-
In the present work, we consider that the
$ d_{N\Omega} $ is a dibaryon composed of N and Ω with the$ J(J^P)=\frac{1}{2}(2^+) $ , i.e.,$ |d_{N\Omega}^0\rangle=|p\Omega\rangle $ and$ |d_{N\Omega}^-\langle=|n\Omega\rangle $ . The dibayon$ d_{N\Omega} $ can be produced in the high energy$ K^-p $ interaction process. As indicated in Ref. [47], the dibaryon$ d_{N\Omega} $ could decay into$ \Lambda \Xi^0 $ , which indicates the strong coupling between$ d_{N\Omega} $ and$ \Lambda \Xi^0 $ . Thus, there exist the s channel contributions to$ K^-p\to \bar{\Xi}^0 d_{N\Omega} $ , as shown in Fig. 1(a), where the initial$ K^- p $ and final$ d_{N\Omega} \bar{\Xi}^0 $ are connected by Λ. Moreover, there are contributions from the Ω baryon exchange process, which should be the u channel contribution in the strict sense. In the$ K^-p\to \bar{\Xi}^0 d_{N\Omega} $ process, there is no t channel diagram in the tree level. Empirically, in the high energy$ K^-p/\pi p $ scattering process, the contributions from the s channels are strongly suppressed [55–58]. Thus, the$ d_{N\Omega} $ production in the high energy$ K^-p $ scattering should occur dominantly by exchanging a Ω baryon as presented in Fig. 1(b), while the s channel contribution is ignored.Figure 1. (color online) Diagrams contributing to the process of
$ K^-p \to d_{N\Omega}\bar{\Xi}^0 $ , where the$ d_{N\Omega} $ is considered as a S-wave$ N\Omega $ dibaryon with$ J^P=2^+ $ .In the present work, we estimated the cross sections for
$ K^-p \to d_{N\Omega} \bar{\Xi} $ in an effective Lagrangian approach. The interaction of the$ d_{N\Omega} $ dibayon and its components can be described as follows [47]:$ \begin{eqnarray} \mathcal{L}_{d_{N\Omega} N\Omega}= g_{d_{N\Omega}N\Omega} d^{\mu\nu^\dagger}_{N\Omega} \bar{\Omega}_\mu \gamma_\nu N^c + {\rm H.c.}, \end{eqnarray} $
(1) where
$ N^c=C\bar{N}^{T} $ ,$ \bar{N}^c=N^TC $ , and$C= {\rm i} \gamma^2\gamma^0$ is the charge-conjugation matrix. T is the transpose transformation operator. From the above effective Lagrangian, the tensor field of$ d_{N\Omega} $ can be constructed by the appropriate combination of a Dirac field for the nucleon and a Rarita Schwinger field for Ω. The polarization tensor$ \epsilon^{\mu\nu}(\vec{p},\lambda) $ could be constructed by the combination of the Dirac field for spin-$ 1/2 $ and a Rarita Schwinger field for spin-$ 3/2 $ , i.e,$ \begin{eqnarray} \epsilon^{\mu \nu}(\vec{p},\lambda) =\sum_{\alpha,\beta} \langle \frac{3}{2} \alpha \frac{1}{2} \beta | 2 \lambda\rangle \psi^\mu_\alpha (\vec{p}) \gamma^\nu \psi_\beta^c (\vec{p}) \end{eqnarray} $
(2) with
$ \lambda=(\pm2, \pm 1,0) $ ,$ \alpha=(\pm 3/2, \pm 1/2) $ , and$ \beta=\pm 1/2 $ , respectively. The polarization tensor satisfies$ \begin{aligned}[b]& p_\mu \epsilon^{\mu\nu}(\vec{p},\lambda)= p_\nu \epsilon^{\mu\nu}(\vec{p},\lambda)=0,\\& \epsilon^{\mu\nu}(\vec{p},\lambda)=\epsilon^{\nu \mu}(\vec{p},\lambda), \ \ \ \epsilon^{\mu}_{\mu}(\vec{p},\lambda)=0\\& \epsilon^{\mu \nu \ast} (\vec{p},\lambda) \epsilon_{\mu \nu}(\vec{p},\lambda^\prime)=\delta_{\lambda \lambda^\prime} \end{aligned} $
(3) The effective Lagrangian for the
$ \Omega \Xi K $ interaction reads [59–64]$ \begin{eqnarray} \mathcal{L}_{\Omega \Xi K}= \frac{g_{\Omega\Xi K}}{m_\pi}\partial_\beta K \bar{\Omega}^\beta \Xi+ {\rm H.c.}. \end{eqnarray} $
