-
We consider a hybrid Palatini model where the scalar field is non-minimally coupled to gravity. Its action is described by
$ S=\int {\rm d}^4x \sqrt{-g}\left( \frac{M_p^2}{2}R + \frac{1}{2} \xi \phi^2 \hat{R} +\mathcal{L_{\phi}}(g_{\mu \nu},\phi)\right), $
(1) where g is the determinant of the metric tensor
$ g_{\mu \nu} $ ;$ M_p $ is the Planck mass; R is the Einstein-Hilbert curvature term, determined by the metric tensor$ g_{\mu \nu} $ ;$ \hat{R} $ is the Palatini curvature, which depends on the metric tensor$ g_{\mu \nu} $ and connection$ \Gamma_{\beta \gamma}^{\alpha} $ and is considered an independent variable$ \hat{R}=\hat{R}(g_{\mu \nu},\Gamma_{\beta \gamma}^{\alpha}) $ [40]; ξ is the coupling constant; and$ \mathcal{L_{\phi}} $ is the lagrangian density of the scalar field ϕ, which takes the form$ \mathcal{L_{\phi}}=-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi - V(\phi), $
(2) where
$ V(\phi) $ is the scalar field potential.The variation of this action with respect to the independent connection gives
$ \nabla_{\sigma}(\xi \phi^2\sqrt{-g}g^{\mu \nu})=0. $
(3) The solution of this equation reveals that the independent connection is the Levi- Civita connection of the conformal metric
$ \hat{g}_{\mu \nu}=\xi \phi^2g_{\mu \nu} $ ,$ \begin{aligned}[b] \hat{\Gamma}^{\rho}_{ \mu \sigma}=&\frac{1}{2}\hat{g}^{\lambda \rho}\left( \partial_\mu \hat{g}_{\lambda \sigma}+\partial_\sigma \hat{g}_{\mu\lambda }-\partial_\lambda \hat{g}_{\mu \sigma}\right) \\ =&\overset{}{{\Gamma}}{^{\rho}_{ \mu \sigma}}+\frac{\omega}{\phi}(\delta^\rho_\sigma\partial_\mu(\phi)+\delta^\rho_\mu \partial_\sigma(\phi)-{g}_{\mu \sigma}\partial^\rho( \phi) ),\\ \end{aligned} $
(4) where
$ \omega = 1 $ corresponds to the Palatini approach and$ \omega = 0 $ to the metric one. The curvature tensor$ \hat{R}_{\mu \nu} $ is expressed in terms of the independent connection$ \hat{\Gamma}^{\alpha}_{\beta \gamma} $ [40],$ \begin{array}{*{20}{l}} \hat{R}_{\mu \nu}=\hat{\Gamma}^{\alpha}_{\mu \nu,\alpha }-\hat{\Gamma}^{\alpha}_{\mu \alpha,\nu }+\hat{\Gamma}^{\alpha}_{\alpha\lambda}\hat{\Gamma}^{\lambda}_{\mu \nu}-\hat{\Gamma}^{\alpha}_{\mu\lambda}\hat{\Gamma}^{\lambda}_{\alpha \nu}, \end{array} $
(5) and using Eq. (4), we can rewrite Eq. (5) as
$ \begin{aligned}[b] \hat{R}_{\mu \nu}=&{R}_{\mu \nu}+\frac{\omega}{\phi^2}\Bigg[ 4\nabla_{\mu}\phi \nabla_{\nu}\phi-{g}_{\mu \nu}(\nabla \phi)^2\\&-2\phi\left( \nabla_{\mu}\nabla_{\nu}+\frac{1}{2}{g}_{\mu \nu}\square\right) \phi\Bigg], \end{aligned} $
where
$ {R}_{\mu \nu} $ is the curvature tensor in the metric formalism. The scalar curvature$ \hat{R} $ can be expressed in terms of the Einstein-Hilbert curvature as$ \begin{aligned}[b] \hat{R}=&g^{\mu \nu}\hat{R}_{\mu \nu}\\ =&R-\frac{6\omega}{\phi}\square \phi. \end{aligned} $
