Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

Beauty-charm meson family with coupled channel effects and their strong decays

  • We systematically examined the mass spectra and their two-body hadronic decays of the beauty-charm meson family considering coupled channel effects. Our results can effectively explain the observed Bc meson spectrum, and the prediction of the mass spectrum for unobserved beauty-charm mesons can be tested in future experiments. Compared with previous studies, we systematically examine the beauty-charm meson family within the coupled channel components. The 1S state in beauty-charm meson family has few percent of coupled channel component, while the 2S, 1P, and 1D states have more than ten percent of coupled channel component. The two-body hadronic decay widths of the 23P2 state is as narrow as 3 MeV. The two-body hadronic decay widths of 31S0, 33S1, 23D1, 2D, 2D, and 23D3 are approximately 109, 67, 60, 57, 201, and 76 MeV, respectively. Furthermore, the mixing effects between Bc(n3LL) and Bc(n1LL) states are discussed.
  • The understanding of hadron structures and their transitions at Fermi scale is a fundamental issue from both the theoretical and experimental aspects in particle physics. Given the meson spectrum, the beauty-charm meson family is relatively incomplete when compared with other systems. To date, only three beauty-charm mesons have been observed in experiments, i.e, the Bc(1S), Bc(2S) and Bc(2S) [1].

    The ground state Bc(11S0) of beauty-charm family was first discovered in 1998 by CDF at Fermilab [2]. The latest average mass for this state is determined as 6274.47±0.27±0.17 MeV [1]. A new structure was first discovered in B+cπ+π invariant mass spectrum with subprocess B+cJ/ψπ+ using the sample corresponding to 4.9 fb1 of 7 TeV and 19.2 fb1 of 8 TeV pp collision data acquired by the ATLAS experiment at the LHC in 2014 [3]. Then, two radially excited beauty-charm states Bc(21S0) and Bc(23S1) as opposed to one peak are discovered in B+cπ+π invariant mass spectrum in the same channels from both the CMS and LHCb experiments [4, 5]. The combined average mass for Bc(21S0) is determined as 6871.2±0.1 MeV [1]. For the vector excited state, Bc(23S1) first decays via hadronic transition B+c(23S1)B+c(13S1)π+π and then vector B+c(13S1) decays via electromagnetic transition B+c(13S1)B+c(11S0)+γ. However, the radiated photon is soft with energy of apprximately 60 MeV, which is not reconstructed among ATLAS, CMS, and LHCb experiments. Thus, the determination of the mass of B+c(23S1) relies on the precise information of B+c(13S1). Additionally, other beauty-charm meson states, including orbitally excited states, have not been observed in experiments to date. This requires precise theoretical predictions.

    In theoretical aspects, the mass spectra of beauty-charm mesons have been examined in many studies. For example, quark potential models [615], QCD sum rule [1620], heavy quark effective theory [21], and Dyson-Schwinger equation approach of QCD [22, 23]. Furthermore, the properties of low-lying Bc mesons are also investigated in lattice QCD based on the first principles [2426].

    Up to now, the Godfrey-Isgur quenched approach in quark potential models [14] is usually considered to provide a good and systematical description for most of the meson spectra. However, the quenched quark models sometimes poorly explain higher excited states beyond the two-body threshold because they miss the generation of the light quark-antiquark pairs which enlarge the Fock space of the initial state [27]. These multiquark components will change the Hamiltonian of the conventional quark potential models and then lead to mass shift and mixing among states with the same quantum numbers. If the initial state exceeds two-body threshold, then the open channel strong decay will be allowed. This implies that the unquenched quark model includes virtual hadronic loops. The hadronic loop has turned out to be highly nontrivial and can lead to mass shifts to the bare hadron states and contribute continuum components to the physical hadron states [28].

    The coupled-channel model as one of the unquenched quark model, which is usually neglected, will manifest as a coupling to meson-meson (meson-baryon) channels and lead to mass shifts. These effects are introduced explicitly into the constituent quark model via a QCD-inspired 3P0 pair-creation mechanism. The pair-creation mechanism is inserted at the quark level and one-loop diagrams are calculated by summing over the possible intermediate states [29]. It has been shown that the coupled-channel effects play an important role for describing the mesons spectra, such as charmonium [3033], bottomonium [2729, 34], and charmed-strange mesons [3546].

    In this study, we will use this type of unquenched quark model to examine the beauty-charm mesons. We will sytematically investigate the mass spectrum of the beauty-charm mesons within the nonrelativistic quark model by consideirng the mass shifts from the coupled-channel effects. Additionally, the two-body hadronic decays are also examined. The paper is arranged as follows. The theoretical formalism in coupled channel framework is provided in Section II, where the nonrelativistic quenched quark model and 3P0 model are introduced. The beauty-charm meson spectrum, including coupled channel effects, molecule and two quark components, and two body hadronic decay widths, are provided in Section III. Finally, we provide the summary in Section IV.

    First, we introduce a nonrelativistic quark model to denote the quenched quark interactions. Furthermore, Hamiltonian HQ can be expressed as:

    HQ=mb+mˉc+22mrCFαsr+br+Cbˉc

    +32αsσ3eσ2r29πmbmˉcSbSˉc+HSL,

    (1)

    where the reduced quark mass mr satisfies mr=mbmˉc/(mb+mˉc). Specifically, Si denotes the heavy quark spin operator. The linear confining assumption is employed and parameters mb, mc=mˉc, Cbˉc, σ, b, and αs in the quenched quark model Hamiltonian will be refitted from the knowledge of the existing hadrons.

    The left spin and orbital related term HSL has the expression:

    HSL=(Sb2m2b+Sˉc2m2ˉc)L(1rdVcdr+2rdV1dr)+S+Lmbmˉc(1rdV2r)+3SbˆrSˉcˆrSbSˉc3mbmˉcV3+[(Sbm2bSˉcm2ˉc)L+SmbmˉcL]V4,

    (2)

    where L denotes the orbital angular momentum between beauty charm quarks. S±=Sb±Sˉc. The expressions for each potential are as follows:

    Vc=CFαsr+br,V1=br29πα2sr[9ln(mbmˉcr)+9γE4],V2=CFαsr19πα2sr[18ln(mbmˉcr)+54ln(μr)+36γE+29],V3=4αsr313πα2sr3[36ln(mbmˉcr)+54ln(μr)+18γE+31],V4=1πα2sr3ln(mˉcmb),

    (3)

    where γE denots Euler constant. Furthermore, SU(3) color factors are CF=4/3 and CA=3. The renormalization scale μ=1 GeV is adopted as in Refs. [4752].

    The spin operator S=SbSˉc can lead to the mixing of the beauty-charm mesons with identical total angular momentum but with different total spins. For example, mixing between Bc(n3LL) and Bc(n1LL) states occurs, and this can be described by mixing matrix by introducing a mixing angle θnL [14, 53] as follows:

    (BcL(nL)BcL(nL))=(cosθnLsinθnLsinθnLcosθnL)(Bc(n1LL)Bc(n3LL)),

    (4)

    where the physical observed states are denoted as BcL(nL) and BcL(nL).

    The mixing angle is determined by the spin-orbit term HSL. The term include two parts, symmetric part Hsym and antisymmetric part Hanti. These two parts can be expressed as [48]:

    Hsym=S+L2[(12m2q+12m2ˉq)(1rdVcdr+2rdV1dr)+2mqmˉq(1rdV2r)+(1m2q1m2ˉq)V4],

    (5)

    Hanti=SL2[(12m2q12m2ˉq)(1rdVcdr+2rdV1dr)+(1m2q+1m2ˉq+2mqmˉq)V4].

    (6)

    When the heavy-light mesons have different total spins but with same total angular momentum, the spin-orbit mixing will occur. The mixing angle can be estimated by the antisymmetric part Hanti. Furthermore, Hanti provides the influence of non-diagonal terms, and the mixed angle can be extracted via diagonalization,

    The Gaussian expansion method is a high-precision method for solving Schrodinger equation. The method was proposed by E. Hiyama [54]. By using Gaussian basis functions, it can describe accurately short-range correlations and long-range asymptotic behavior and highly oscillatory character of wave functions in bound and scattering states of the systems. The method is widely used to calculate hadron spectrum [27, 55, 56]. For a given two-body Schrodinger equation:

    [22μ2+V(r)E]ψlm(r)=0,

    (7)

    where μ denotes the reduced mass and V(r) denotes a central potential. The equation can be solved by wave function ψlm(r) in terms of a set of Gaussian basis functions, ϕGnlm(r)=ϕGnl(r)Ylm(ˆr). Furthermore, the functions can be expressed as follows:

    ψlm(r)=n=1nmax

    (8)

    \begin{aligned} & \phi_{n l m}^{{\rm{G}}}({\bf{r}})=\phi_{n l}^{{\rm{G}}}(r) Y_{l m}(\hat{{\bf{r}}}), \end{aligned}

    (9)

    \begin{aligned} & \phi_{n l}^{{\rm{G}}}(r)=N_{n l} r^l {\rm e}^{-\nu_n r^2}, \end{aligned}

    (10)

    \begin{aligned} & N_{n l}=\left(\frac{2^{l+2}\left(2 \nu_n\right)^{l+\frac{3}{2}}}{\sqrt{\pi}(2 l+1)!!}\right)^{{1}/{2}}, \quad\left(n=1-n_{\max }\right). \end{aligned}

    (11)

    The constant N_{n l} is normalization constant, which can be determined by \langle\phi_{n l m}^{{\rm{G}}} \mid \phi_{n l m}^{{\rm{G}}}\rangle=1 . Hence, set \left\{\phi_{n l m}^{{\rm{G}}}; n=1-n_{\max }\right\} is a non-orthogonal set.

    The quenched quark potential model only includes the interaction between heavy quark pair. However, the hadronic loop interaction can also play a role via the generation of the light quark pair in b\bar{c}\to (b\bar{q})(q\bar{c}) . Furthermore, the hadronic loop interaction becomes more important for the higher excited beauty-charm mesons. The coupled channel framework provides a good description for the hadronic loop interactions.

    In this framework, the beauty-charm meson state can be expressed as:

    |\psi\rangle = \left(\begin{array}{cc} c_0 |\psi_0\rangle \\ \sum_{BD} \int {\rm d}^3p\, c_{BD}(p) |BD;p\rangle \end{array}\right),

    (12)

    where c_0 denotes the b\bar{c} bare state probability amplitude, while c_{BD}(p) denotes the beauty meson B and charm meson D molecular component probability amplitude with relative momentum p. To normalize the state, we impose the condition |c_0|^2+\sum_{BD} \int {\rm d}^3p\, |c_{BD}(p)|^2=1.

    The total Hamiltonian in coupled channel framework can be expressed as:

    H = \left(\begin{array}{cc} H_Q & H_I \\ H_I & H_{BD} \end{array}\right),

    (13)

    where H_{BD} denotes the Hamiltonian for beauty meson B and charm meson D system as:

    H_{BD} = E_{BD} =\sqrt{m_B^2 +p^2} + \sqrt{m_D^2 +p^2}.

    (14)

    H_I leads to coupling between b\bar{c} bare state and BD molecule component. In the following, the ^3P_0 model, where the generated light quark pairs have identical quantum numbers J^{PC} = 0^{++} in vacuum, is employed to analyze the mixing of b\bar{c} bare state and BD molecule component [6466].