(4) With the above effective Lagrangians, we can obtain the amplitude corresponding to Fig. 1(b), which is
$ \begin{aligned}[b] \mathcal{M}=& \frac{g_{\Omega\Xi K}}{m_{\pi}} \left(-{\rm i} p_{1\beta}\right) \ g_{d_{N\Omega} N\Omega }\ d_{N\Omega}^{\mu\nu} F(k^{2},m^2_{\Omega}) \\ &\times \left[ \bar{u}^{c}(p_{2},m_2)\gamma_{\nu}S(k,m_{\Omega})_{\mu\beta} \nu(p_{3},m_{3})\right] , \end{aligned} $
(5) with
$ S(k,m_{\Omega})_{\mu\beta} $ to be the propagator of the Ω baryon, which is$ \begin{aligned}[b] S(k,m_\Omega)_{\mu\beta}=& {\rm i}\frac{\not k + m_\Omega}{k^2-m_\Omega^2} \left[-g_{\mu\beta} +\frac{1}{3}\gamma_{\mu\beta} +\frac{2k_{\mu}k_{\beta}}{3m_\Omega^{2}}\right. \\ &\left. +\frac{\gamma_{\mu}k_{\beta}-\gamma_{\beta}k_{\mu}}{3m_\Omega}\right]. \end{aligned} $
(6) To depict the internal structure and the off shell effect of the exchanged Ω baryon, we introduce a form factor
$ F(k^2, m^2_{\Omega}) $ in the amplitude, and its concrete form will be discussed later. With the amplitude in Eq. (5), one can obtain the cross section for$ K^- p \to d_{N\Omega} \bar{\Xi}^0 $ by$ \begin{eqnarray} \frac{{\rm d} \sigma}{{\rm d} \cos \theta}=\frac{1}{32\pi s}\frac{|\vec{p}_f|}{|\vec{p}_i|} \left(\frac{1}{2} |\overline{\mathcal{M}}|^2\right), \end{eqnarray} $
(7) where
$ s=(p_1+p_2)^2 $ is the center of mass energy and θ is the scattering angle, which refers to the angle of the outgoing$ d_{N\Omega} $ and the kaon beam direction in the center of mass frame.$ \vec{p}_i $ and$ \vec{p}_{f} $ are the momenta of the initial kaon beam and the final$ d_{N\Omega} $ dibaryon in the center of mass frame, respectively. -
As indicated in Ref. [47], the dibayon
$ d_{N\Omega} $ dominantly decays into$ \Lambda \Xi $ and$ \Xi \Sigma $ . Thus, one can detect the$ d_{N\Omega} $ in the invariant mass spectrum of$ \Lambda \Xi^0 $ and$ \Xi^- \Sigma^+ $ of the$ K^- p \rightarrow \Xi^0\Lambda \bar{\Xi}^0 $ and$ K^- p \rightarrow \Xi^-\Sigma^+\bar{\Xi}^0 $ processes, respectively. To depict these processes, additional effective Lagrangians related to$ d_{N\Omega} \Xi \Lambda $ and$ d_{N\Omega} \Xi \Sigma $ are involved. As Ξ, Σ, and Λ have the same$ J^P $ quantum numbers, these two effective Lagrangians have the same form, which is$ \begin{aligned}[b] \mathcal{L}_{d_{N\Omega}Y_1Y_2}=& {\rm i} \frac{G_{d_{N\Omega}Y_1Y_2}}{2M_{Y_1}}\bar{Y_1}^c\left(\gamma_{\mu} \partial_{\nu} +\gamma_{\nu}\partial_{\mu}\right) Y_2 d_{N\Omega}^{\mu \nu} \\&+\frac{F_{d_{N\Omega}Y_1Y_2}}{(2M_{Y_1})^{2}}\partial_{\mu} \bar{Y}_1^c\partial_{\nu}Y_2d_{N\Omega}^{\mu \nu}+ {\rm H.c.}, \end{aligned} $
(8) where
$ Y_1 $ and$ Y_2 $ could be Ξ, Σ, and Λ. Similar to the case of the tensor meson, we can choose$ F_{d_{N\Omega} Y_1Y_2}=0 $ with the tensor dominance hypothesis [65], and the values of the couplings$ G_{d_{N\Omega}Y_1 Y_2} $ will be discussed in the next section. With this additional effective Lagrangian, we can obtain the amplitudes corresponding to Fig. 2(a), which areFigure 2. (color online) Diagrams contributing to