(6) Varying the action expressed by Eq. (1) with respect to the metric tensor leads to
$ \begin{aligned}[b] (M_p^2 +\xi \phi^2 )G_{\mu \nu}=&(1+2\xi-4\xi \omega) \nabla_{\mu}\phi \nabla_{\nu} \phi \\& -\left( \frac{1}{2}+2\xi-\xi \omega\right)g_{\mu \nu } (\nabla \phi)^2 -g_{\mu \nu }V(\phi)\\&+2\xi(1+\omega) \phi\left[ \nabla_{\mu} \nabla_{\nu}-g_{\mu \nu}\square \right] \phi,\\ \end{aligned} $
(7) which can be rewritten as
$ \begin{array}{*{20}{l}} F(\phi)G_{\mu \nu}=\kappa^2T_{\mu \nu}, \end{array} $
(8) where F denotes a function of ϕ given by
$ \begin{array}{*{20}{l}} F(\phi)=1+\xi\kappa^2\phi^2, \end{array} $
(9) and
$ T _{\mu \nu} $ is the matter energy-momentum tensor, which takes the form$ \begin{aligned}[b] T _{\mu \nu}=& A\nabla_{\mu}\phi\nabla_{\nu}\phi-B g_{\mu \nu}(\nabla \phi)^2-g_{\mu \nu}V(\phi)\\ &+C\phi\left[ \nabla_{\mu}\nabla_{\nu}-g_{\mu \nu}\square \right] \phi, \end{aligned} $
(10) where
$ A=(1+2\xi-4\xi \omega) $ ,$ B=\left(\dfrac{1}{2}+2\xi-\xi \omega\right) $ , and$ C= 2\xi(1+\omega) $ are constants.In the case of
$ \omega=0 $ , Eq. (7) describes NMC in the metric approach [41]. Meanwhile, in the case$ \xi=0 $ , we recover the case of general relativity.Finally, let us take the variation of the action expressed by Eq. (1) with respect to ϕ to obtain the modified Klein Gordon equation [40],
$ \begin{array}{*{20}{l}} \square \phi + \xi \hat{R}\phi - V_{,\phi}=0, \end{array} $
(11) where
$ \square \phi = \dfrac{1}{\sqrt{-g}}\partial_\nu (\sqrt{-g}g^{\mu \nu} \partial _{\mu} \phi) $ is the D'Alembertien and$V_{,\phi}={\rm d}V/{\rm d}\phi$ . -
In this section, we assume a homogeneous and isotropic Universe described by a spatially flat Robertson-Walker (RW) metric with the signature (–,+,+,+) [42],
$ \begin{array}{*{20}{l}} {\rm d}s^2=-{\rm d}t^2+a^2(t)({\rm d}x^2+{\rm d}y^2+{\rm d}z^2), \end{array} $
(12) where
$ a(t) $ is the scale factor and t is the cosmic time. The Friedmann equation is obtained by taking the 00 component from Eq. (7),$ H^2=\frac{\kappa^2}{3F(\phi)}\left[ \left( \frac{1}{2}-3\xi\omega\right) {\dot{\phi}}^2+V(\phi)-6H\xi(1+\omega) \phi \dot{\phi}\right], $
(13) where
$ H=\dot{a}/a $ is the Hubble parameter and a dot denotes the differentiation with respect to cosmic time. Under slow roll conditions,$ \dfrac{\dot{\phi}}{\phi}<< H $ and$ \dot{\phi}^2<<V $ , and Eq. (13) can be approximated by$ H^2 \simeq\frac{\kappa^2 V(\phi)}{3(1 +\xi\kappa^2 \phi^2 )}. $
(14) By replacing
$ \square \phi $ ,$ \hat{R} $ , and R by their expressions, the inflaton field equation Eq. (11) becomes$ \begin{array}{*{20}{l}} -3H\dot{\phi}(1-6\xi\omega)+12\xi\phi H^2 -V_{,\phi}\simeq0. \end{array} $
(15) -
In this section, we derive the scalar cosmological perturbations in detail. We choose the Newtonian gauge, in which the scalar metric perturbations of a RW background are given by [43, 44]