    Then, we solve the spectrum eigen equation as follows:

    H |\psi\rangle= M |\psi\rangle,

    (15)

    where M denotes the final mass for the beauty-charm mesons in coupled channel framework. Practically, the eigenvalue M can be rewritten as [29, 30, 32, 34]:

    M = M_Q + \Delta M,

    (16)

    \begin{aligned} \Delta M &= \sum_{BD} \int_0^{\infty} p^2 {\rm d} p \frac{\left|\langle BD;p \right| T^{\text †} \left| \psi_0 \rangle \right|^2}{M - E_{BD} }, \end{aligned}

    (17)

    where M_Q denotes the eigenvalue for the quenched Hamiltonian H_Q , while \Delta M denotes the mass shift from the coupled channel effect. Operator {T^{\text †} } in ^3P_0 model can be expressed as [29, 32, 34]:

    \begin{aligned}[b] T^{{\text †}}=\;& -3 \, \gamma_0^{\rm eff} \, \int {\rm d} \vec{p}_1 \, {\rm d} \vec{p}_2 \, \delta(\vec{p}_1 + \vec{p}_2) \, C_{12} \, F_{12} \, {\rm e}^{-r_q^2 (\vec{p}_1 - \vec{p}_2)^2/6 }\, \\ & \left[ \chi_{12} \, \times \, {{\mathcal{Y}}}_{1}(\vec{p}_1 - \vec{p}_2) \right]^{(0)}_0 \, b_1^{{\text †}}(\vec{p}_1) \, d_2^{{\text †}}(\vec{p}_2) \; , \end{aligned}

    (18)

    where operators b_1^{{\text †}}(\vec{p}_1) and d_2^{{\text †}}(\vec{p}_2) create a light quark pair. The light quark pair creation strength is denoted as \gamma_0^{\rm eff}=\dfrac{m_u}{m_i}\gamma_0 with \gamma_0=0.4 and i=u, d, s [7]. The color, flavor, and spin wave functions for the light quark pair are C_{34} , F_{34} , and \chi_{34} , respectively. Furthermore, r_q denotes a width parameter of Gaussian factor, whose value is determined by analyzing meson decays. The Gaussian factor reflects the effective scale of quark pairs via smearing. This parameter is an improvement of ^3P_0 model. It is physically motivated and necessary to obtain a finite result when one sums over a complete set of virtual decay channels [67]. The value of r_q is in the range of 0.25 to 0.35 fm [6770]. We use the value r_q = 0.3 fm in the following calculation.

    To weigh the importance of coupled channel effects, it is useful to investigate the probabilities of b\bar{c} bare component and BD molecule component in the physical state. The probability of quenched b\bar{c} bare component can be expressed as:

    \begin{aligned}[b] P_{b\bar{c}} \equiv\;& |c_0|^2 \\ =\; &\left(1+\sum\limits_{BD} \displaystyle{\int}_0^{\infty} p^2 {\rm d} p \frac{\left|\langle BD;p \ell J \right| T^{\text †} \left| \psi_0 \rangle \right|^2}{(M - E_{BD})^2}\right)^{-1}. \end{aligned}

    (19)

    Then, the probability of BD molecule component can be naturally expressed as P_{{\rm{molecule}}}=\sum_{BD}P_{BD}= 1- P_{b\bar{c}} . Given that bare state mass is above the BD threshold, it is not possible to normalize the wave functions. Hence, we cannot estimate the proportion of the channel.

    For highly excited beauty-charm mesons above the BD threshold, they undergo direct two-body decay into a beauty meson and charm meson. The strong decay width is related to the imaginary part in \Delta M and can be expressed as:

    \Gamma_{BD} = 2 \pi p_0 \frac{E_B(p_0) E_D(p_0)}{M} \left| \langle BD;p_0\right| T^{\text{†}} \left| \psi_0 \rangle \right|^2 .

    (20)

    Given that only B_c mesons have experimental information, it is difficult to fit all parameters. Hence, we adopt a strategy similar to that in Ref. [7]. Although there are no experimental data for B^*_c(1^3S_1) and B^*_c(2^3S_1) masses, their values can be estimated as approximately 6334 and 6900 MeV, respectively. Furthermore, given that the hyperfine mass splitting in bottomonium family is measured as \Delta M_{b\bar{b}(1S)}=62.3\pm 3.2 MeV and \Delta M_{b\bar{b}(2S)}=24\pm4 MeV [1], the hyperfine mass splitting in beauty-charm meson family is considered as small as m_{B_c^*}-m_{B_c}\geq \Delta M_{b\bar{b}(1S)}=62.3\pm 3.2 MeV and m_{B_c^*(2S)}-m_{B_c(2S)}\geq \Delta M_{b\bar{b}(2S)}= 24\pm4 MeV because the hyperfine mass splitting is inversely proportional to the heavy quark mass. Based on experimental results and theoretical discussions, we have four data points B_c(1^1S_0) , B_c^*(1^3S_1) , B_c(2^1S_0) , and B_c^*(2^3S_1) with masses 6274, 6334, 6871, and 6900 MeV, respectively. We use these values to fit the model parameters \alpha_s , b , \sigma . For the other parameters in the model, we use commonly used values, which can describe other mesons well [7, 47, 49]. It should be noted that we do not fit all parameters in the model due to the lack of sufficient experimental data for fitting. The final refitted parameters are listed in Table 1.

    Table 1

    Table 1.  Parameters refitted in this study.
    Parameter This work
    m_n 0.45 GeV
    m_s 0.55 GeV
    m_c 1.43 GeV
    m_b 4.5 GeV
    \alpha_s 0.51851
    b 0.16178 GeV2
    σ 1.3424 GeV
    C_{b\bar{c}} 0.454 GeV
    \gamma_0 0.4
    DownLoad: CSV
    Show Table

    With the parameters in Table 1, the mass spectrum and mass shifts of the B_c mesons can be estimated. The results are shown in Fig. 1, with numbers listed in Table 2 and Table 3. The mixing angles of 1P , 2P , 1D , and 2D states can be also calculated, which are -35.0^\circ , -36.3^\circ , -42.8^\circ and -43.9^\circ , respectively. The mixing angles are close to B mesons \theta_{1P}=-34.6^\circ, \theta_{2P}=-36.1^\circ , \theta_{1D}= -39.6^\circ, \theta_{2D}=-39.7^\circ and B_s mesons \theta_{1P}= -34.9^\circ, \theta_{2P}=-36.1^\circ , \theta_{1D}=-39.8^\circ , and \theta_{2D}=-39.8^\circ [48].

    Figure 1

    Figure 1.  (color online) Beauty-charm meson family spectrum. "Exp." denotes the current experimental values from the latest PDG [1] and our quenched quark model results are depicted as "Ours". The unquenched quark model results from Ref. [14] are shown as "GI". The Lattice results from Ref. [63] are shown as "Latt.". The dashed lines denote the threshold positions of BD and B_sD_s , respectively.

    Table 2

    Table 2.  Beauty charm meson family spectrum (in MeV). The third column denotes the naive mass in quenched quark model; the fourth column denotes the mass shift from coupled channel effects; the fifth column denotes the final results for the beauty charm meson family spectrum; the last column is the latest experimental data [1]. For comparison, other theoretical predictions from quenched quark models are also listed. The mixing angles of 1P , 2P , 1D , and 2D are detemined as -35.0^\circ , -36.3^\circ , -42.8^\circ and -43.9^\circ , respectively.
    n^{2S+1}L_J State M_0 \Delta M M EPI [57] EMK [58] MAS [59] RR [60] QL [7] GI [61] XJL [12] DE [62] APM [10] RPP [1]
    1^1S_0 B_c^+ 6337 -65 6272 6274 6277 6277 6277 6271 6271 6271 6270 6275 6274.47\pm0.32
    1^3S_1 - 6405 -70 6335 - - - - 6326 6338 6338 6332 6314 6331\pm4\pm6 a
    2^1S_0 B_c(2S)^\pm 6989 -114 6874 6845 7038 7383 6814 6871 6855 6855 6835 6838 6871.2\pm1.0
    2^3S_1 - 7013 -116 6897 - - - - 6890 6887 6886 6881 6850 -
    3^1S_0 - 7393 -141 7252 7124 7798 7206 7351 7239 7250 7220 7193 - -
    3^3S_1 - 7410 -129 7281 - - - - 7252 7272 7240 7235 - -
    1^3P_0 - 6803 -98 6706 6519 7799 7042 6340 6714 6706 6701 6699 6672 -
    1P - 6852 -102 6750 - - - - 6757 6741 6745 6734 6766 -
    1P^\prime - 6887 -102 6785 - - - - 6776 6750 6754 6749 6828 -
    1^3P_2 - 6906 -104 6802 - - - - 6787 6768 6773 6762 6776 -
    2^3P_0 - 7226 -127 7099 6959 - 6663 6851 7107 7122 7097 7091 6914 -
    2P - 7264 -136 7128 - - - - 7134 7145 7125 7126 7259 -
    2P^\prime - 7300 -135 7165 - - - - 7150 7150 7133 7145 7322 -
    2^3P_2 - 7316 -144 7172 - - - - 7160 7164 7148 7156 7232 -
    1^3D_1 - 7147 -124 7023 6813 - - - 7020 7041 7023 7072 7078 -
    1D - 7154 -121 7033 - - - - 7024 7028 7032 7077 7009 -
    1D^\prime - 7163 -122 7041 - - - - 7032 7036 7039 7079 7154 -
    1^3D_3 - 7163 -120 7043 - - - - 7030 7045 7042 7081 6980 -
    2^3D_1 - 7496 -136 7360 - - - - 7336 - 7327 - - -
    2D - 7505 -150 7355 - - - - 7343 - 7335 - - -
    2D^\prime - 7509 -130 7380 - - - - 7347 - 7340 - - -
    2^3D_3 - 7514 -175 7338 - - - - 7348 - 7344 - - -
    aThis result is from Lattice QCD simulation [63]. Combing LHCb data and Lattice QCD result, the mass of B_c^*(2^3S_1) is determined as 6897\pm 12 MeV.
    DownLoad: CSV
    Show Table

    The spectra of B_c mesons have been examined in many studies [7, 10, 12, 5762, 71]. We listed their results in Table 2. It can be observed that different theoretical models predict the mass of B_c^+(1^1S_0) in accordance with experimental results. For state B_c(2S)^{\pm} , the predicted mass corresponds to 6845 MeV via exact quantization rule approach [57], 6814 MeV via asymptotic iteration method [60], 6871 MeV via nonrelativistic quark model [7], and 6855 MeV via relativistic quark model [61]. These values are consistent with experimental data value of 6871.2\pm1.0 MeV. However, the given mass values of 7038 MeV via analytical exact iteration method [58], 7383 MeV via non-relativistic quark model using Nikiforov-Uvarov method [59], and 6814 MeV via asymptotic iteration method [60] deviate significantly from the experimental results. These theoretical studies have enriched our understanding of the properties of B_c mesons. However, due to the limited experimental information on B_c mesons, there are still significant differences in the theoretical research results. Further experimental data is required to enhance and optimize theoretical understanding.

    We predicted that the masses of B_c(1^1S_0) and B_c(2^1S_0) are 6272 and 6874 MeV, respectively, which are close to the experimental values of 6274.47\pm0.32 MeV and 6871.2\pm1.0 MeV. Furthermore, we show the theoretical results of the other states in beauty-charm meson family. We expect that more experimental information can be found to support our results.

    For states below BD threshold, the probabilities of each coupled channel can be estimated. The probabilities are listed in Table 4. Hence, all the states have coupled channel components. Specifically, when comparing 1S , 2S , 1P , and the 1D states, the 2P states have larger non- b\bar c components. For 1S -wave states, we predicted they have 96% b\bar c components. This implies that the coupled channel components is just 4%. For other states, we predicted b\bar c component probabilities for 2S , 1P , 2P , and 1D states, which are approximately 86%, 90%, 67%, and 84%, respectively.

