to the $ \Delta E_{\Lambda} $ requirement was estimated using the control samples of $ \Lambda_c^+ \to \Sigma^{0}\pi^+\pi^{0} $ and $ \Lambda_c^+ \to \Sigma^{0}\pi^+\pi^{+}\pi^{-} $. The maximum changes of the acceptance efficiencies between data and MC simulation resulting from varying the $ \Delta E_\Lambda $ requirement by $ \pm0.05 $GeV were considered as the systematic uncertainties: 0.4% and 0.3% for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ and $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^+\pi^- $, respectively.

      $ \bf (l) $ $ \theta_{\bar{p}\gamma} $ requirement: The systematic uncertainty from the $ \theta_{\bar{p}\gamma} $ requirement for $ \Lambda^+_c\to \Sigma^0K^+\pi^0 $ was estimated using the control sample of $ \Lambda^+_c\to \Sigma^0\pi^+\pi^0 $. The maximum change in the acceptance efficiencies between data and MC simulation after varying the $ \theta_{\bar p\gamma} $ requirement by $ \pm5^\circ $, 0.1% was assigned as the systematic uncertainty.

    V.   RESULTS
    • The fit result is consistent with a background-only hypothesis of $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ and $ \Lambda_c^+ \to \Sigma^{0}K^+ \pi^+ \pi^- $, and the upper limits on their BFs were determined. The distributions of raw likelihoods versus individual BFs are represented as blue dashed curves in Fig. 4. Each curve is then convolved with a Gaussian function with zero mean and width set as the corresponding multiplicative systematic uncertainty, according to Refs. [36, 37]. The updated likelihood distributions are represented as red solid lines in Fig. 4. By integrating the red solid curves from zero to 90% of the physical region, the upper limits on the BFs at the 90% C.L. were set to be

      Figure 4.  (color online) Distributions of the likelihoods versus BFs of $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ (top) and $ \Lambda_c^+ \to \Sigma^{0}K^+ \pi^+ \pi^- $ (bottom). The results obtained with and without incorporating the systematic uncertainties are represented by red solid and blue dashed curves, respectively. The black arrows show the results corresponding to the 90% C.L.

      $ \begin{aligned} &{\cal{B}}(\Lambda_c^+ \to \Sigma^{0}K^+\pi^{0})< 5.0\times 10^{-4},\\ &{\cal{B}}(\Lambda_c^+ \to \Sigma^{0}K^+\pi^+\pi^-)< 6.5\times 10^{-4}. \end{aligned}$

    VI.   SUMMARY
    • Based on 4.5 fb$ ^{-1} $ of $ e^+e^- $annihilation data collected at c.m. energies between 4599.53 MeV and 4698.82 MeV with the BESIII detector at the BEPCII collider, we studied singly Cabibbo-suppressed hadronic decays $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ and $ \Lambda_c^{+}\to\Sigma^0K^{+}\pi^{+}\pi^{-} $ using a single-tag method. The upper limits on their BFs at the 90% C.L. were determined to be $ 5.0\times 10^{-4} $ for $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ and $ 6.5\times 10^{-4} $ for $ \Lambda_c^{+}\to\Sigma^0K^{+}\pi^{+}\pi^{-} $. The upper limit of the BF of $ \Lambda^+_c\to \Sigma^0K^+\pi^0 $ is more stringent than the previous BESIII measurement using a double-tag method [11]. The predictions based on $ SU(3) $ flavor symmetry exceed our upper limit by 2.4σ [7], 1.7σ [8], and 2.0σ [9], respectively. These discrepancies can be further investigated through fits to progressively obtain more accurate experimental measurements. Predictions from the statistical isospin model [10] differ from our results by 2.9σ, which indicates that the assumption of $ {\cal{B}}(\Lambda_c^+ \to \Sigma^{+}K^+\pi^{-}) $= $ {\cal{B}}(\Lambda_c^+ \to \Sigma^{0}K^+\pi^{0}) $is not accurate, as shown in Table 4. For $ \Lambda_c^{+}\to\Sigma^0K^{+}\pi^{+}\pi^{-} $, the upper limit is less stringent than the BaBar result [12]. These results provide valuable information for understanding the dynamics of charmed baryon decays and important input to theoretical models. The sensitivities to these two decays could be further improved with a larger data sample at BESIII [21] in the near future.

      Decay mode $ \Lambda_{c}^{+}\to\Sigma^{0} K^{+}\pi^{0} $ $ \Lambda_c^{+}\to\Sigma^0K^{+}\pi^{+}\pi^{-} $
      M.Gronau et al. [10] $ (2.1\pm0.6) \times 10^{-3} $ -
      C.Q.Geng et al. [7] $ (1.2\pm0.3) \times 10^{-3} $ -
      J.Y.Cen et al. [8] $ (7.8\pm2.3) \times 10^{-4} $ -
      C.Q.Geng et al. [9] $ (8.2\pm1.4) \times 10^{-4} $ -
      BESIII (double-tag) [11] $ < 1.8 \times 10^{-3} $ -
      BaBar experiment [12] - $ < 2.5 \times 10^{-4} $
      BESIII (single-tag) $ < 5.0 \times 10^{-4} $ $ < 6.5 \times 10^{-4} $

      Table 4.  Comparison of the experimental measurements of $ \Lambda_c^+ \to \Sigma^{0}K^+\pi^{0} $ and $ \Lambda_c^{+}\to\Sigma^0K^{+}\pi^{+}\pi^{-} $obtained in this study with those of BaBar and BESIII (single-tag) as well as theoretical predictions.

    ACKNOWLEDGEMENTS
    • The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support.

Reference (37)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return