$ \begin{array}{*{20}{l}} {\rm d}s^2=-(1+2\Phi){\rm d}t^2+a(t)^2(1-2\Psi)\delta_{ij}{\rm d}x^i{\rm d}x^j, \end{array} $
(16) where
$ \Phi(t,x) $ and$ \Psi(t,x) $ are the scalar perturbations, also called Bardeen variables.The perturbed Einstein's equations are given by
$ \begin{array}{*{20}{l}} \delta F(\phi)G^\mu_{\nu}+ F(\phi)\delta G^\mu_{\nu}=\kappa^2\delta T^\mu_{\nu}. \end{array} $
(17) For the perturbed metric expressed by Eq. (16), we obtain the individual components of Eq. (17) in the form
$ -6\xi \kappa^2H^2\phi\delta\phi+F(\phi)\left[ 6 H(\dot{\Psi}+H\Phi)-2\frac{\nabla^2}{a^2}\Psi\right] =\kappa^2\delta T^{0}_{0},\tag{18a} $
$ -2F(\phi)(\dot\Psi+H\Phi)_{,i}=\kappa^2\delta T^{0}_{i},\tag{18b} $
$ \begin{aligned}[b]& -6\xi \kappa^2\phi\delta\phi(3H^2+2\dot H) +6F(\phi)\Bigg[ (3H^2+2\dot H)\Phi\\& \quad +H(\dot\Phi+3\dot\Psi)+\ddot\Psi+\frac{\nabla^2}{3a^2}(\Phi-\Psi)\Bigg] =\kappa^2\delta T^{i}_{i}, \end{aligned}\tag{18c} $
$ F(\phi)a^{-2}(\Psi-\Phi)^{,i}_{,j}=\kappa^2\delta T^{i}_{j}. \tag{18d} $
The perturbed energy momentum tensor
$ \delta T^\mu_\nu $ appearing in Eq. (17) is given by [45]$ \delta T^\mu _\nu=\begin{pmatrix} -\delta \rho & a\delta q_{,i} \\ -a^{-1}\delta q^{,i} & \delta p \delta^i_j+\delta \pi ^i_j \end{pmatrix}, $
(19) where
$ \delta \rho $ ,$ \delta q $ , and$ \delta p $ represent the perturbed energy density, momentum, and pressure, respectively. The anisotropic stress tensor is given by$ \delta \pi^i _{j}=\left(\triangle^i_{j}-\dfrac{1}{3}\delta^i_{j} \triangle\right) \delta \pi $ , where$ \triangle^i_{j} $ is defined by$ \triangle^i_{j}=\delta^i_k\partial_k\partial_j $ and$ \triangle=\triangle^i_{i} $ .Now, let us simplify the calculations and study the evolution of perturbations. Therefore, we decompose the function
$ \psi(x,t) $ into its Fourier components$ \psi_k(t) $ as$ \psi (t,x)=\frac{1}{(2\pi)^{3/2}} \int {\rm e}^{-{\rm i}kx}\psi_k (t){\rm d}^3k, $
(20) where k is the wave number. The perturbed equations in Eq. (18) can be expressed as
$ -\xi \kappa^2H\phi\delta\phi+F(\phi)\left[ H(\dot{\Psi}+H\Phi)+\frac{k^2}{3a^2}\Psi\right] =\frac{-\kappa^2}{6}\delta \rho,\tag{21a}$
$ F(\phi)(\dot\Psi+H\Phi)=\frac{-\kappa^2}{2}a \delta q,\tag{21b} $
$ \begin{aligned}[b] -\xi \kappa^2\phi\delta\phi(3H^2+2\dot H)+F(\phi)\Bigg[ (3H^2+2\dot H)\Phi \end{aligned} $
$ \begin{aligned}[b]+H(\dot\Phi+3\dot\Psi)+\ddot\Psi-\frac{k^2}{3a^2}(\Phi-\Psi)\Bigg]=\frac{\kappa^2}{2}\delta p,\\ \end{aligned}\tag{21c} $
$ F(\phi)(\Psi-\Phi)^{,i}_{,j}=\kappa^2 a^{2}\delta \pi^i_{j}. \tag{21d} $
By using the perturbed energy momentum tensor, one can write the perturbed energy density, perturbed momentum, perturbed pressure, and anisotropic stress tensor, respectively, as follows:
$ \begin{aligned}[b] -\delta \rho=&2(A-B)\Phi\dot\phi^2-2(A-B)\dot\phi\delta\dot\phi-V_{,\phi}\delta\phi \\&+3CH\left[ \dot\phi\delta\phi+\phi\delta\dot\phi\right]+6CH(\Psi+\Phi)\phi\dot{\phi}\\& -C\phi a^{-2}\triangle\delta\phi, \end{aligned}\tag{22a} $
$ a\delta q =-A\dot{\phi}\delta\phi-C\phi\left( \delta\dot{\phi}-\Phi\dot{\phi}-H\delta\phi\right) , \tag{22b} $
$ \begin{aligned}[b] \delta p=&2B(\dot{\phi} \delta\dot{\phi}-\Phi\dot{\phi}^2)-V_{\phi}\delta\phi+2CH\dot{\phi}\delta\phi \\&+C\phi[2H\delta \dot{\Phi}-2\Phi\ddot{\phi} +\delta\ddot{\phi}-4H\Phi\dot{\phi}\\&-2\dot{\Psi}\dot{\phi} - a^{-2} \triangle\delta\phi], \end{aligned}\tag{22c} $
$ \delta \pi ^i_j=a^{-2}C\phi\delta \phi^{,i}_{,j}. \tag{22d} $
The perturbed equation of motion for ϕ takes the form
$ \begin{aligned}[b] 2(A-B)\dot{\phi}\delta\ddot{\phi} &+\left[ 2(A-B)\ddot{\phi}+V_{\phi}-3C\dot{H}\phi +6(A-C)H\dot{\phi}-3CH^2\phi\right] \delta\dot{\phi}+\left[ V_{\phi \phi}\dot{\phi}+(A-C)\dot{\phi}\frac{k^2}{a^2}-3CH^2\dot{\phi}-2CH\phi \frac{k^2}{a^2}\right]\delta\phi \\ =&2(A-B)\left[ \dot{\Phi}\dot{\phi}^2+2\Phi\dot{\phi}\ddot{\phi}\right]+6C\dot{H}\phi(\Phi+\Psi)\dot{\phi}+6CH\left[(\dot{\Phi}+\dot{\Psi})\phi \dot{\phi} + (\Phi+\Psi)(\dot{\phi}^2+\phi \ddot{\phi})\right]+C\phi\dot{\phi}\frac{k^2}{a^2}\Phi \\ &+6AH\Phi\dot{\phi}^2+30CH^2\Phi\dot{\phi}\phi+18CH^2\Psi\dot{\phi}\phi+6C\phi H (\Phi+\Psi)\ddot{\phi}. \end{aligned} $ (23) Therefore, if we adopt the slow roll conditions at large scales, i.e.,
$ k \ll aH $ , we can neglect$ \dot{\Phi} $ ,$ \dot{\Psi} $ ,$ \ddot{\Phi} $ , and$ \ddot{\Psi} $ [46, 47]. In fact, throughout the cosmic history of the Universe, significant scales have primarily existed well beyond the Hubble radius, and they have only recently reentered the Universe. Consequently, it is reasonable to consider large scales as a valid assumption. Indeed, to satisfy the longitudinal post-Newtonian limit, we need to consider that$ \mathop{{}\Delta} \Phi\gg a^2H^2\times(\Phi,\dot{\Phi},\ddot{\Phi}) $ ; similar assumptions are taken for the other gradient terms as well. In the case of plane wave perturbation with wavelength λ, when the condition$ \lambda\ll 1/H $ is met,$ H^2\Phi $ becomes much smaller than$ \mathop{{}\Delta} \Phi $ . For$ \dot{\Phi} $ to be also negligible, the condition$\dfrac{{\rm d} {\rm log} \Phi}{{\rm d} {\rm log} a}\ll\dfrac{1}{\lambda H^2}$ is required, which is satisfied if$ \lambda\ll 1/H $ for perturbation growth. The same arguments may be used for$ \ddot{\Phi} $ and for the metric potential Ψ [46, 48]. Hence, we can rewrite Eq. (23) as$ \begin{aligned}[b] &(1-6\xi\omega)\delta\ddot{\phi}+\left[ \frac{V_{,\phi}}{\dot{\phi}} +6(1-6\xi\omega)H-6\xi(1+\omega) H^2\frac{\phi}{\dot{\phi}}\right] \delta\dot{\phi}\\&+\left[ V_{,\phi \phi}-6\xi(1+\omega) H^2\right] \delta {\phi}&\\ &+6H\left[(1+4\xi-2\xi\omega)\dot{\phi}+10\xi(1+\omega)H \phi \right] \Phi=0.& \end{aligned} $