    Table 4

    Table 4.  Two quark and molecule probabilities (in %) in the coupled channels framework.
    State BD BD^* B^*D B^*D^* B_sD_s B_sD_s^* B_s^*D_s B_s^*D_s^* P_{\rm molecule} P_{b\bar c}
    1^1S_0 0 0.7 0.8 1.4 0 0.2 0.2 0.4 3.7 96.3
    1^3S_1 0.3 0.5 0.6 1.8 0.1 0.1 0.2 0.5 4.3 95.7
    2^1S_0 0 2.8 3.9 5.1 0 0.5 0.7 1.1 14.0 86.0
    2^3S_1 1.6 1.9 2.7 6.2 0.2 0.4 0.5 1.3 14.8 85.2
    1^3P_0 1.8 0 0 5.1 0.4 0 0 1.3 8.6 91.4
    1^1P_1 0 1.8 2.4 3.5 0 0.4 0.5 0.9 9.6 90.4
    1^3P_1 0 1.6 2.1 4.0 0 0.4 0.4 1.0 9.5 90.5
    1^3P_2 1.2 1.3 1.7 4.1 0.3 0.3 0.4 1.0 10.2 89.8
    2^3P_0 22.5 0 0 9.0 0.7 0 0 1.4 33.7 66.3
    2^1P_1 0 5.3 16.7 8.4 0 0.6 0.8 1.1 32.9 67.1
    2^3P_1 0 5.3 18.3 7.5 0 0.5 0.7 1.1 33.4 66.6
    1^3D_1 4.3 0.9 1.5 8.0 0.4 0.1 0.2 1.7 17.1 82.9
    1^1D_2 0 3.2 4.7 5.8 0 0.6 0.7 1.1 16.2 83.8
    1^3D_2 0 3.1 4.8 6.1 0 0.5 0.7 1.2 16.4 83.6
    1^3D_3 2.2 2.0 2.6 6.6 0.4 0.4 0.5 1.2 15.9 84.1
    DownLoad: CSV
    Show Table

    Table 3

    Table 3.  Mass shift \Delta M (in MeV) for beauty charm mesons from different channels.
    State BD BD^* B^*D B^*D^* B_sD_s B_sD_s^* B_s^*D_s B_s^*D_s^* Total
    1^1S_0 0 -13 -11 -25 0 -4 -4 -9 -65
    1^3S_1 -4 -9 -8 -31 -1 -3 -3 -11 -70
    2^1S_0 0 -23 -23 -44 0 -6 -6 -12 -114
    2^3S_1 -8 -15 -16 -52 -2 -4 -4 -14 -116
    3^1S_0 0 -36 -23 -60 0 -6 -6 -11 -142
    3^3S_1 3 -32 1 -79 -2 -4 -4 -13 -130
    1^3P_0 -12 0 0 -63 -3 0 0 -20 -98
    1P 0 -20 -19 -39 0 -6 -6 -12 -102
    1P^\prime 0 -16 -15 -47 0 -5 -4 -15 -102
    1^3P_2 -10 -15 -14 -42 -3 -5 -4 -13 -104
    2^3P_0 -33 0 0 -72 -4 0 0 -18 -127
    2P 0 -27 -34 -51 0 -6 -6 -12 -136
    2P^\prime 0 -24 -33 -54 0 -5 -5 -13 -135
    2^3P_2 -19 -18 -21 -61 -3 -4 -4 -13 -143
    1^3D_1 -13 -5 -6 -75 -3 -1 -1 -21 -124
    1D 0 -24 -25 -47 0 -6 -6 -13 -121
    1D^\prime 0 -21 -22 -54 0 -5 -5 -15 -122
    1^3D_3 -13 -18 -17 -47 -3 -5 -4 -12 -120
    2^3D_1 -7 0 1 -104 -6 -1 -2 -17 -136
    2D 0 -28 -17 -83 0 -6 -6 -11 -150
    2D^\prime 0 -13 -12 -79 0 -5 -7 -12 -130
    2^3D_3 -10 -23 -20 -102 -3 -4 -4 -11 -175
    DownLoad: CSV
    Show Table

    For states, which have large masses, the strong decay channels will be open, and strong decay widths are shown in Table 5. For 1S -wave, 2S -wave, and 1P -wave, most of 2P -wave and 1D -wave states, their masses are below the BD threshold and cannot undergo strong decay into BD states. Hence, we just discuss the strong decay of the B_c(2^3P_2) , 3S -wave, and 2D -wave B_c mesons. For B_c(2^3P_2) , it can just decay to BD final states with decay width of approximately 3 MeV. For 3S -wave states, B_c(3^1S_0) can strong decay to B^*D with predicted width of 109 MeV, while the B_c(3^3S_1) can strong decay to BD and B^*D with predicted width 10 and 57 MeV, whose total decay width becomes 67 MeV. For the 2D -wave states, the total decay widths of the B_c(2^3D_1) , B_c(2D) , B_c(2D^\prime) , and 2^3D_3 states are 60 , 57 , 201 , and 76 MeV, respectively. The B_c(2^3D_1) dominantly decay into BD^* and B^*D^* with predicted widths of 28 and 22 MeV. The B_c(2D) can mainly decay into BD^* and B^*D^* with predicted widths of 15 and 37 MeV. Furthermore, the B_c(2D^\prime) can mainly decay into BD^* , B^*D , and B^*D^* with predicted widths of 64 , 69 , and 68 MeV. The mixing angle of the two states is -43.9^\circ . Furthermore, B_c(2^3D_3) have three major decay channels of BD, B^*D , and B^*D^* with a decay width of 27 , 30 and 15 MeV, respectively. These differences in decays will aid in distinguishing these excited beauty-charm meson states.

    Table 5

    Table 5.  Hadronic decay widths (in MeV) of the beauty-charm mesons.
    State BD BD^* B^*D B^*D^* B_sD_s B_sD_s^* B_s^*D_s B_s^*D_s^* Total
    3^1S_0 0 0 109 0 0 0 0 0 109
    3^3S_1 10 0 57 0 0 0 0 0 67
    2^3P_2 3 0 0 0 0 0 0 0 3
    2^3D_1 2 28 1 22 7 0 0 0 60
    2D 0 15 4 37 0 0 0 0 57
    2D^\prime 0 64 69 68 0 0 0 0 201
    2^3D_3 27 4 30 15 0 0 0 0 76
    DownLoad: CSV
    Show Table

    We calculated the mass spectrum and two-body hadronic decays for beauty-charm mesons based on the coupled channel framework. The coupled channel effects are calculated from ^3P_0 model. The wave functions in our calculations are obtained by solving the Hamiltonian of the potential model with Gaussian Expansion Method.

    Our results indicate that all beauty-charm states have coupled channel components, with each state having a different composition. In general, the coupled channel effects are smaller for bound states compared to excited states. Furthermore, 1S states are approximately 3% – 5%, while the 1P states are approximately 8% – 11%. The 1D states are approximately 15% – 18%, and the 2S states are approximately 14% – 15%. Four 2P states have larger couple channel components of approximately 32% – 34%. The mixing angles of 1P , 2P , 1D , and 2D states are determined as -35.0^\circ , -36.3^\circ , -42.8^\circ and -43.9^\circ , respectively.

    For the strong decays of excited states above BD threshold, the B_c(3^1S_0) state mainly strongly decays to B^*D channel and the B_c(3^3S_1) mainly strongly decays to BD and B^*D . Furthermore, the B_c(2^3P_2) mainly decays to BD. Additionally, B_c(3S) and B_c^*(3S) can be also detected in B_c(3S)\to B_c(1S/2S)+\pi^++\pi^- and B^*_c(3S)\to B_c(1S/2S) + \pi^++\pi^-+\gamma processes practically. For four D -wave states, the B_c(2D^\prime) dominantly decays to BD^* , B^*D , and B^*D^* final states with a total width of 201 MeV. However, B_c(2^3D_1) , B_c(2D) , and B_c(2^3D_3) states have smaller decay widths of approximately 57 - 76 MeV. For the electromagnetic and weak decays of beauty-charm mesons, including polarization analysis, one can refer to Refs. [7277].

    Only a few beauty-charm meson states have been observed in current experiments. Theoretical studies will be valuable in uncovering their nature and advancing experimental discoveries at the LHC and the future Tera-Z factory at CEPC.

