-
In the current research, to study interactions
$ \Xi_c^{(',*)}{\Xi}_c^{(',*)} $ and$ \Xi_c^{(',*)}\bar{\Xi}_c^{(',*)} $ , potential kernel will be constructed within the one-boson exchange model. The exchanges are intermediated by pseudoscalar$ \mathbb{P} $ (π and η), vector$ \mathbb{V} $ (ρ, ω, and ϕ), and scalar σ mesons. The Lagrangians that depict the couplings of light mesons and charmed strange baryons are required and presented in the below. -
The vertices between charmed baryon and light π, ρ, η, ω, ϕ, σ mesons are described by the Lagrangians with SU(3), heavy quark and chiral symmetry as [23, 36, 37]:
$ \begin{aligned}[b] {\cal L}_{S}=&- \frac{3}{2}g_1(v_\kappa)\epsilon^{\mu\nu\lambda\kappa}{\rm tr}[\bar{S}_\mu {\cal A}_\nu S_\lambda]+ {\rm i}\beta_S{\rm tr}[\bar{S}_\mu v_\alpha (\mathcal{V}^\alpha- \rho^\alpha) S^\mu]\\ & + \lambda_S{\rm tr}[\bar{S}_\mu F^{\mu\nu}S_\nu] +\ell_S{\rm tr}[\bar{S}_\mu \sigma S^\mu],\\ {\cal L}_{B_{\bar{3}}}&= {\rm i}\beta_B{\rm tr}[\bar{B}_{\bar{3}}v_\mu(\mathcal{V}^\mu-\rho^\mu) B_{\bar{3}}] +\ell_B{\rm tr}[\bar{B}_{\bar{3}}{\sigma} B_{\bar{3}}], \\ {\cal L}_{\rm int}&={\rm i} g_4 {\rm tr}[\bar{S}^\mu {\cal A}_\mu B_{\bar{3}}]+ {\rm i} \lambda_I \epsilon^{\mu\nu\lambda\kappa}v_\mu{\rm tr}[\bar{S}_\nu F_{\lambda\kappa} B_{\bar{3}}]+{\rm h.c.}, \end{aligned} $
(1) where
$ S^{\mu}_{ab} $ is composed of Dirac spinor operators,$ \begin{aligned}[b] S^{ab}_{\mu}&=-\sqrt{\frac{1}{3}}(\gamma_{\mu}+v_{\mu}) \gamma^{5}B^{ab}+B^{*ab}_{\mu}\equiv{ B}^{ab}_{0\mu}+B^{ab}_{1\mu},\\ \bar{S}^{ab}_{\mu}&=\sqrt{\frac{1}{3}}\bar{B}^{ab} \gamma^{5}(\gamma_{\mu}+v_{\mu})+\bar{B}^{*ab}_{\mu}\equiv{\bar{B}}^{ab}_{0\mu}+\bar{B}^{ab}_{1\mu}. \end{aligned} $
(2) Substituting Dirac spinor operators into the Lagrangians, we can realize explicit forms as:
$ \begin{aligned}[b] {\cal L}_{BB\mathbb{P}}=&-{\rm i}\frac{3g_1}{4f_\pi\sqrt{m_{\bar{B}}m_{B}}}\; \epsilon^{\mu\nu\lambda\kappa}\partial^\nu \mathbb{P}\; \sum_{i=0,1}\bar{B}_{i\mu} \overleftrightarrow{\partial}_\kappa B_{j\lambda},\\ {\cal L}_{BB\mathbb{V}}=&-\frac{\beta_S g_V}{2\sqrt{2m_{\bar{B}}m_{B}}}\mathbb{V}^\nu \sum_{i=0,1}\bar{B}_i^\mu \overleftrightarrow{\partial}_\nu B_{j\mu}\\ &-\frac{\lambda_S g_V}{\sqrt{2}}(\partial_\mu \mathbb{V}_\nu-\partial_\nu \mathbb{V}_\mu) \sum_{i=0,1}\bar{B}_i^\mu B_j^\nu,\\ {\cal L}_{BB\sigma}=&\ell_S\sigma\sum_{i=0,1}\bar{B}_i^\mu B_{j\mu},\\ {\cal L}_{B_{\bar{3}}B_{\bar{3}}\mathbb{V}}=&-\frac{g_V\beta_B}{2\sqrt{2m_{\bar{B}_{\bar{3}}}m_{B_{\bar{3}}}} }\mathbb{V}^\mu\bar{B}_{\bar{3}}\overleftrightarrow{\partial}_\mu B_{\bar{3}},\\ {\cal L}_{B_{\bar{3}}B_{\bar{3}}\sigma}=& {\rm i} \ell_B \sigma \bar{B}_{\bar{3}}B_{\bar{3}},\\ {\cal L}_{BB_{\bar{3}}\mathbb{P}} =&-{\rm i}\frac{g_4}{f_\pi} \sum_i\bar{B}_i^\mu \partial_\mu \mathbb{P} B_{\bar{3}}+{\rm H.c.},\\ {\cal L}_{BB_{\bar{3}}\mathbb{V}} =&\frac{g_\mathbb{V}\lambda_I}{\sqrt{2m_{\bar{B}}m_{B_{\bar{3}}}}} \epsilon^{\mu\nu\lambda\kappa} \partial_\lambda \mathbb{V}_\kappa\sum_i\bar{B}_{i\nu} \overleftrightarrow{\partial}_\mu B_{\bar{3}}+{\rm H.c.}. \end{aligned} $
(3) The charmed baryon matrices are defined as
$ \begin{aligned}[b] B_{\bar{3}}&=\left(\begin{array}{ccc} 0&\Lambda^+_c&\Xi_c^+\\ -\Lambda_c^+&0&\Xi_c^0\\ -\Xi^+_c&-\Xi_c^0&0 \end{array}\right),\\ B&=\left(\begin{array}{ccc} \Sigma_c^{++}&\dfrac{1}{\sqrt{2}}\Sigma^+_c&\dfrac{1}{\sqrt{2}}\Xi'^+_c\\ \dfrac{1}{\sqrt{2}}\Sigma^+_c&\Sigma_c^0&\dfrac{1}{\sqrt{2}}\Xi'^0_c\\ \dfrac{1}{\sqrt{2}}\Xi'^+_c&\dfrac{1}{\sqrt{2}}\Xi'^0_c&\Omega^0_c \end{array}\right). \\ B^*&=\left(\begin{array}{ccc} \Sigma_c^{*++}&\dfrac{1}{\sqrt{2}}\Sigma^{*+}_c&\dfrac{1}{\sqrt{2}}\Xi^{*+}_c\\ \dfrac{1}{\sqrt{2}}\Sigma^{*+}_c&\Sigma_c^{*0}&\dfrac{1}{\sqrt{2}}\Xi^{*0}_c\\ \dfrac{1}{\sqrt{2}}\Xi^{*+}_c&\dfrac{1}{\sqrt{2}}\Xi^{*0}_c&\Omega^{*0}_c \end{array}\right). \end{aligned} $
(4) Specifically,
$ \mathbb{V} $ and$ \mathbb{P} $ are denote vector and pseudoscalar matrices, respectively, as:$ \begin{aligned}[b] {\mathbb P}=\left(\begin{array}{ccc} \dfrac{\sqrt{3}\pi^0+\eta}{\sqrt{6}}&\pi^+&K^+\\ \pi^-&\dfrac{-\sqrt{3}\pi^0+\eta}{\sqrt{6}}&K^0\\ K^-&\bar{K}^0&\dfrac{-2\eta}{\sqrt{6}} \end{array}\right),\end{aligned} $
$ \begin{aligned}[b] \mathbb{V}=\left(\begin{array}{ccc} \dfrac{\rho^{0}+\omega}{\sqrt{2}}&\rho^+&K^{*+}\\ \rho^-&\dfrac{-\rho^{0}+\omega}{\sqrt{2}}&K^{*0}\\ K^{*-}&\bar{K}^{*0}&\phi \end{array}\right). \end{aligned} $
We choose the central values suggested in the Review of Particle Physics (PDG) [1] as the masses of particles involved in the calculation. The values for different charges will be averaged. The coupling constants involved are listed in Table 1.