(24) Using Eqs. (21b) and (22b), the scalar perturbation Φ can be expressed in terms of the fluctuation of the scalar field
$ \delta\phi $ as$ \Phi=\frac{\kappa^2_{\rm eff}\left( A\dot{\phi}-CH\phi \right) }{2F(\phi)H}\delta \phi, $
(25) where
$ \kappa^2_{\rm eff}=\kappa^2/\left[1+\dfrac{C\kappa^2}{2F(\phi)H}\phi \dot{\phi}\right] $ .We define the comoving curvature perturbation as [49]
$ R=\Psi-\frac{H}{\rho + p} a\delta q. $
(26) Hence, by considering the slow roll approximations at large scale, and according to Eq. (21b), one can find that
$ R=\Psi+\frac{H}{\dot{\phi} \left[ 1+\dfrac{C\kappa^2}{2F(\phi)H}\phi \dot{\phi}\right]} \delta\phi. $
(27) Considering the spatially flat gauge where
$ \Psi=0 $ , and according to Eq. (27), a new variable can be defined as$ \delta \phi_{\Psi}=\delta \phi +\frac{\dot{\phi}}{H}\left[ 1+\frac{C\kappa^2}{2F(\phi)H}\phi \dot{\phi}\right]\Psi. $
(28) Using Eq. (21b) in this gauge, Eq. (24) can be expressed as
$ \begin{aligned}[b] &(1-6\xi\omega)\delta\ddot{\phi_\Psi}+3H\left[(1-6\xi\omega)-2\xi H\frac{\phi}{\dot{\phi}}(\omega-2)\right] \delta\dot{\phi_\Psi}\\ &+ \Bigg[ V_{,\phi \phi}-6\xi\omega H^2-6\kappa^2_{eff} \left((1+2\xi-4\xi\omega)\dot{\phi}-2\xi(1+\omega) H\phi\right)\\&\times\frac{(1+4\xi-2\xi\omega)\dot{\phi}+10\xi(1+\omega)H \phi }{2 F(\phi)} \Bigg]\delta \phi_\Psi =0.& \end{aligned} $
(29) Introducing the Mukhanov-Sasaki variable
$ v=a\delta \phi_\Psi $ allows rewriting the perturbed equation of motion Eq. (29) as$ v''-\frac{1}{\tau^2}\left[ \nu^2-\frac{1}{4}\right]v=0, $
(30) where the derivative with respect to the conformal time τ is denoted by the prime, and the term ν is
$ \nu=\frac{3}{2}+\epsilon-\tilde{\eta}+\frac{\tilde{\zeta}}{3}+2\tilde{\chi}, $
(31) where we have used the slow roll parametres given by
$ \epsilon=1-\frac{\mathcal{H}'}{\mathcal{H}^2}=\frac{1}{2\kappa^2}\left( \frac{V_{\phi}}{V}\right)^2 C_{1}, $
(32) $ \eta=\frac{a^2 V _{\phi\phi}}{3\mathcal{H}^2}, $
(33) $ \zeta=6\xi\omega, $
(34) $ \begin{aligned}[b] \chi=&\kappa^2_{\rm eff}\left( (1+2\xi-4\xi\omega)\phi'-2\xi(1+\omega)\mathcal{H}\phi\right)\\ &\times\frac{(1+4\xi-2\xi\omega)\phi'+10\xi(1+\omega)\mathcal{H}\phi}{2 F\mathcal{H}^2}, \end{aligned} $
(35) and
$ \tilde{\eta}=\frac{1}{(1-6\xi\omega)}\eta, $
(36) $ \tilde{\zeta}=\frac{1}{(1-6\xi\omega)}\zeta, $
(37) $ \tilde{\chi}=\frac{1}{(1-6\xi\omega)}\chi. $
(38) We have also introduced the correction term to the standard expression as
$ C_{1}=\frac{F(\phi)}{(1-6\xi\omega)}\left( 1-\frac{4\xi\kappa^2\phi}{F(\phi)}\frac{V}{V_{\phi}}\right) \left( 1-\frac{2\xi\kappa^2\phi}{F(\phi)}\frac{V}{V_{\phi}}\right). $
(39) This term characterizes the effect of NMC (through the constant ξ) and the Palatini approach (through ω).