    [1] R. L. Workman et al. (Particle Data Group), PTEP 2022 , 083C01 (2022)
    [2] F. Abe et al. (CDF), Phys. Rev. Lett. 81, 2432 (1998), arXiv: hep-ex/9805034 doi: 10.1103/PhysRevLett.81.2432
    [3] G. Aad et al. (ATLAS), Phys. Rev. Lett. 113, 212004 (2014), arXiv: 1407.1032 doi: 10.1103/PhysRevLett.113.212004
    [4] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 122, 132001 (2019), arXiv: 1902.00571 doi: 10.1103/PhysRevLett.122.132001
    [5] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 232001 (2019), arXiv: 1904.00081 doi: 10.1103/PhysRevLett.122.232001
    [6] N. Akbar, Phys. Atom. Nucl. 83, 634 (2020), arXiv: 1911.02078 doi: 10.1134/S1063778820040031
    [7] Q. Li, M.-S. Liu, L.-S. Lu et al., Phys. Rev. D 99, 096020 (2019), arXiv: 1903.11927 doi: 10.1103/PhysRevD.99.096020
    [8] I. Asghar, F. Akram, B. Masud et al., Phys. Rev. D 100, 096002 (2019), arXiv: 1910.02680 doi: 10.1103/PhysRevD.100.096002
    [9] N. Akbar, F. Akram, B. Masud et al., Eur. Phys. J. A 55, 82 (2019), arXiv: 1811.07552 doi: 10.1140/epja/i2019-12735-1
    [10] A. P. Monteiro, M. Bhat, and K. B. Vijaya Kumar, Phys. Rev. D 95, 054016 (2017), arXiv: 1608.05782 doi: 10.1103/PhysRevD.95.054016
    [11] T.-Y. Li, L. Tang, Z.-y. Fang et al., Phys. Rev. D 108, 034019 (2023), arXiv: 2204.14258 doi: 10.1103/PhysRevD.108.034019
    [12] X.-J. Li, Y.-S. Li, F.-L. Wang et al., Eur. Phys. J. C 83, 1080 (2023), arXiv: 2308.07206 doi: 10.1140/epjc/s10052-023-12237-9
    [13] Z.-B. Gao, Y.-Y. Fan, H. Chen et al., (2024), arXiv: 2402.10629
    [14] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985) doi: 10.1103/PhysRevD.32.189
    [15] L. Chang, M. Chen, X.-Q. Li et al., Few Body Syst. 62, 4 (2021), arXiv: 1912.08339 doi: 10.1007/s00601-020-01586-w
    [16] C. A. Dominguez, K. Schilcher, and Y. L. Wu, Phys. Lett. B 298, 190 (1993) doi: 10.1016/0370-2693(93)91729-7
    [17] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded et al., Phys. Rev. D 51, 3613 (1995), arXiv: hepph/9406339 doi: 10.1103/PhysRevD.51.3613
    [18] E. Bagan, H. G. Dosch, P. Gosdzinsky et al., Z. Phys. C 64, 57 (1994), arXiv: hep-ph/9403208 doi: 10.1007/BF01557235
    [19] W. Chen, T. G. Steele, and S.-L. Zhu, J. Phys. G 41, 025003 (2014), arXiv: 1306.3486 doi: 10.1088/0954-3899/41/2/025003
    [20] Z.-G. Wang, Eur. Phys. J. A 49, 131 (2013), arXiv: 1203.6252 doi: 10.1140/epja/i2013-13131-7
    [21] J. Zeng, J. W. Van Orden, and W. Roberts, Phys. Rev. D 52, 5229 (1995), arXiv: hep-ph/9412269 doi: 10.1103/PhysRevD.52.5229
    [22] L. Chang, M. Chen, and Y.-X. Liu, Phys. Rev. D 102, 074010 (2020), arXiv: 1904.00399 doi: 10.1103/PhysRevD.102.074010
    [23] M. Chen, L. Chang, and Y.-X. Liu, Phys. Rev. D 101, 056002 (2020), arXiv: 2001.00161 doi: 10.1103/PhysRevD.101.056002
    [24] C. T. H. Davies, K. Hornbostel, G. P. Lepage et al., Phys. Lett. B 382, 131 (1996), arXiv: hep-lat/9602020 doi: 10.1016/0370-2693(96)00650-8
    [25] G. M. de Divitiis, M. Guagnelli, R. Petronzio et al., Nucl. Phys. B 675, 309 (2003), arXiv: heplat/0305018 doi: 10.1016/j.nuclphysb.2003.10.001
    [26] I. F. Allison, C. T. H. Davies, A. Gray et al. (HPQCD, FNAL Lattice, UKQCD), Nucl. Phys. B Proc. Suppl. 140 , 440 (2005), arXiv: hep-lat/0409090
    [27] Y. Lu, M. N. Anwar, and B.-S. Zou, Phys. Rev. D 94, 034021 (2016), arXiv: 1606.06927 doi: 10.1103/PhysRevD.94.034021
    [28] J.-F. Liu and G.-J. Ding, Eur. Phys. J. C 72, 1981 (2012), arXiv: 1105.0855 doi: 10.1140/epjc/s10052-012-1981-6
    [29] J. Ferretti, G. Galata, E. Santopinto et al., Phys. Rev. C 86, 015204 (2012) doi: 10.1103/PhysRevC.86.015204
    [30] Y. S. Kalashnikova, Phys. Rev. D 72, 034010 (2005), arXiv: hep-ph/0506270 doi: 10.1103/PhysRevD.72.034010
    [31] B.-Q. Li, C. Meng, and K.-T. Chao, Phys. Rev. D 80, 014012 (2009), arXiv: 0904.4068 doi: 10.1103/PhysRevD.80.014012
    [32] J. Ferretti, G. Galat`a, and E. Santopinto, Phys. Rev. C 88, 015207 (2013), arXiv: 1302.6857 doi: 10.1103/PhysRevC.88.015207
    [33] Q. Deng, R.-H. Ni, Q. Li et al., (2023), arXiv: 2312.10296
    [34] J. Ferretti and E. Santopinto, Phys. Rev. D 90, 094022 (2014), arXiv: 1306.2874 doi: 10.1103/PhysRevD.90.094022
    [35] E. van Beveren and G. Rupp, Eur. Phys. J. C 32, 493 (2004), arXiv: hep-ph/0306051 doi: 10.1140/epjc/s2003-01465-0
    [36] E. van Beveren and G. Rupp, Phys. Rev. Lett. 91, 012003 (2003), arXiv: hep-ph/0305035 doi: 10.1103/PhysRevLett.91.012003
    [37] S. Coito, G. Rupp, and E. van Beveren, Phys. Rev. D 84, 094020 (2011), arXiv: 1106.2760 doi: 10.1103/PhysRevD.84.094020
    [38] D. S. Hwang and D.-W. Kim, Phys. Lett. B 601, 137 (2004), arXiv: hep-ph/0408154 doi: 10.1016/j.physletb.2004.09.040
    [39] Y. A. Simonov and J. A. Tjon, Phys. Rev. D 70, 114013 (2004), arXiv: hep-ph/0409361 doi: 10.1103/PhysRevD.70.114013
    [40] I. W. Lee, T. Lee, D. P. Min et al., Eur. Phys. J. C 49, 737 (2007), arXiv: hep-ph/0412210 doi: 10.1140/epjc/s10052-006-0149-7
    [41] F.-K. Guo, S. Krewald, and U.-G. Meissner, Phys. Lett. B 665, 157 (2008), arXiv: 0712.2953 doi: 10.1016/j.physletb.2008.06.008
    [42] Z.-Y. Zhou and Z. Xiao, Phys. Rev. D 84, 034023 (2011), arXiv: 1105.6025 doi: 10.1103/PhysRevD.84.034023
    [43] A. M. Badalian, Y. A. Simonov, and M. A. Trusov, Phys. Rev. D 77, 074017 (2008), arXiv: 0712.3943 doi: 10.1103/PhysRevD.77.074017
    [44] Y.-B. Dai, X.-Q. Li, S.-L. Zhu et al., Eur. Phys. J. C 55, 249 (2008), arXiv: hep-ph/0610327 doi: 10.1140/epjc/s10052-008-0591-9
    [45] W. Hao, Y. Lu, and B.-S. Zou, Phys. Rev. D 106, 074014 (2022), arXiv: 2208.10915 doi: 10.1103/PhysRevD.106.074014
    [46] J.-J. Yang, W. Hao, X. Wang et al., Eur. Phys. J. C 83, 1098 (2023), arXiv: 2303.11815 doi: 10.1140/epjc/s10052-023-12275-3
    [47] O. Lakhina and E. S. Swanson, Phys. Lett. B 650, 159 (2007), arXiv: hep-ph/0608011 doi: 10.1016/j.physletb.2007.01.075
    [48] Q.-F. Lü, T.-T. Pan, Y.-Y. Wang et al., Phys. Rev. D 94, 074012 (2016), arXiv: 1607.02812 doi: 10.1103/PhysRevD.94.074012
    [49] D.-M. Li, P.-F. Ji, and B. Ma, Eur. Phys. J. C 71, 1582 (2011), arXiv: 1011.1548 doi: 10.1140/epjc/s10052-011-1582-9
    [50] W. Hao, Y. Lu, and E. Wang, Eur. Phys. J. C 83, 520 (2023), arXiv: 2212.10068 doi: 10.1140/epjc/s10052-023-11689-3
    [51] X.-C. Feng, W. Hao, and l.-J. Liu, Int. J. Mod. Phys. E 31, 2250066 (2022), arXiv: 2205.07169 doi: 10.1142/S0218301322500665
    [52] W. Hao, G.-Y. Wang, E. Wang et al., Eur. Phys. J. C 80, 626 (2020), arXiv: 1909.13099 doi: 10.1140/epjc/s10052-020-8187-0
    [53] S. Godfrey and R. Kokoski, Phys. Rev. D 43, 1679 (1991) doi: 10.1103/PhysRevD.43.1679
    [54] E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003) doi: 10.1016/S0146-6410(03)90015-9
    [55] H. Wang, Z. Yan, and J. Ping, Eur. Phys. J. C 75, 196 (2015), arXiv: 1412.7068 doi: 10.1140/epjc/s10052-015-3418-5
    [56] H. Wang, Y. Yang, and J. Ping, Eur. Phys. J. A 50, 76 (2014) doi: 10.1140/epja/i2014-14076-y
    [57] E. P. Inyang, E. P. Inyang, E. S. William et al., (2020), arXiv: 2012.10639
    [58] E. M. Khokha, M. Abu-Shady, and T. A. Abdel-Karim, (2016), arXiv: 1612.08206
    [59] M. Abu-Shady, T. A. Abdel-Karim, and S. Y. EzzAlarab, J. Egyptian Math. Soc. 27, 14 (2019), arXiv: 1901.00470 doi: 10.1186/s42787-019-0014-0
    [60] R. Rani, S. B. Bhardwaj, and F. Chand, Commun. Theor. Phys. 70, 179 (2018) doi: 10.1088/0253-6102/70/2/179
    [61] S. Godfrey, Phys. Rev. D 70, 054017 (2004), arXiv: hepph/0406228 doi: 10.1103/PhysRevD.70.054017
    [62] D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D 67, 014027 (2003), arXiv: hep-ph/0210381 doi: 10.1103/PhysRevD.67.014027
    [63] N. Mathur, M. Padmanath, and S. Mondal, Phys. Rev. Lett. 121, 202002 (2018), arXiv: 1806.04151 doi: 10.1103/PhysRevLett.121.202002
    [64] L. Micu, Nucl. Phys. B 10, 521 (1969) doi: 10.1016/0550-3213(69)90039-X
    [65] A. Le Yaouanc, L. Oliver, O. Pene et al., Phys. Rev. D 8, 2223 (1973) doi: 10.1103/PhysRevD.8.2223
    [66] A. Le Yaouanc, L. Oliver, O. Pene et al., Phys. Rev. D 9, 1415 (1974) doi: 10.1103/PhysRevD.9.1415
    [67] P. Geiger and N. Isgur, Phys. Rev. D 44, 799 (1991) doi: 10.1103/PhysRevD.44.799
    [68] B. Silvestre-Brac and C. Gignoux, Phys. Rev. D 43, 3699 (1991) doi: 10.1103/PhysRevD.43.3699
    [69] P. Geiger and N. Isgur, Phys. Rev. Lett. 67, 1066 (1991) doi: 10.1103/PhysRevLett.67.1066
    [70] P. Geiger and N. Isgur, Phys. Rev. D 55, 299 (1997), arXiv: hep-ph/9610445
    [71] P. G. Ortega, J. Segovia, D. R. Entem et al., Eur. Phys. J. C 80, 223 (2020), arXiv: 2001.08093 doi: 10.1140/epjc/s10052-020-7764-6
    [72] Y. Geng, M. Cao, and R. Zhu, (2023), arXiv: 2310.03425
    [73] K. Chen, Y. Geng, Y. Jin et al., (2024), arXiv: 2404.06221
    [74] W. Tao, R. Zhu, and Z.-J. Xiao, Phys. Rev. D 106, 114037 (2022), arXiv: 2209.15521 doi: 10.1103/PhysRevD.106.114037
    [75] W. Wang and R. Zhu, Int. J. Mod. Phys. A 34, 1950195 (2019), arXiv: 1808.10830 doi: 10.1142/S0217751X19501951
    [76] R. Zhu, Nucl. Phys. B 931, 359 (2018), arXiv: 1710.07011 doi: 10.1016/j.nuclphysb.2018.04.018
    [77] C.-F. Qiao, P. Sun, D. Yang et al., Phys. Rev. D 89, 034008 (2014), arXiv: 1209.5859 doi: 10.1103/PhysRevD.89.034008
  • [1] R. L. Workman et al. (Particle Data Group), PTEP 2022 , 083C01 (2022)
    [2] F. Abe et al. (CDF), Phys. Rev. Lett. 81, 2432 (1998), arXiv: hep-ex/9805034 doi: 10.1103/PhysRevLett.81.2432
    [3] G. Aad et al. (ATLAS), Phys. Rev. Lett. 113, 212004 (2014), arXiv: 1407.1032 doi: 10.1103/PhysRevLett.113.212004
    [4] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 122, 132001 (2019), arXiv: 1902.00571 doi: 10.1103/PhysRevLett.122.132001
    [5] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 232001 (2019), arXiv: 1904.00081 doi: 10.1103/PhysRevLett.122.232001
    [6] N. Akbar, Phys. Atom. Nucl. 83, 634 (2020), arXiv: 1911.02078 doi: 10.1134/S1063778820040031
    [7] Q. Li, M.-S. Liu, L.-S. Lu et al., Phys. Rev. D 99, 096020 (2019), arXiv: 1903.11927 doi: 10.1103/PhysRevD.99.096020
    [8] I. Asghar, F. Akram, B. Masud et al., Phys. Rev. D 100, 096002 (2019), arXiv: 1910.02680 doi: 10.1103/PhysRevD.100.096002
    [9] N. Akbar, F. Akram, B. Masud et al., Eur. Phys. J. A 55, 82 (2019), arXiv: 1811.07552 doi: 10.1140/epja/i2019-12735-1
    [10] A. P. Monteiro, M. Bhat, and K. B. Vijaya Kumar, Phys. Rev. D 95, 054016 (2017), arXiv: 1608.05782 doi: 10.1103/PhysRevD.95.054016
    [11] T.-Y. Li, L. Tang, Z.-y. Fang et al., Phys. Rev. D 108, 034019 (2023), arXiv: 2204.14258 doi: 10.1103/PhysRevD.108.034019
    [12] X.-J. Li, Y.-S. Li, F.-L. Wang et al., Eur. Phys. J. C 83, 1080 (2023), arXiv: 2308.07206 doi: 10.1140/epjc/s10052-023-12237-9
    [13] Z.-B. Gao, Y.-Y. Fan, H. Chen et al., (2024), arXiv: 2402.10629
    [14] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985) doi: 10.1103/PhysRevD.32.189
    [15] L. Chang, M. Chen, X.-Q. Li et al., Few Body Syst. 62, 4 (2021), arXiv: 1912.08339 doi: 10.1007/s00601-020-01586-w
    [16] C. A. Dominguez, K. Schilcher, and Y. L. Wu, Phys. Lett. B 298, 190 (1993) doi: 10.1016/0370-2693(93)91729-7
    [17] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded et al., Phys. Rev. D 51, 3613 (1995), arXiv: hepph/9406339 doi: 10.1103/PhysRevD.51.3613
    [18] E. Bagan, H. G. Dosch, P. Gosdzinsky et al., Z. Phys. C 64, 57 (1994), arXiv: hep-ph/9403208 doi: 10.1007/BF01557235
    [19] W. Chen, T. G. Steele, and S.-L. Zhu, J. Phys. G 41, 025003 (2014), arXiv: 1306.3486 doi: 10.1088/0954-3899/41/2/025003
    [20] Z.-G. Wang, Eur. Phys. J. A 49, 131 (2013), arXiv: 1203.6252 doi: 10.1140/epja/i2013-13131-7
    [21] J. Zeng, J. W. Van Orden, and W. Roberts, Phys. Rev. D 52, 5229 (1995), arXiv: hep-ph/9412269 doi: 10.1103/PhysRevD.52.5229
    [22] L. Chang, M. Chen, and Y.-X. Liu, Phys. Rev. D 102, 074010 (2020), arXiv: 1904.00399 doi: 10.1103/PhysRevD.102.074010
    [23] M. Chen, L. Chang, and Y.-X. Liu, Phys. Rev. D 101, 056002 (2020), arXiv: 2001.00161 doi: 10.1103/PhysRevD.101.056002
    [24] C. T. H. Davies, K. Hornbostel, G. P. Lepage et al., Phys. Lett. B 382, 131 (1996), arXiv: hep-lat/9602020 doi: 10.1016/0370-2693(96)00650-8
    [25] G. M. de Divitiis, M. Guagnelli, R. Petronzio et al., Nucl. Phys. B 675, 309 (2003), arXiv: heplat/0305018 doi: 10.1016/j.nuclphysb.2003.10.001
    [26] I. F. Allison, C. T. H. Davies, A. Gray et al. (HPQCD, FNAL Lattice, UKQCD), Nucl. Phys. B Proc. Suppl. 140 , 440 (2005), arXiv: hep-lat/0409090
    [27] Y. Lu, M. N. Anwar, and B.-S. Zou, Phys. Rev. D 94, 034021 (2016), arXiv: 1606.06927 doi: 10.1103/PhysRevD.94.034021
    [28] J.-F. Liu and G.-J. Ding, Eur. Phys. J. C 72, 1981 (2012), arXiv: 1105.0855 doi: 10.1140/epjc/s10052-012-1981-6
    [29] J. Ferretti, G. Galata, E. Santopinto et al., Phys. Rev. C 86, 015204 (2012) doi: 10.1103/PhysRevC.86.015204
    [30] Y. S. Kalashnikova, Phys. Rev. D 72, 034010 (2005), arXiv: hep-ph/0506270 doi: 10.1103/PhysRevD.72.034010
    [31] B.-Q. Li, C. Meng, and K.-T. Chao, Phys. Rev. D 80, 014012 (2009), arXiv: 0904.4068 doi: 10.1103/PhysRevD.80.014012
    [32] J. Ferretti, G. Galat`a, and E. Santopinto, Phys. Rev. C 88, 015207 (2013), arXiv: 1302.6857 doi: 10.1103/PhysRevC.88.015207
    [33] Q. Deng, R.-H. Ni, Q. Li et al., (2023), arXiv: 2312.10296
    [34] J. Ferretti and E. Santopinto, Phys. Rev. D 90, 094022 (2014), arXiv: 1306.2874 doi: 10.1103/PhysRevD.90.094022
    [35] E. van Beveren and G. Rupp, Eur. Phys. J. C 32, 493 (2004), arXiv: hep-ph/0306051 doi: 10.1140/epjc/s2003-01465-0
    [36] E. van Beveren and G. Rupp, Phys. Rev. Lett. 91, 012003 (2003), arXiv: hep-ph/0305035 doi: 10.1103/PhysRevLett.91.012003
    [37] S. Coito, G. Rupp, and E. van Beveren, Phys. Rev. D 84, 094020 (2011), arXiv: 1106.2760 doi: 10.1103/PhysRevD.84.094020
    [38] D. S. Hwang and D.-W. Kim, Phys. Lett. B 601, 137 (2004), arXiv: hep-ph/0408154 doi: 10.1016/j.physletb.2004.09.040
    [39] Y. A. Simonov and J. A. Tjon, Phys. Rev. D 70, 114013 (2004), arXiv: hep-ph/0409361 doi: 10.1103/PhysRevD.70.114013
    [40] I. W. Lee, T. Lee, D. P. Min et al., Eur. Phys. J. C 49, 737 (2007), arXiv: hep-ph/0412210 doi: 10.1140/epjc/s10052-006-0149-7
    [41] F.-K. Guo, S. Krewald, and U.-G. Meissner, Phys. Lett. B 665, 157 (2008), arXiv: 0712.2953 doi: 10.1016/j.physletb.2008.06.008
    [42] Z.-Y. Zhou and Z. Xiao, Phys. Rev. D 84, 034023 (2011), arXiv: 1105.6025 doi: 10.1103/PhysRevD.84.034023
    [43] A. M. Badalian, Y. A. Simonov, and M. A. Trusov, Phys. Rev. D 77, 074017 (2008), arXiv: 0712.3943 doi: 10.1103/PhysRevD.77.074017
    [44] Y.-B. Dai, X.-Q. Li, S.-L. Zhu et al., Eur. Phys. J. C 55, 249 (2008), arXiv: hep-ph/0610327 doi: 10.1140/epjc/s10052-008-0591-9
    [45] W. Hao, Y. Lu, and B.-S. Zou, Phys. Rev. D 106, 074014 (2022), arXiv: 2208.10915 doi: 10.1103/PhysRevD.106.074014
    [46] J.-J. Yang, W. Hao, X. Wang et al., Eur. Phys. J. C 83, 1098 (2023), arXiv: 2303.11815 doi: 10.1140/epjc/s10052-023-12275-3
    [47] O. Lakhina and E. S. Swanson, Phys. Lett. B 650, 159 (2007), arXiv: hep-ph/0608011 doi: 10.1016/j.physletb.2007.01.075
    [48] Q.-F. Lü, T.-T. Pan, Y.-Y. Wang et al., Phys. Rev. D 94, 074012 (2016), arXiv: 1607.02812 doi: 10.1103/PhysRevD.94.074012
    [49] D.-M. Li, P.-F. Ji, and B. Ma, Eur. Phys. J. C 71, 1582 (2011), arXiv: 1011.1548 doi: 10.1140/epjc/s10052-011-1582-9
    [50] W. Hao, Y. Lu, and E. Wang, Eur. Phys. J. C 83, 520 (2023), arXiv: 2212.10068 doi: 10.1140/epjc/s10052-023-11689-3
    [51] X.-C. Feng, W. Hao, and l.-J. Liu, Int. J. Mod. Phys. E 31, 2250066 (2022), arXiv: 2205.07169 doi: 10.1142/S0218301322500665
    [52] W. Hao, G.-Y. Wang, E. Wang et al., Eur. Phys. J. C 80, 626 (2020), arXiv: 1909.13099 doi: 10.1140/epjc/s10052-020-8187-0
    [53] S. Godfrey and R. Kokoski, Phys. Rev. D 43, 1679 (1991) doi: 10.1103/PhysRevD.43.1679
    [54] E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003) doi: 10.1016/S0146-6410(03)90015-9
    [55] H. Wang, Z. Yan, and J. Ping, Eur. Phys. J. C 75, 196 (2015), arXiv: 1412.7068 doi: 10.1140/epjc/s10052-015-3418-5
    [56] H. Wang, Y. Yang, and J. Ping, Eur. Phys. J. A 50, 76 (2014) doi: 10.1140/epja/i2014-14076-y
    [57] E. P. Inyang, E. P. Inyang, E. S. William et al., (2020), arXiv: 2012.10639
    [58] E. M. Khokha, M. Abu-Shady, and T. A. Abdel-Karim, (2016), arXiv: 1612.08206
    [59] M. Abu-Shady, T. A. Abdel-Karim, and S. Y. EzzAlarab, J. Egyptian Math. Soc. 27, 14 (2019), arXiv: 1901.00470 doi: 10.1186/s42787-019-0014-0
    [60] R. Rani, S. B. Bhardwaj, and F. Chand, Commun. Theor. Phys. 70, 179 (2018) doi: 10.1088/0253-6102/70/2/179
    [61] S. Godfrey, Phys. Rev. D 70, 054017 (2004), arXiv: hepph/0406228 doi: 10.1103/PhysRevD.70.054017
    [62] D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D 67, 014027 (2003), arXiv: hep-ph/0210381 doi: 10.1103/PhysRevD.67.014027
    [63] N. Mathur, M. Padmanath, and S. Mondal, Phys. Rev. Lett. 121, 202002 (2018), arXiv: 1806.04151 doi: 10.1103/PhysRevLett.121.202002
    [64] L. Micu, Nucl. Phys. B 10, 521 (1969) doi: 10.1016/0550-3213(69)90039-X
    [65] A. Le Yaouanc, L. Oliver, O. Pene et al., Phys. Rev. D 8, 2223 (1973) doi: 10.1103/PhysRevD.8.2223
    [66] A. Le Yaouanc, L. Oliver, O. Pene et al., Phys. Rev. D 9, 1415 (1974) doi: 10.1103/PhysRevD.9.1415
    [67] P. Geiger and N. Isgur, Phys. Rev. D 44, 799 (1991) doi: 10.1103/PhysRevD.44.799
    [68] B. Silvestre-Brac and C. Gignoux, Phys. Rev. D 43, 3699 (1991) doi: 10.1103/PhysRevD.43.3699
    [69] P. Geiger and N. Isgur, Phys. Rev. Lett. 67, 1066 (1991) doi: 10.1103/PhysRevLett.67.1066
    [70] P. Geiger and N. Isgur, Phys. Rev. D 55, 299 (1997), arXiv: hep-ph/9610445
    [71] P. G. Ortega, J. Segovia, D. R. Entem et al., Eur. Phys. J. C 80, 223 (2020), arXiv: 2001.08093 doi: 10.1140/epjc/s10052-020-7764-6
    [72] Y. Geng, M. Cao, and R. Zhu, (2023), arXiv: 2310.03425
    [73] K. Chen, Y. Geng, Y. Jin et al., (2024), arXiv: 2404.06221
    [74] W. Tao, R. Zhu, and Z.-J. Xiao, Phys. Rev. D 106, 114037 (2022), arXiv: 2209.15521 doi: 10.1103/PhysRevD.106.114037
    [75] W. Wang and R. Zhu, Int. J. Mod. Phys. A 34, 1950195 (2019), arXiv: 1808.10830 doi: 10.1142/S0217751X19501951
    [76] R. Zhu, Nucl. Phys. B 931, 359 (2018), arXiv: 1710.07011 doi: 10.1016/j.nuclphysb.2018.04.018
    [77] C.-F. Qiao, P. Sun, D. Yang et al., Phys. Rev. D 89, 034008 (2014), arXiv: 1209.5859 doi: 10.1103/PhysRevD.89.034008
  • 加载中