$ K^-p \to\Xi^0 \Lambda\bar{\Xi}^0 $ (diagram (a)) and$ K^- p \to \Xi^-\Sigma^+ \bar{\Xi}^0 $ (diagram (b)).$ \begin{aligned}[b] \mathcal{M}_a =& \Bigg[g_{d_{N\Omega} N\Omega} \bar{u}^c\left(p_2,m_2\right) \gamma^\nu S(k,m_{\Omega})_{\mu \beta} v(p_3,m_3)\Bigg]\\ &\times \left[\frac{g_{\Omega\Xi K}}{m_\pi} (-{\rm i} p_{1\beta})\right] \mathcal{P}_{d_{N\Omega}}^{\mu\nu \lambda \omega}\Big(q,m_{d_{N\Omega}},\Gamma_{d_{N\Omega}}\Big) \Bigg[{\rm i}\frac{G_{d_{N\Omega}\Xi\Lambda}}{2m_{\Xi}} \\ &\times \bar{u}^c(p_5,m_5) \left(\gamma_\lambda (-{\rm i}p_{4\omega}) +\gamma_\omega (-{\rm i}p_{4\lambda}) \right) u(p_4,m_4)\Bigg]\\ & \times F\left(k^2,m^2_\Omega\right) F\left(q^2,m^2_{d_{N\Omega}}\right), \end{aligned} $
(9) where
$ \mathcal{P}_{d_{N\Omega}}^{\mu\nu \lambda \omega}(q,m_{d_{N\Omega}},\Gamma_{d_{N\Omega}}) $ is the propagator of the dibaryon$ d_{N\Omega} $ , and its concrete form is$ \begin{aligned}[b] \mathcal{P}_{d_{N\Omega}}^{\mu\nu\lambda\omega}(q,m_{d_{N\Omega}},\Gamma_{d_{N\Omega}})=&\frac{\rm i}{q^2-m_{d_{N\Omega}}^2+{\rm i} m_{d_{N\Omega}}\Gamma_{d_{N\Omega}}}\\ &\times\left[\frac{1}{2}\left(\tilde{g}_{\mu\lambda}\tilde{g}_{\nu\omega} +\tilde{g}_{\mu\omega}\tilde{g}_{\nu\lambda}\right) -\frac{1}{3}\tilde{g}_{\mu\nu}\tilde{g}_{\lambda\omega}\right], \qquad \end{aligned} $
(10) with
$ \tilde{g}^{\mu \nu}= -g^{\mu\nu}+q^\mu q^\nu/m^2 $ . In these amplitudes, an additional form factor$ F(q^2,m^2_{d_{N\Omega}}) $ is introduced to depict the internal structure and off shell effects of the$ d_{N\Omega} $ , and its concrete form will be discussed in the next section. In the same way, one can obtain the amplitude of$K^-p \to \bar{\Xi}^0 \Xi^- \Sigma^+$ corresponding to Fig. 2(b). With the amplitudes in Eq. (9), we can obtain the cross sections for the$ 2\to 3 $ processes by$ \begin{eqnarray} {\rm d} \sigma=\frac{1}{8(2\pi)^{4}} \frac{1}{\Phi}|\mathcal{M}|^{2} {\rm d} p_5^0 {\rm d} p_3^0 {\rm d} \cos\theta {\rm d} \eta, \end{eqnarray} $
(11) where
$ \Phi=2\sqrt{\lambda(s,m_1^2,m_2^2)}=4|\vec{p}_1|\sqrt{s} $ with$ \vec{p}_1 $ denoting the three momentums of the incident particle$ K^- $ .$ p_3^0 $ is the energy of the outgoing$ \bar{\Xi}^0 $ , whereas$ p_5^0 $ is the energy of Λ in the$ K^- p\to \Lambda \Xi^0 \bar{\Xi}^0 $ process and the energy of$ \Sigma^+ $ in the$ K^- p \to \bar{\Xi}^0\Xi^-\Sigma^+ $ process. -
In the present work, we introduce two form factors to depict the internal structures and off-shell effects of the exchanging Ω baryon and intermediate
$ d_{N\Omega} $ dibaryon. The specific expression of the factor is [66–69]$ \begin{eqnarray} F(q^{2},m^2)=\frac{\Lambda^4}{(m^2-q^2)^2+\Lambda^4}, \end{eqnarray} $
(12) where Λ is a model parameter. In principle, the value of the model parameter Λ should be determined by comparing the theoretical estimations with the corresponding experimental measurements. However, the experimental data for the cross sections for the discussed processes are not available at the present time. In Ref. [69], the authors investigated the cross sections for
$ \pi^- p \to K^{\ast 0} \Lambda $ and the parameter Λ was determined to be 0.55 GeV for the t channel and 0.60 GeV for the$ u/s $ channels by comparing the estimated cross sections with the experimental data. With this parameter, they also extended to estimate the cross sections for$ \pi^- p \to D^{\ast -} \Lambda_c^+ $ . In the present work, we take a very similar parameter range, which is$ 0.55 \ \mathrm{GeV}< \Lambda < 0.65 $ GeV, to calculate the cross sections for the$K^- p\to d_{N\Omega} \bar{\Xi}^0$ process.Before the estimations of the cross sections for the discussed processes, the relevant coupling constants should be clarified. As for the coupling constant