The solution to Eq. (30) is given by [50]
$ v=\frac{aH}{\sqrt{2k^3}}\left( \frac{k}{aH}\right)^{3/2-\nu}. $
(40) The power spectrum for the scalar field perturbations reads as [49]
$ P_{\delta\phi}=\frac{4\pi k^3}{(2\pi)^3} \left\lvert \frac{v}{a} \right\rvert ^2, $
(41) and the spectral index of the power spectrum is given by [49]
$ n_s-1=\frac{{\rm d}LnP_{\delta\phi}}{{\rm d}Lnk}\Big\rvert_{k=aH}=3-2\nu, $
(42) which can be expressed in terms of slow roll parametres as
$ n_s=1-2\epsilon+2\tilde{\eta}-\frac{2\tilde{\zeta}}{3}-4\tilde{\chi}. $
(43) The power spectrum of the curvature perturbations is defined as [49]
$ A^2_s=\frac{4}{25}P_R=\frac{4}{25}\frac{4\pi k^3}{(2\pi)^3}\left\lvert R \right\rvert ^2 $
(44) $=\left( \frac{2H}{5\dot{\phi}\left[ 1+\dfrac{C\kappa^2}{2F(\phi)H}\dot{\phi}\phi\right] }\right)^2P_{\delta\phi}, $
(45) and assuming the slow-roll conditions, it becomes
$ \begin{aligned}[b] A^2_s=&\frac{4}{25(2\pi)^2}\frac{H^4}{\dot{\phi}^2\left[ 1+\dfrac{C\kappa^2}{2F(\phi)H}\dot{\phi}\phi\right]^2}\\ =&\frac{\kappa^6 V^3}{75\pi^2V^2_{,\phi}}C_{2}, \end{aligned} $
(46) where
$ C_{2}=\frac{(1-6\xi\omega)^2}{F(\phi)\left[ 1+\dfrac{C\kappa^2}{2F(\phi)H}\dot{\phi}\phi\right]^2}\frac{V^2_\phi}{(2F_{,\phi}V-FV_{,\phi})^2}, $
(47) is a correction to the standard expression of the power spectrum. This correction term depends on NMC and the Palatini approach effect.