Figures(1) / Tables(5)

Get Citation
Wei Hao and Ruilin Zhu. Beauty-charm Meson Family with Coupled Channel Effects and Their Strong Decays[J]. Chinese Physics C. doi: 10.1088/1674-1137/ad75f5
Wei Hao and Ruilin Zhu. Beauty-charm Meson Family with Coupled Channel Effects and Their Strong Decays[J]. Chinese Physics C.  doi: 10.1088/1674-1137/ad75f5 shu
Milestone
Received: 2024-06-03
Article Metric

Article Views(835)
PDF Downloads(33)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Beauty-charm meson family with coupled channel effects and their strong decays

  • 1. School of Physics, Nankai University, Tianjin 300071, China
  • 2. Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, Jiangsu 210023, China
  • 3. Peng Huanwu Innovation Research Center, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract: We systematically examined the mass spectra and their two-body hadronic decays of the beauty-charm meson family considering coupled channel effects. Our results can effectively explain the observed B_c meson spectrum, and the prediction of the mass spectrum for unobserved beauty-charm mesons can be tested in future experiments. Compared with previous studies, we systematically examine the beauty-charm meson family within the coupled channel components. The 1S state in beauty-charm meson family has few percent of coupled channel component, while the 2S, 1P, and 1D states have more than ten percent of coupled channel component. The two-body hadronic decay widths of the 2^3P_2 state is as narrow as 3 MeV. The two-body hadronic decay widths of 3^1S_0, 3^3S_1, 2^3D_1, 2D, 2D^\prime, and 2^3D_3 are approximately 109, 67, 60, 57, 201, and 76 MeV, respectively. Furthermore, the mixing effects between B_c(n{}^3L_L) and B_c(n{}^1L_L) states are discussed.