β g $ g_V $ λ $ g_{s} $ 0.9 0.59 5.9 0.56 0.76 $ \beta_S $ $ \ell_S $ $ g_1 $ $ \lambda_S $ $ \beta_B $ $ \ell_B $ $ g_4 $ $ \lambda_I $ −1.74 6.2 −0.94 −3.31 $ -\beta_S/2 $ $ -\ell_S/2 $ $ 3g_1/{(2\sqrt{2})} $ $ -\lambda_S/\sqrt{8} $ The flavor wave functions for the double-charm double-strange system
$ \Xi_c^{(',*)}{\Xi}_c^{(',*)} $ can be expressed as:$ \begin{aligned}[b] |\Xi_c^{(',*)}{\Xi}_c^{(',*)}\rangle|_{I=0}&=\frac{1}{\sqrt{2}}\left(|\Xi_c^{(',*)+}{\Xi}_c^{(',*)0}\rangle-|\Xi_c^{(',*)0}{\Xi}_c^{(',*)+}\rangle\right),\\ |\Xi_c^{(',*)}{\Xi}_c^{(',*)}\rangle|_{I=1}&=|\Xi_c^{(',*)+}{\Xi}_c^{(',*)+}\rangle. \end{aligned} $
(5) Following the method in Ref. [42], we input vertices Γ and propagators P into the code directly. The explicit forms of a potential can be expressed with the Lagrangians and flavor wave functions as:
$ \begin{equation} {\cal V}_{\mathbb{P},\sigma}=f_I\Gamma_1\Gamma_2 P_{\mathbb{P},\sigma}f(q^2),\ \ {\cal V}_{\mathbb{V}}=f_I\Gamma_{1\mu}\Gamma_{2\nu} P^{\mu\nu}_{\mathbb{V}}f(q^2). \end{equation} $
(6) The propagators are defined as usual as
$ \begin{equation} P_{\mathbb{P},\sigma}= \frac{{\rm i}}{q^2-m_{\mathbb{P},\sigma}^2},\ \ P^{\mu\nu}_\mathbb{V}={\rm i}\frac{-g^{\mu\nu}+q^\mu q^\nu/m^2_{\mathbb{V}}}{q^2-m_\mathbb{V}^2}, \end{equation} $
(7) where
$ f(q^2) $ denotes a form factor adopted to compensate the off-shell effect of exchanged meson. The form factor is shown as$f(q^2)={\rm e}^{-(m_e^2-q^2)^2/\Lambda_e^2}$ , where$ m_e $ and q denote the mass and momentum of the exchanged meson, respectively. Furthermore,$ f_I $ denotes the flavor factor for a specific meson exchange in a given interaction, and the detailed values can be found inTable 2.$ I_i^d $ I π η ρ ω ϕ σ $ \Xi_c \bar{\Xi}_c $ $ 0 $ $ \dfrac{3}{2}[-\dfrac{3}{2}] $ $ -\dfrac{1}{2}[\dfrac{1}{2}] $ $ -1[1] $ $ 4[4] $ $ 1 $ $ -\dfrac{1}{2}[\dfrac{1}{2}] $ $ -\dfrac{1}{2}[\dfrac{1}{2}] $ $ -1[1] $ $ 4[4] $ $ \Xi_c^{(',*)} \bar{\Xi}_c^{(',*)} $ $ 0 $ $ -\dfrac{3}{8}[-\dfrac{3}{8}] $ $ \dfrac{1}{24}[\dfrac{1}{24}] $ $ \dfrac{3}{8}[-\dfrac{3}{8}] $ $ -\dfrac{1}{8}[\dfrac{1}{8}] $ $ -\dfrac{1}{4}[\dfrac{1}{4}] $ $ 1[1] $ $ 1 $ $ \dfrac{1}{8}[\dfrac{1}{8}] $ $ \dfrac{1}{24}[\dfrac{1}{24}] $ $ -\dfrac{1}{8}[\dfrac{1}{8}] $ $ -\dfrac{1}{8}[\dfrac{1}{8}] $ $ -\dfrac{1}{4}[\dfrac{1}{4}] $ $ 1[1] $ $ \Xi_c \bar{\Xi}_c^{(',*)} $ $ 0 $ $ \dfrac{3}{4}[-\dfrac{3}{4}] $ $ -\dfrac{1}{4}[\dfrac{1}{4}] $ $ -\dfrac{1}{2}[\dfrac{1}{2}] $ $ 2[2] $ $ 1 $ $ -\dfrac{1}{4}[\dfrac{1}{4}] $ $ -\dfrac{1}{4}[\dfrac{1}{4}] $ $ -\dfrac{1}{2}[\dfrac{1}{2}] $ $ 2[2] $ $ (-1)^{(J+1)} I_i^c $ I π η ρ ω ϕ $ \Xi_c \bar{\Xi}_c^{'} $ $ 0 $ $ \dfrac{3c}{4}[-\dfrac{3}{4}] $ $ -\dfrac{3c}{4}[\dfrac{3}{4}] $ $ -\dfrac{3c}{4}[-\dfrac{3}{4}] $ $ \dfrac{c}{4}[\dfrac{1}{4}] $ $ \dfrac{c}{2}[\dfrac{1}{2}] $ $ 1 $ $ \dfrac{c}{4}[\dfrac{1}{4}] $ $ \dfrac{3c}{4}[\dfrac{3}{4}] $ $ -\dfrac{c}{4}[\dfrac{1}{4}] $ $ -\dfrac{c}{4}[\dfrac{1}{4}] $ $ -\dfrac{c}{2}[\dfrac{1}{2}] $ $ \Xi_c \bar{\Xi}_c^* $ $ 0 $ $ -\dfrac{3c}{4}[-\dfrac{3}{4}] $ $ \dfrac{3c}{4}[\dfrac{3}{4}] $ $ \dfrac{3c}{4}[-\dfrac{3}{4}] $ $ -\dfrac{c}{4}[\dfrac{1}{4}] $ $ -\dfrac{c}{2}[\dfrac{1}{2}] $ $ 1 $ $ \dfrac{c}{4}[\dfrac{1}{4}] $ $ \dfrac{3c}{4}[\dfrac{3}{4}] $ $ -\dfrac{c}{4}[\dfrac{1}{4}] $ $ -\dfrac{c}{4}[\dfrac{1}{4}] $ $ -\dfrac{c}{2}[\dfrac{1}{2}] $ $ \Xi_c^{'} \bar{\Xi}_c^* $ $ 0 $ $ -\dfrac{3c}{8}[-\dfrac{3}{8}] $ $ \dfrac{c}{24}[\dfrac{1}{24}] $ $ \dfrac{3c}{8}[-\dfrac{3}{8}] $ $ -\dfrac{c}{8}[\dfrac{1}{8}] $ $ -\dfrac{c}{4}[\dfrac{1}{4}] $ $ 1 $ $ -\dfrac{c}{8}[\dfrac{1}{8}] $ $ -\dfrac{c}{24}[\dfrac{1}{24}] $ $ \dfrac{c}{8}[\dfrac{1}{8}] $ $ \dfrac{c}{8}[-\dfrac{1}{8}] $ $ -\dfrac{c}{4}[\dfrac{1}{4}] $ Table 2. Isospin factors
$ I_i^d $ and$ (-1)^{(J+1)} I_i^c $ of exchange i for direct diagrams and cross diagrams, respectively. The values in bracket are for the case double-charm baryons.The potential kernels of a charmed strange and an anticharmed antistrange baryon differ from those of the double-charm double-strange systems. However, the former potential kernel
$ \bar{\cal V} $ can be expressed from the latter one$ {\cal V} $ , which has been calculated above with the aid of well-known G-parity rule. However, before applying this type of treatment, the C or G parity should be introduced for the system$ \Xi_c^{(')}\bar{\Xi}_c^{*} $ . We consider the following charge conjugation convention as in Ref. [41]:$ \begin{equation} |B_1B_2\rangle_c=\frac{1}{\sqrt{2}}|B_1\bar{B}_2\rangle-(-1)^{J-J_1-J_2}cc_1c_2|B_2\bar{B}_1\rangle, \end{equation} $
(8) where
$ J_1 $ and$ J_2 $ denote the spins of baryons$ |B_1\rangle $ and$ |B_2\rangle $ , respectively. J denotes the total angular momentum of the coupling of$ J_1 $ and$ J_2 $ , and$ c_i $ is defined by$ \mathcal{C}|B_i\rangle = c_i\bar{B}_i\rangle $ . For the isovector states, the C parity can not be defined. Hence, we will use the G parity instead as$ G=(-1)^{I}C $ . By inserting$ G^{-1}G $ operator into the potential, the G-parity rule can be easily obtained as [25, 43−45]:$ \begin{eqnarray} \bar{\cal V}&=&\sum_{i}{\zeta_{i}{\cal V}_{i}}. \end{eqnarray} $