-
The tensor to scalar ratio is an important observable parameter in cosmology. Observational data [17] provide an upper limit on this ratio,
$ r < 0.1 $ , at a 95% confidence level. To introduce this parameter, we need to define the tensor perturbations amplitude as [51]$ A^2_T=\frac{2\kappa^2}{25}\left(\frac{H}{2\pi}\right)^2, $
(48) which, in our model, takes the form
$ A^2_T=\frac{4\kappa^4 V}{600\pi^2}C_{3}, $
(49) where the correction term
$ C_{3} $ is defined as$ C_{3}=\frac{1}{F(\phi)}. $
(50) Furthermore, we can define the tensor to scalar ratio, which is a useful inflationary parameter, as
$ r=\dfrac{A^2_T}{A^2_S}=\frac{1 }{2\kappa^2}\frac{V^2_\phi}{ V^2} \frac{\left[ 1+\dfrac{C\kappa^2}{2F(\phi)H}\dot{\phi}\phi\right]^2}{(1-6\xi\omega)^2}. $
(51) -
In this section, as an application, we study a Higgs inflationary model in which we consider that the Higgs boson (the inflaton) is NMC to the gravity within the hybrid metric Palatini approach developed in the previous sections. We also check the viability of the model by comparing our results with observational data [17]. In this case, we consider the quartic potential [52]
$ V(\phi)=\frac{\lambda}{4}\phi^4, $
(52) where λ is the Higgs self-coupling. During inflation, the number of e-folds is given by [53]
$ N=\int_{t_I}^{t_F}H{\rm d}t=\int_{\phi(t_I)}^{\phi(t_F)}\frac{H}{\dot{\phi}}{\rm d}\phi. $
(53) From Eq. (15), we have that
$ \dot{\phi}=\frac{12\xi\phi H^2-V_\phi}{3H(1-6\xi\omega)}, $
(54) and we obtain
$ N=\frac{(1-6\xi\omega)\kappa^2}{8}\left[ \phi^2(t_I)-\phi^2(t_F)\right], $
(55) where the subscript I and F represent the crossing horizon and end of inflation, respectively. Considering
$ \phi^2(t_I)\gg\phi^2(t_F) $ , we obtain$ \phi^2(t_I)=\frac{8N}{\kappa^2(1-6\xi \omega)} . $
(56) Figure 1 depicts the variation of the number of e-folds, N, versus the scalar field for a Higgs self-coupling
$ \lambda=0.13 $ [21] and a coupling constant$ \xi=10^{-3.5} $ . This figure shows that for an appropriate range of N, i.e.,$ 50<N<70 $ , we obtain a large field where$ \kappa\phi\gg20 $ .Figure 1. (color online) Plot of the number of e-folds versus the scalar field ϕ for
$ \xi=10^{-3.5} $ and$ \lambda=0.13. $ The slow roll parameter defined in Eq. (32) becomes
$ \epsilon=\frac{8}{\kappa^2 \phi^2 (1-6\xi \omega)}\left(1-\frac{\xi \kappa^2\phi^2}{2F}\right), $
(57) Figure 2 represents the evolution of the correction term
$ C_1 $ as a function of the coupling constant ξ. Note that the effect of the Palatini parameter ω on$ C_1 $ begins from an approximate value of$ 10^{-4} $ . Note also that, for$ \xi=0 $ , the correction term reduces to one, and the standard expression of the slow roll parameter is recovered. For$ \xi\neq0 $ and$ \omega=0 $ , we recover the slow roll parameter expression in the case of NMC within the metric approach.Figure 2. (color online) Variation of the correction term
$ C_1 $ as a function of the coupling constant for$ N=45 $ .The spectral index of the power spectrum given by Eq. (43) can be expressed as
$ \begin{aligned}[b] n_s=&1- \frac{16}{\kappa^2 \phi^2(1 - 6 \xi \omega)} \left(1 - \frac{\xi \kappa^2 \phi^2}{2F}\right)\\ &+\frac{2}{(1 - 6 \xi \omega) } \Bigg[\frac{12 F}{\kappa^2 \phi^2} - 2 \xi \omega - \kappa_{\rm eff} ((1 - 4 \xi \omega + 2 \xi) \dot{\phi}\\& - 2 \xi(1+\omega) H \phi)\frac{ (1 - 2 \xi \omega +4\xi ) H \dot{\phi} +10 \xi(1+ \omega) H^2 \phi}{F H^3}\Bigg]. \end{aligned} $
(58) Figures 3(a) and 3(b) illustrate the variation of
$ n_s $ against the number of e-folds N and against the scalar field for$ N=45 $ , respectively, for$ \lambda=0.13 $ and for different values of the coupling constant ξ, i.e.,$ 10^{-3.5}, 10^{-4}, 0, $ and$ -10^{-4} $ . The gray horizontal bound in both figures represents the limits for the spectral index imposed by Planck data. We conclude that the predictions of$ n_s $ are consistent with the observational data for$ \xi=10^{-4} $ and$ \xi=10^{-3.5} $ .Figure 3. (color online) Evolution of
$ n_s $ against the number of e-folds (a) and against the scalar field (b) for different values of the coupling constant ξ and$ \lambda=0.13 $ .From Eqs. (46) and (49), we can obtain the power spectrum of the amplitudes of the curvature and tensor perturbations as
$ A^2_s=\frac{\lambda\kappa^6 \phi^6}{4800 \pi^2}C_2, $
(59) $ A^2_T=\frac{\lambda\kappa^4\phi^4 }{600\pi^2}C_3, $
(60) respectively.