    HTML

    I.   INTRODUCTION
    • The understanding of hadron structures and their transitions at Fermi scale is a fundamental issue from both the theoretical and experimental aspects in particle physics. Given the meson spectrum, the beauty-charm meson family is relatively incomplete when compared with other systems. To date, only three beauty-charm mesons have been observed in experiments, i.e, the B_c(1S) , B_c(2S) and B^*_c(2S) [1].

      The ground state B_c(1^1S_0) of beauty-charm family was first discovered in 1998 by CDF at Fermilab [2]. The latest average mass for this state is determined as 6274.47\pm0.27\pm0.17 MeV [1]. A new structure was first discovered in B_c^+ \pi^+ \pi^- invariant mass spectrum with subprocess B_c^+\to J/\psi\pi^+ using the sample corresponding to 4.9 fb ^{-1} of 7 TeV and 19.2 fb ^{-1} of 8 TeV pp collision data acquired by the ATLAS experiment at the LHC in 2014 [3]. Then, two radially excited beauty-charm states B_c(2^1S_0) and B^*_c(2^3S_1) as opposed to one peak are discovered in B_c^+ \pi^+ \pi^- invariant mass spectrum in the same channels from both the CMS and LHCb experiments [4, 5]. The combined average mass for B_c(2^1S_0) is determined as 6871.2\pm0.1 MeV [1]. For the vector excited state, B^*_c(2^3S_1) first decays via hadronic transition B^{*+}_c(2^3S_1) \to B^{*+}_c(1^3S_1) \pi^+ \pi^- and then vector B^{*+}_c(1^3S_1) decays via electromagnetic transition B^{*+}_c(1^3S_1)\to B^{+}_c(1^1S_0)+\gamma . However, the radiated photon is soft with energy of apprximately 60 MeV, which is not reconstructed among ATLAS, CMS, and LHCb experiments. Thus, the determination of the mass of B^{*+}_c(2^3S_1) relies on the precise information of B^{*+}_c(1^3S_1) . Additionally, other beauty-charm meson states, including orbitally excited states, have not been observed in experiments to date. This requires precise theoretical predictions.

      In theoretical aspects, the mass spectra of beauty-charm mesons have been examined in many studies. For example, quark potential models [615], QCD sum rule [1620], heavy quark effective theory [21], and Dyson-Schwinger equation approach of QCD [22, 23]. Furthermore, the properties of low-lying B_c mesons are also investigated in lattice QCD based on the first principles [2426].

      Up to now, the Godfrey-Isgur quenched approach in quark potential models [14] is usually considered to provide a good and systematical description for most of the meson spectra. However, the quenched quark models sometimes poorly explain higher excited states beyond the two-body threshold because they miss the generation of the light quark-antiquark pairs which enlarge the Fock space of the initial state [27]. These multiquark components will change the Hamiltonian of the conventional quark potential models and then lead to mass shift and mixing among states with the same quantum numbers. If the initial state exceeds two-body threshold, then the open channel strong decay will be allowed. This implies that the unquenched quark model includes virtual hadronic loops. The hadronic loop has turned out to be highly nontrivial and can lead to mass shifts to the bare hadron states and contribute continuum components to the physical hadron states [28].

      The coupled-channel model as one of the unquenched quark model, which is usually neglected, will manifest as a coupling to meson-meson (meson-baryon) channels and lead to mass shifts. These effects are introduced explicitly into the constituent quark model via a QCD-inspired ^3P_0 pair-creation mechanism. The pair-creation mechanism is inserted at the quark level and one-loop diagrams are calculated by summing over the possible intermediate states [29]. It has been shown that the coupled-channel effects play an important role for describing the mesons spectra, such as charmonium [3033], bottomonium [2729, 34], and charmed-strange mesons [3546].

      In this study, we will use this type of unquenched quark model to examine the beauty-charm mesons. We will sytematically investigate the mass spectrum of the beauty-charm mesons within the nonrelativistic quark model by consideirng the mass shifts from the coupled-channel effects. Additionally, the two-body hadronic decays are also examined. The paper is arranged as follows. The theoretical formalism in coupled channel framework is provided in Section II, where the nonrelativistic quenched quark model and {}^3P_0 model are introduced. The beauty-charm meson spectrum, including coupled channel effects, molecule and two quark components, and two body hadronic decay widths, are provided in Section III. Finally, we provide the summary in Section IV.

    II.   THEORETICAL FORMALISM

      A.   Quenched quark model

    • First, we introduce a nonrelativistic quark model to denote the quenched quark interactions. Furthermore, Hamiltonian H_Q can be expressed as:

      \begin{aligned}[b] H_Q = m_{b} + m_{\bar{c}} + \frac{\nabla^2}{2m_r}-C_F\frac{{\alpha}_s}{r}+br+C_{b\bar{c}}\end{aligned}

      \begin{aligned}[b] + \frac{32{\alpha}_s{\sigma}^3 {\rm e}^{-{\sigma}^2r^2}}{9\sqrt{\pi}m_bm_{\bar{c}}} {{\boldsymbol{S}}}_{b} \cdot {{\boldsymbol{S}}}_{\bar{c}}+H_{SL}, \end{aligned}

      (1)

      where the reduced quark mass m_r satisfies m_r=m_b m_{\bar{c}}/ (m_b+m_{\bar{c}}) . Specifically, {{\boldsymbol{S}}}_{i} denotes the heavy quark spin operator. The linear confining assumption is employed and parameters m_{b} , m_c=m_{\bar{c}} , C_{b\bar{c}} , \sigma , b , and \alpha_s in the quenched quark model Hamiltonian will be refitted from the knowledge of the existing hadrons.

      The left spin and orbital related term H_{SL} has the expression:

      \begin{aligned}[b] H_{SL} =\;& \left(\frac{{\boldsymbol{S}}_{b}}{2m_b^2}+\frac{{{\boldsymbol{S}}}_{\bar{c}}}{2m_{\bar{c}}^2}\right) \cdot {\boldsymbol{L}}\left(\frac{1}{r}\frac{{\rm d}V_c}{{\rm d}r}+\frac{2}{r}\frac{{\rm d}V_1}{{\rm d}r}\right)\\ &+\frac{{{\boldsymbol{S}}}_+ \cdot {\boldsymbol{L}}}{m_bm_{\bar{c}}}\left(\frac{1}{r} \frac{{\rm d}V_2}{r}\right) +\frac{3{{\boldsymbol{S}}}_{b} \cdot \hat{{\boldsymbol{r}}}{{\boldsymbol{S}}}_{\bar{c}} \cdot \hat{{\boldsymbol{r}}}-{{\boldsymbol{S}}}_{b} \cdot {{\boldsymbol{S}}}_{\bar{c}}}{3m_b m_{\bar{c}}}V_3\\ & +\left[\left(\frac{{{\boldsymbol{S}}}_{b}}{m_b^2}-\frac{{{\boldsymbol{S}}}_{\bar{c}}}{m_{\bar{c}}^2}\right) \cdot {\boldsymbol{L}}+\frac{{{\boldsymbol{S}}}_-}{m_b m_{\bar{c}}} \cdot {\boldsymbol{L}}\right] V_4, \end{aligned}

      (2)

      where L denotes the orbital angular momentum between beauty charm quarks. {\boldsymbol{S}}_{\pm}={{\boldsymbol{S}}}_b\pm{{\boldsymbol{S}}}_{\bar{c}} . The expressions for each potential are as follows:

      \begin{aligned}[b] V_c =\;& -C_F\frac{{\alpha}_s}{r}+br, \\ V_1 =\;& -br-\frac{2}{9\pi}\frac{{\alpha}_s^2}{r}[9{\rm{ln}}(\sqrt{m_b m_{\bar{c}}}r)+9{\gamma}_E-4],\\ V_2 =\;& -C_F\frac{{\alpha}_s}{r}-\frac{1}{9\pi}\frac{{\alpha}_s^2}{r}[-18{\rm{ln}}(\sqrt{m_b m_{\bar{c}}}r)+54{\rm{ln}}(\mu r)\\ &+36{\gamma}_E+29],\\ V_3 =\;& -\frac{4{\alpha}_s}{r^3}-\frac{1}{3\pi}\frac{{\alpha}_s^2}{r^3}[-36{\rm{ln}}(\sqrt{m_b m_{\bar{c}}}r)+54{\rm{ln}}(\mu r)\\ &+18{\gamma}_E+31],\\ V_4 =\;& \frac{1}{\pi}\frac{{\alpha}_s^2}{r^3}{\rm{ln}}\left(\frac{m_{\bar{c}}}{m_b}\right), \end{aligned}

      (3)

      where \gamma_E denots Euler constant. Furthermore, SU(3) color factors are C_F=4/3 and C_A=3 . The renormalization scale \mu=1 GeV is adopted as in Refs. [4752].

      The spin operator {\boldsymbol{S}}_{-}={{\boldsymbol{S}}}_b-{{\boldsymbol{S}}}_{\bar{c}} can lead to the mixing of the beauty-charm mesons with identical total angular momentum but with different total spins. For example, mixing between B_c(n{}^3L_L) and B_c(n{}^1L_L) states occurs, and this can be described by mixing matrix by introducing a mixing angle \theta_{nL} [14, 53] as follows:

      \begin{equation} \left( \begin{array}{cr} B_{cL}(nL)\\ B^\prime_{cL}(nL) \end{array} \right) =\left( \begin{array}{cr} \cos \theta_{nL} & \sin \theta_{nL} \\ -\sin \theta_{nL} & \cos \theta_{nL} \end{array} \right) \left(\begin{array}{cr} B_c(n^1L_L)\\ B_c(n^3L_L) \end{array} \right), \end{equation}

      (4)

      where the physical observed states are denoted as B_{cL}(nL) and B_{cL}^\prime(nL) .