(9) The G parity of the exchanged meson is left as a
$ \zeta_{i} $ factor for meson i.To solve the scattering amplitude, the potential kernel obtained above is adopted to solve the qBSE [38, 46−52]. The 4-dimensional integral equation in the Minkowski space can be reduced to a 1-dimensional integral equation with fixed spin-parity
$ J^P $ , as reported in [51], via partial-wave decomposition and spectator quasipotential approximation. The 1-dimensional Bethe–Saltpeter equation is further converted to a matrix equation, and the scattering amplitude can be obtained as [38, 46−52]:$ \begin{aligned}[b] {\rm i}{\cal M}^{J^P}_{\lambda'\lambda}({\rm p}',{\rm p}) =&{\rm i}{\cal V}^{J^P}_{\lambda',\lambda}({\rm p}',{\rm p})+\sum_{\lambda''}\int\frac{{\rm p}''^2d{\rm p}''}{(2\pi)^3}\\ &\times {\rm i}{\cal V}^{J^P}_{\lambda'\lambda''}({\rm p}',{\rm p}'') G_0({\rm p}''){\rm i}{\cal M}^{J^P}_{\lambda''\lambda}({\rm p}'',{\rm p}), \end{aligned} $
(10) where the sum extends only over nonnegative helicity
$ \lambda'' $ . Furthermore,$ G_0({\rm p}'') $ is reduced from the 4-dimensional propagator under quasipotential approximation as$G_0({\rm p}'')= \delta^+(p''^{\; 2}_h- m_h^{2})/(p''^{\; 2}_l-m_l^{2})$ with$ p''_{h,l} $ and$ m_{h,l} $ being the momentum and mass of heavy or light constituent particle. The partial wave potentials are obtained with the potentials obtained above in Eq. (6) as:$ \begin{align} {\cal V}_{\lambda'\lambda}^{J^P}({\rm p}',{\rm p}) &=2\pi\int {\rm d} \cos\theta \; [d^{J}_{\lambda\lambda'}(\theta) {\cal V}_{\lambda'\lambda}(\boldsymbol{p}',\boldsymbol{p})\\ &+\eta d^{J}_{-\lambda\lambda'}(\theta) {\cal V}_{\lambda'-\lambda}(\boldsymbol{p}',\boldsymbol{p})], \end{align} $
(11) where
$ \eta=PP_1P_2(-1)^{J-J_1-J_2} $ , where P and J denote parity and spin for system, respectively. The initial relative momentum is chosen as$ \boldsymbol{p}=(0,0,{\rm p}) ,$ and the final momentum is chosen as$ \boldsymbol{p}'=({\rm p}'\sin\theta,0,{\rm p}'\cos\theta) $ . Furthermore,$ d^J_{\lambda\lambda'}(\theta) $ is the Wigner d-matrix. We also adopt an exponential regularization by introducing a form factor into the propagator as$G_0({\rm p}'')\to G_0({\rm p}'')\left[{\rm e}^{-(p''^2_l-m_l^2)^2/\Lambda_r^4}\right]^2$ with$ \Lambda_r $ being a cutoff [51].
Possible molecular states from interactions of charmed strange baryons
- Received Date: 2023-07-24
- Accepted Date: 2023-07-25
- Available Online: 2023-11-15
Abstract: In this study, we investigate possible molecular states composed of two charmed strange baryons from the