The behavior of
$ C_2 $ is shown in Fig. 4. We present this term versus the coupling constant ξ in the cases of the hybrid Palatini metric formalism (blue curve) and metric formalism (green curve). The effect of the Palatini parameter ω on$ A^2_s $ emerges from$ \xi=5\times10^{-3} $ .Figure 4. (color online) Variation of the correction term
$ C_2 $ versus the coupling constant for a number of e-folds$ N=45 $ .The correction term
$ C_3 $ is plotted as a function of ξ in Fig. 5. Note that the effect of the Palatini parameter emerges from a value of$ \xi= 10^{-2} $ .Figure 5. (color online) Variation of the correction term
$ C_3 $ against the coupling constant for a number of e-folds$ N=45 $ .From Eq. (51), the tensor to scalar ratio can be obtained as
$ r=\frac{8}{\kappa^2\phi^2}\frac{\left[ 1+\dfrac{ C\kappa^2}{2F(\phi)H}\dot{\phi}\phi\right]^2}{(1-6\xi\omega)^2}. $
(61) Figure 6 shows the evolution of r versus the number of e-folds N for
$ \lambda=0.13 $ and for selected values of the coupling constant ξ. Note that r lies within the bounds imposed by observational data [17] in the appropriate range of N for the selected values of ξ.Figure 6. (color online) Variation of the tensor to scalar ratio r as a function of the number of e-folds N for different values of the coupling constant.
Figure 7 shows the
$ (n_s, r) $ plane for different values of the coupling constant ξ in the range of the number of e-folds$ 30 \leq N \leq 90 $ with the constraints from the Planck TT, TE, EE+LowE+lensing (gray contour) as well as Planck TT, TE, EE+lowE+lensing+BK14 data (red contour). Note also that$ n_s-r $ predictions for the case where$ \xi\leq 0 $ are ruled out at$ 95\% $ confidence level contour according to the current observational data [17]. Furthermore, for$ \xi=10^{-3.5} $ , observational parameters lie within$ 68\% $ CL contour for a range of the number of e-folds$ 40.9\leq N\leq 47 $ (low-N scenario). In addition, we obtain the central value of the index spectral$ n_s=0.9649 $ with a small value of tensor to scalar ratio$ r=0.022 $ for$ N=43.43 $ . For$ \xi=10^{-4} $ , the results are inside the$ 68\% $ CL contour for the range$ 67.8\leq N \leq 86 $ (high-N scenario). However,$ N=75.41 $ gives$ n_s=0.9649 $ and$ r=0.013 $ . Thus, we can conclude that NMC in the framework of hybrid metric Palatini can ensure successful Higgs inflation. In the literature, it was reported that NMC in the Pure Palatini formalism requires a large value of ξ and results in an extremely small value of tensor to scalar ratio$ r\sim 10^{-12} $ [54−56]. Therefore, the hybrid model may be an effective approach to solve this issue by increasing the value of r, making it comparable with the corresponding values predicted by the original metric approach. Then, it may be probed by future experiments [57, 58] where the value of the tensor to scalar ratio is on the order of$ r\sim 10^{-2} $ .
Higgs inflation model with non-minimal coupling in hybrid Palatini approach
- Received Date: 2023-10-31
- Available Online: 2024-04-15
Abstract: In this paper, we propose a hybrid metric Palatini approach in which the Palatini scalar curvature is non minimally coupled to the scalar field. We derive Einstein's field equations, i.e., the equations of motion of the scalar field. Furthermore, the background and perturbative parameters are obtained by means of Friedmann equations in the slow roll regime. The analysis of cosmological perturbations allowed us to obtain the main inflationary parameters, e.g., the scalar spectral index