      The mixing angle is determined by the spin-orbit term H_{SL} . The term include two parts, symmetric part H_{\rm sym} and antisymmetric part H_{\rm anti} . These two parts can be expressed as [48]:

      \begin{aligned}[b] H_{\rm sym} =\;& \frac{{{\boldsymbol{S}}}_+ \cdot {{\boldsymbol{L}}}}{2}\left[\left(\frac{1}{2m_q^2}+\frac{1}{2m_{\bar{q}}^2}\right) \left(\frac{1}{r}\frac{{\rm d}V_c}{{\rm d}r}+\frac{2}{r}\frac{{\rm d}V_1}{{\rm d}r}\right)\right. \\ & \left.+\frac{2}{m_qm_{\bar{q}}}\left(\frac{1}{r} \frac{{\rm d}V_2}{r}\right)+\left(\frac{1}{m_q^2}-\frac{1}{m_{\bar{q}}^2}\right)V_4\right], \end{aligned}

      (5)

      \begin{aligned}[b] H_{\rm anti} =\;& \frac{{{\boldsymbol{S}}}_- \cdot {{\boldsymbol{L}}}}{2}\left[\left(\frac{1}{2m_q^2}-\frac{1}{2m_{\bar{q}}^2}\right) \left(\frac{1}{r}\frac{{\rm d}V_c}{{\rm d}r}+\frac{2}{r}\frac{{\rm d}V_1}{{\rm d}r}\right)\right. \\ & \left.+\left(\frac{1}{m_q^2}+\frac{1}{m_{\bar{q}}^2}+\frac{2}{m_qm_{\bar{q}}}\right)V_4\right]. \end{aligned}

      (6)

      When the heavy-light mesons have different total spins but with same total angular momentum, the spin-orbit mixing will occur. The mixing angle can be estimated by the antisymmetric part H_{\rm anti}. Furthermore, H_{\rm anti} provides the influence of non-diagonal terms, and the mixed angle can be extracted via diagonalization,

    • B.   Gaussian expansion method

    • The Gaussian expansion method is a high-precision method for solving Schrodinger equation. The method was proposed by E. Hiyama [54]. By using Gaussian basis functions, it can describe accurately short-range correlations and long-range asymptotic behavior and highly oscillatory character of wave functions in bound and scattering states of the systems. The method is widely used to calculate hadron spectrum [27, 55, 56]. For a given two-body Schrodinger equation:

      \left[-\frac{\hbar^2}{2 \mu} \nabla^2+V(r)-E\right] \psi_{l m}({\bf{r}})=0 ,

      (7)

      where μ denotes the reduced mass and V(r) denotes a central potential. The equation can be solved by wave function \psi_{l m}({\bf{r}}) in terms of a set of Gaussian basis functions, \phi_{n l m}^{\rm{G}}({\bf{r}})=\phi_{n l}^{{\rm{G}}}(r) Y_{l m}(\hat{{\bf{r}}}) . Furthermore, the functions can be expressed as follows:

      \begin{aligned} & \psi_{l m}({\bf{r}})=\sum_{n=1}^{n_{\max }} c_{n l} \phi_{n l m}^{{\rm{G}}}({\bf{r}}), \end{aligned}

      (8)

      \begin{aligned} & \phi_{n l m}^{{\rm{G}}}({\bf{r}})=\phi_{n l}^{{\rm{G}}}(r) Y_{l m}(\hat{{\bf{r}}}), \end{aligned}

      (9)

      \begin{aligned} & \phi_{n l}^{{\rm{G}}}(r)=N_{n l} r^l {\rm e}^{-\nu_n r^2}, \end{aligned}

      (10)

      \begin{aligned} & N_{n l}=\left(\frac{2^{l+2}\left(2 \nu_n\right)^{l+\frac{3}{2}}}{\sqrt{\pi}(2 l+1)!!}\right)^{{1}/{2}}, \quad\left(n=1-n_{\max }\right). \end{aligned}

      (11)

      The constant N_{n l} is normalization constant, which can be determined by \langle\phi_{n l m}^{{\rm{G}}} \mid \phi_{n l m}^{{\rm{G}}}\rangle=1 . Hence, set \left\{\phi_{n l m}^{{\rm{G}}}; n=1-n_{\max }\right\} is a non-orthogonal set.

    • C.   Coupled channel framework

    • The quenched quark potential model only includes the interaction between heavy quark pair. However, the hadronic loop interaction can also play a role via the generation of the light quark pair in b\bar{c}\to (b\bar{q})(q\bar{c}) . Furthermore, the hadronic loop interaction becomes more important for the higher excited beauty-charm mesons. The coupled channel framework provides a good description for the hadronic loop interactions.

      In this framework, the beauty-charm meson state can be expressed as:

      |\psi\rangle = \left(\begin{array}{cc} c_0 |\psi_0\rangle \\ \sum_{BD} \int {\rm d}^3p\, c_{BD}(p) |BD;p\rangle \end{array}\right),

      (12)

      where c_0 denotes the b\bar{c} bare state probability amplitude, while c_{BD}(p) denotes the beauty meson B and charm meson D molecular component probability amplitude with relative momentum p. To normalize the state, we impose the condition |c_0|^2+\sum_{BD} \int {\rm d}^3p\, |c_{BD}(p)|^2=1.

      The total Hamiltonian in coupled channel framework can be expressed as:

      H = \left(\begin{array}{cc} H_Q & H_I \\ H_I & H_{BD} \end{array}\right),

      (13)

      where H_{BD} denotes the Hamiltonian for beauty meson B and charm meson D system as:

      H_{BD} = E_{BD} =\sqrt{m_B^2 +p^2} + \sqrt{m_D^2 +p^2}.

      (14)

      H_I leads to coupling between b\bar{c} bare state and BD molecule component. In the following, the ^3P_0 model, where the generated light quark pairs have identical quantum numbers J^{PC} = 0^{++} in vacuum, is employed to analyze the mixing of b\bar{c} bare state and BD molecule component [6466].

      Then, we solve the spectrum eigen equation as follows:

      H |\psi\rangle= M |\psi\rangle,

      (15)

      where M denotes the final mass for the beauty-charm mesons in coupled channel framework. Practically, the eigenvalue M can be rewritten as [29, 30, 32, 34]:

      M = M_Q + \Delta M,

      (16)

      \begin{aligned} \Delta M &= \sum_{BD} \int_0^{\infty} p^2 {\rm d} p \frac{\left|\langle BD;p \right| T^{\text †} \left| \psi_0 \rangle \right|^2}{M - E_{BD} }, \end{aligned}

      (17)

      where M_Q denotes the eigenvalue for the quenched Hamiltonian H_Q , while \Delta M denotes the mass shift from the coupled channel effect. Operator {T^{\text †} } in ^3P_0 model can be expressed as [29, 32, 34]:

      \begin{aligned}[b] T^{{\text †}}=\;& -3 \, \gamma_0^{\rm eff} \, \int {\rm d} \vec{p}_1 \, {\rm d} \vec{p}_2 \, \delta(\vec{p}_1 + \vec{p}_2) \, C_{12} \, F_{12} \, {\rm e}^{-r_q^2 (\vec{p}_1 - \vec{p}_2)^2/6 }\, \\ & \left[ \chi_{12} \, \times \, {{\mathcal{Y}}}_{1}(\vec{p}_1 - \vec{p}_2) \right]^{(0)}_0 \, b_1^{{\text †}}(\vec{p}_1) \, d_2^{{\text †}}(\vec{p}_2) \; , \end{aligned}

      (18)

      where operators b_1^{{\text †}}(\vec{p}_1) and d_2^{{\text †}}(\vec{p}_2) create a light quark pair. The light quark pair creation strength is denoted as \gamma_0^{\rm eff}=\dfrac{m_u}{m_i}\gamma_0 with \gamma_0=0.4 and i=u, d, s [7]. The color, flavor, and spin wave functions for the light quark pair are C_{34} , F_{34} , and \chi_{34} , respectively. Furthermore, r_q denotes a width parameter of Gaussian factor, whose value is determined by analyzing meson decays. The Gaussian factor reflects the effective scale of quark pairs via smearing. This parameter is an improvement of ^3P_0 model. It is physically motivated and necessary to obtain a finite result when one sums over a complete set of virtual decay channels [67]. The value of r_q is in the range of 0.25 to 0.35 fm [6770]. We use the value r_q = 0.3 fm in the following calculation.

      To weigh the importance of coupled channel effects, it is useful to investigate the probabilities of b\bar{c} bare component and BD molecule component in the physical state. The probability of quenched b\bar{c} bare component can be expressed as:

      \begin{aligned}[b] P_{b\bar{c}} \equiv\;& |c_0|^2 \\ =\; &\left(1+\sum\limits_{BD} \displaystyle{\int}_0^{\infty} p^2 {\rm d} p \frac{\left|\langle BD;p \ell J \right| T^{\text †} \left| \psi_0 \rangle \right|^2}{(M - E_{BD})^2}\right)^{-1}. \end{aligned}

      (19)

      Then, the probability of BD molecule component can be naturally expressed as P_{{\rm{molecule}}}=\sum_{BD}P_{BD}= 1- P_{b\bar{c}} . Given that bare state mass is above the BD threshold, it is not possible to normalize the wave functions. Hence, we cannot estimate the proportion of the channel.

      For highly excited beauty-charm mesons above the BD threshold, they undergo direct two-body decay into a beauty meson and charm meson. The strong decay width is related to the imaginary part in \Delta M and can be expressed as:

      \Gamma_{BD} = 2 \pi p_0 \frac{E_B(p_0) E_D(p_0)}{M} \left| \langle BD;p_0\right| T^{\text{†}} \left| \psi_0 \rangle \right|^2 .

      (20)
    III.   RESULTS AND DISCUSSIONS
    • Given that only B_c mesons have experimental information, it is difficult to fit all parameters. Hence, we adopt a strategy similar to that in Ref. [7]. Although there are no experimental data for B^*_c(1^3S_1) and B^*_c(2^3S_1) masses, their values can be estimated as approximately 6334 and 6900 MeV, respectively. Furthermore, given that the hyperfine mass splitting in bottomonium family is measured as \Delta M_{b\bar{b}(1S)}=62.3\pm 3.2 MeV and \Delta M_{b\bar{b}(2S)}=24\pm4 MeV [1], the hyperfine mass splitting in beauty-charm meson family is considered as small as m_{B_c^*}-m_{B_c}\geq \Delta M_{b\bar{b}(1S)}=62.3\pm 3.2 MeV and m_{B_c^*(2S)}-m_{B_c(2S)}\geq \Delta M_{b\bar{b}(2S)}= 24\pm4 MeV because the hyperfine mass splitting is inversely proportional to the heavy quark mass. Based on experimental results and theoretical discussions, we have four data points B_c(1^1S_0) , B_c^*(1^3S_1) , B_c(2^1S_0) , and B_c^*(2^3S_1) with masses 6274, 6334, 6871, and 6900 MeV, respectively. We use these values to fit the model parameters \alpha_s , b , \sigma . For the other parameters in the model, we use commonly used values, which can describe other mesons well [7, 47, 49]. It should be noted that we do not fit all parameters in the model due to the lack of sufficient experimental data for fitting. The final refitted parameters are listed in Table 1.

      Parameter This work
      m_n 0.45 GeV
      m_s 0.55 GeV
      m_c 1.43 GeV
      m_b 4.5 GeV
      \alpha_s 0.51851
      b 0.16178 GeV2
      σ 1.3424 GeV
      C_{b\bar{c}} 0.454 GeV
      \gamma_0 0.4

      Table 1.  Parameters refitted in this study.

      With the parameters in Table 1, the mass spectrum and mass shifts of the B_c mesons can be estimated. The results are shown in Fig. 1, with numbers listed in Table 2 and Table 3. The mixing angles of 1P , 2P , 1D , and 2D states can be also calculated, which are -35.0^\circ , -36.3^\circ , -42.8^\circ and -43.9^\circ , respectively. The mixing angles are close to B mesons \theta_{1P}=-34.6^\circ, \theta_{2P}=-36.1^\circ , \theta_{1D}= -39.6^\circ, \theta_{2D}=-39.7^\circ and B_s mesons \theta_{1P}= -34.9^\circ, \theta_{2P}=-36.1^\circ , \theta_{1D}=-39.8^\circ , and \theta_{2D}=-39.8^\circ [48].

      Figure 1.  (color online) Beauty-charm meson family spectrum. "Exp." denotes the current experimental values from the latest PDG [1] and our quenched quark model results are depicted as "Ours". The unquenched quark model results from Ref. [14] are shown as "GI". The Lattice results from Ref. [63] are shown as "Latt.". The dashed lines denote the threshold positions of BD and B_sD_s , respectively.

      n^{2S+1}L_J State M_0 \Delta M M EPI [57] EMK [58] MAS [59] RR [60] QL [7] GI [61] XJL [12] DE [62] APM [10] RPP [1]
      1^1S_0 B_c^+ 6337 -65 6272 6274 6277 6277 6277 6271 6271 6271 6270 6275 6274.47\pm0.32
      1^3S_1 - 6405 -70 6335 - - - - 6326 6338 6338 6332 6314 6331\pm4\pm6 a
      2^1S_0 B_c(2S)^\pm 6989 -114 6874 6845 7038 7383 6814 6871 6855 6855 6835 6838 6871.2\pm1.0
      2^3S_1 - 7013 -116 6897 - - - - 6890 6887 6886 6881 6850 -
      3^1S_0 - 7393 -141 7252 7124 7798 7206 7351 7239 7250 7220 7193 - -
      3^3S_1 - 7410 -129 7281 - - - - 7252 7272 7240 7235 - -
      1^3P_0 - 6803 -98 6706 6519 7799 7042 6340 6714 6706 6701 6699 6672 -
      1P - 6852 -102 6750 - - - - 6757 6741 6745 6734 6766 -
      1P^\prime - 6887 -102 6785 - - - - 6776 6750 6754 6749 6828 -
      1^3P_2 - 6906 -104 6802 - - - - 6787 6768 6773 6762 6776 -
      2^3P_0 - 7226 -127 7099 6959 - 6663 6851 7107 7122 7097 7091 6914 -
      2P - 7264 -136 7128 - - - - 7134 7145 7125 7126 7259 -
      2P^\prime - 7300 -135 7165 - - - - 7150 7150 7133 7145 7322 -
      2^3P_2 - 7316 -144 7172 - - - - 7160 7164 7148 7156 7232 -
      1^3D_1 - 7147 -124 7023 6813 - - - 7020 7041 7023 7072 7078 -
      1D - 7154 -121 7033 - - - - 7024 7028 7032 7077 7009 -
      1D^\prime - 7163 -122 7041 - - - - 7032 7036 7039 7079 7154 -
      1^3D_3 - 7163 -120 7043 - - - - 7030 7045 7042 7081 6980 -
      2^3D_1 - 7496 -136 7360 - - - - 7336 - 7327 - - -
      2D - 7505 -150 7355 - - - - 7343 - 7335 - - -
      2D^\prime - 7509 -130 7380 - - - - 7347 - 7340 - - -
      2^3D_3 - 7514 -175 7338 - - - - 7348 - 7344 - - -
      aThis result is from Lattice QCD simulation [63]. Combing LHCb data and Lattice QCD result, the mass of B_c^*(2^3S_1) is determined as 6897\pm 12 MeV.

      Table 2.  Beauty charm meson family spectrum (in MeV). The third column denotes the naive mass in quenched quark model; the fourth column denotes the mass shift from coupled channel effects; the fifth column denotes the final results for the beauty charm meson family spectrum; the last column is the latest experimental data [1]. For comparison, other theoretical predictions from quenched quark models are also listed. The mixing angles of 1P , 2P , 1D , and 2D are detemined as -35.0^\circ , -36.3^\circ , -42.8^\circ and -43.9^\circ , respectively.

      The spectra of B_c mesons have been examined in many studies [7, 10, 12, 5762, 71]. We listed their results in Table 2. It can be observed that different theoretical models predict the mass of B_c^+(1^1S_0) in accordance with experimental results. For state B_c(2S)^{\pm} , the predicted mass corresponds to 6845 MeV via exact quantization rule approach [57], 6814 MeV via asymptotic iteration method [60], 6871 MeV via nonrelativistic quark model [7], and 6855 MeV via relativistic quark model [61]. These values are consistent with experimental data value of 6871.2\pm1.0 MeV. However, the given mass values of 7038 MeV via analytical exact iteration method [58], 7383 MeV via non-relativistic quark model using Nikiforov-Uvarov method [59], and 6814 MeV via asymptotic iteration method [60] deviate significantly from the experimental results. These theoretical studies have enriched our understanding of the properties of B_c mesons. However, due to the limited experimental information on B_c mesons, there are still significant differences in the theoretical research results. Further experimental data is required to enhance and optimize theoretical understanding.

      We predicted that the masses of B_c(1^1S_0) and B_c(2^1S_0) are 6272 and 6874 MeV, respectively, which are close to the experimental values of 6274.47\pm0.32 MeV and 6871.2\pm1.0 MeV. Furthermore, we show the theoretical results of the other states in beauty-charm meson family. We expect that more experimental information can be found to support our results.

      For states below BD threshold, the probabilities of each coupled channel can be estimated. The probabilities are listed in Table 4. Hence, all the states have coupled channel components. Specifically, when comparing 1S , 2S , 1P , and the 1D states, the 2P states have larger non- b\bar c components. For 1S -wave states, we predicted they have 96% b\bar c components. This implies that the coupled channel components is just 4%. For other states, we predicted b\bar c component probabilities for 2S , 1P , 2P , and 1D states, which are approximately 86%, 90%, 67%, and 84%, respectively.

      State BD BD^* B^*D B^*D^* B_sD_s B_sD_s^* B_s^*D_s B_s^*D_s^* P_{\rm molecule} P_{b\bar c}
      1^1S_0 0 0.7 0.8 1.4 0 0.2 0.2 0.4 3.7 96.3
      1^3S_1 0.3 0.5 0.6 1.8 0.1 0.1 0.2 0.5 4.3 95.7
      2^1S_0 0 2.8 3.9 5.1 0 0.5 0.7 1.1 14.0 86.0
      2^3S_1 1.6 1.9 2.7 6.2 0.2 0.4 0.5 1.3 14.8 85.2
      1^3P_0 1.8 0 0 5.1 0.4 0 0 1.3 8.6 91.4
      1^1P_1 0 1.8 2.4 3.5 0 0.4 0.5 0.9 9.6 90.4
      1^3P_1 0 1.6 2.1 4.0 0 0.4 0.4 1.0 9.5 90.5
      1^3P_2 1.2 1.3 1.7 4.1 0.3 0.3 0.4 1.0 10.2 89.8
      2^3P_0 22.5 0 0 9.0 0.7 0 0 1.4 33.7 66.3
      2^1P_1 0 5.3 16.7 8.4 0 0.6 0.8 1.1 32.9 67.1
      2^3P_1 0 5.3 18.3 7.5 0 0.5 0.7 1.1 33.4 66.6
      1^3D_1 4.3 0.9 1.5 8.0 0.4 0.1 0.2 1.7 17.1 82.9
      1^1D_2 0 3.2 4.7 5.8 0 0.6 0.7 1.1 16.2 83.8
      1^3D_2 0 3.1 4.8 6.1 0 0.5 0.7 1.2 16.4 83.6
      1^3D_3 2.2 2.0 2.6 6.6 0.4 0.4 0.5 1.2 15.9 84.1

      Table 4.  Two quark and molecule probabilities (in %) in the coupled channels framework.

      State BD BD^* B^*D B^*D^* B_sD_s B_sD_s^* B_s^*D_s B_s^*D_s^* Total
      1^1S_0 0 -13 -11 -25 0 -4 -4 -9 -65
      1^3S_1 -4 -9 -8 -31 -1 -3 -3 -11 -70
      2^1S_0 0 -23 -23 -44 0 -6 -6 -12 -114
      2^3S_1 -8 -15 -16 -52 -2 -4 -4 -14 -116
      3^1S_0 0 -36 -23 -60 0 -6 -6 -11 -142
      3^3S_1 3 -32 1 -79 -2 -4 -4 -13 -130
      1^3P_0 -12 0 0 -63 -3 0 0 -20 -98
      1P 0 -20 -19 -39 0 -6 -6 -12 -102
      1P^\prime 0 -16 -15 -47 0 -5 -4 -15 -102
      1^3P_2 -10 -15 -14 -42 -3 -5 -4 -13 -104
      2^3P_0 -33 0 0 -72 -4 0 0 -18 -127
      2P 0 -27 -34 -51 0 -6 -6 -12 -136
      2P^\prime 0 -24 -33 -54 0 -5 -5 -13 -135
      2^3P_2 -19 -18 -21 -61 -3 -4 -4 -13 -143
      1^3D_1 -13 -5 -6 -75 -3 -1 -1 -21 -124
      1D 0 -24 -25 -47 0 -6 -6 -13 -121
      1D^\prime 0 -21 -22 -54 0 -5 -5 -15 -122
      1^3D_3 -13 -18 -17 -47 -3 -5 -4 -12 -120
      2^3D_1 -7 0 1 -104 -6 -1 -2 -17 -136
      2D 0 -28 -17 -83 0 -6 -6 -11 -150
      2D^\prime 0 -13 -12 -79 0 -5 -7 -12 -130
      2^3D_3 -10 -23 -20 -102 -3 -4 -4 -11 -175

      Table 3.  Mass shift \Delta M (in MeV) for beauty charm mesons from different channels.

      For states, which have large masses, the strong decay channels will be open, and strong decay widths are shown in Table 5. For 1S -wave, 2S -wave, and 1P -wave, most of 2P -wave and 1D -wave states, their masses are below the BD threshold and cannot undergo strong decay into BD states. Hence, we just discuss the strong decay of the B_c(2^3P_2) , 3S -wave, and 2D -wave B_c mesons. For B_c(2^3P_2) , it can just decay to BD final states with decay width of approximately 3 MeV. For 3S -wave states, B_c(3^1S_0) can strong decay to B^*D with predicted width of 109 MeV, while the B_c(3^3S_1) can strong decay to BD and B^*D with predicted width 10 and 57 MeV, whose total decay width becomes 67 MeV. For the 2D -wave states, the total decay widths of the B_c(2^3D_1) , B_c(2D) , B_c(2D^\prime) , and 2^3D_3 states are 60 , 57 , 201 , and 76 MeV, respectively. The B_c(2^3D_1) dominantly decay into BD^* and B^*D^* with predicted widths of 28 and 22 MeV. The B_c(2D) can mainly decay into BD^* and B^*D^* with predicted widths of 15 and 37 MeV. Furthermore, the B_c(2D^\prime) can mainly decay into BD^* , B^*D , and B^*D^* with predicted widths of 64 , 69 , and 68 MeV. The mixing angle of the two states is -43.9^\circ . Furthermore, B_c(2^3D_3) have three major decay channels of BD, B^*D , and B^*D^* with a decay width of 27 , 30 and 15 MeV, respectively. These differences in decays will aid in distinguishing these excited beauty-charm meson states.

      State BD BD^* B^*D B^*D^* B_sD_s B_sD_s^* B_s^*D_s B_s^*D_s^* Total
      3^1S_0 0 0 109 0 0 0 0 0 109
      3^3S_1 10 0 57 0 0 0 0 0 67
      2^3P_2 3 0 0 0 0 0 0 0 3
      2^3D_1 2 28 1 22 7 0 0 0 60
      2D 0 15 4 37 0 0 0 0 57
      2D^\prime 0 64 69 68 0 0 0 0 201
      2^3D_3 27 4 30 15 0 0 0 0 76

      Table 5.  Hadronic decay widths (in MeV) of the beauty-charm mesons.

    IV.   SUMMARY
    • We calculated the mass spectrum and two-body hadronic decays for beauty-charm mesons based on the coupled channel framework. The coupled channel effects are calculated from ^3P_0 model. The wave functions in our calculations are obtained by solving the Hamiltonian of the potential model with Gaussian Expansion Method.

      Our results indicate that all beauty-charm states have coupled channel components, with each state having a different composition. In general, the coupled channel effects are smaller for bound states compared to excited states. Furthermore, 1S states are approximately 3% – 5%, while the 1P states are approximately 8% – 11%. The 1D states are approximately 15% – 18%, and the 2S states are approximately 14% – 15%. Four 2P states have larger couple channel components of approximately 32% – 34%. The mixing angles of 1P , 2P , 1D , and 2D states are determined as -35.0^\circ , -36.3^\circ , -42.8^\circ and -43.9^\circ , respectively.

      For the strong decays of excited states above BD threshold, the B_c(3^1S_0) state mainly strongly decays to B^*D channel and the B_c(3^3S_1) mainly strongly decays to BD and B^*D . Furthermore, the B_c(2^3P_2) mainly decays to BD. Additionally, B_c(3S) and B_c^*(3S) can be also detected in B_c(3S)\to B_c(1S/2S)+\pi^++\pi^- and B^*_c(3S)\to B_c(1S/2S) + \pi^++\pi^-+\gamma processes practically. For four D -wave states, the B_c(2D^\prime) dominantly decays to BD^* , B^*D , and B^*D^* final states with a total width of 201 MeV. However, B_c(2^3D_1) , B_c(2D) , and B_c(2^3D_3) states have smaller decay widths of approximately 57 - 76 MeV. For the electromagnetic and weak decays of beauty-charm mesons, including polarization analysis, one can refer to Refs. [7277].

      Only a few beauty-charm meson states have been observed in current experiments. Theoretical studies will be valuable in uncovering their nature and advancing experimental discoveries at the LHC and the future Tera-Z factory at CEPC.

Reference (77)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return