$ g_{d_{N\Omega} N\Omega} $ , it can be estimated by the compositeness condition of the composite state. In Ref. [47], the coupling constant$ g_{d_{N\Omega} N\Omega} $ was estimated to be approximately$ 1.88\sim 2.38 $ with the variation of the model parameter, where the binding energy was set to be$ 2.46 $ MeV. In the present estimation, we take$ g_{d_{N\Omega} N\Omega}=1.97 $ . With this coupling constant, the partial decay widths of$ d_{N\Omega} \to \Lambda \Xi^0 $ and$ d_{N\Omega} \to \Sigma^+ \Xi^- $ are estimated to be$ 582 $ and$ 22.8 $ keV [47], respectively. Together with the effective Lagrangian in Eq. (8), one can obtain the amplitudes of$ d_{N\Omega} \to \Lambda \Xi^0 $ and$ d_{N\Omega} \to \Sigma^+ \Xi^- $ , and then the corresponding partial width can be estimated by$ \begin{eqnarray} \Gamma_{d_{N\Omega} \to ...}=\frac{1}{(2J+1) 8\pi}\frac{|\vec{k_{f}}|}{ M_{d_{N\Omega}}^{2}}|\overline{\mathcal{M}_{d_{N\Omega} \to ...}}|^{2}, \end{eqnarray} $
(13) where
$ J=2 $ is the angular momentum of$ d_{N\Omega} $ ,$ |\vec{k}_f| $ denotes the three momentums of the daughter particles in the$ d_{N\Omega} $ rest frame. From Eq. (13) and the partial widths obtained in Ref. [47], one can estimate the corresponding effective coupling constants, which are$ g_{d_{N\Omega} \Lambda \Xi}=7.9\times10^{-2} $ and$g_{d_{N\Omega} \Sigma \Xi}= 2.5\times10^{-2}$ , respectively. As for the coupling constant$ g_{K\Xi\Omega} $ , we take$ g_{K\Xi\Omega}=2.12 $ as in Ref. [64]. -
With the above preparation, we can evaluate the cross sections for
$ K^- p \to d_{N\Omega} \bar{\Xi}^0 $ depending on the beam energy and model parameter Λ. In Fig 3(a), the solid curve refers to the cross sections for$ K^- p \to d_{N\Omega} \bar{\Xi}^0 $ with$ \Lambda=0.60 $ GeV, whereas the uncertainties of the cross sections are obtained by the variation of the parameter Λ from 0.55 GeV to 0.65 GeV. From the figure, one can find that the cross sections for$ K^- p\to d_{N\Omega}\bar{\Xi}^0 $ increase sharply near the threshold of$ d_{N\Omega} \bar{\Xi}^0 $ ; however, when the beam energy is greater than 9 GeV, the cross sections increase very slowly with the increase in beam energy. In the considered parameter range, the cross sections are estimated to be$ 404^{+358}_ {-202}\ \mathrm{nb} $ at$ P_K=20 $ GeV, where the center value is estimated with$ \Lambda=0.60 $ , while the uncertainties result from the variation of Λ from$ 0.55 $ GeV to 0.65 GeV. In Ref. [69], the cross sections for$ \pi p \to D^{\ast -}\Lambda_c^+ $ were estimated to be approximately 13 nb, whereas the present estimation indicates that the cross sections for$ K^- p \to d_{N\Omega} \bar{\Xi}^0 $ can reach 400 nb with the same model parameter, which is approximately 30 times larger than the one for$ \pi p \to D^{\ast -}\Lambda_c^+ $ [69].Figure 3. (color online) Cross sections for the process
$ K^-p\to d_{N\Omega} \bar{\Xi}^0 $ depending on the beam energy (diagram (a)), and differential cross sections depending on$ \cos(\theta) $ (diagram (b)).In addition, we also present the differential cross sections depending on
$ \cos (\theta) $ in Fig. 3(b). We select three typical beam energies as examples, which are$ P_K= $ 10, 12, 14 GeV with$ \Lambda=0.6 $ GeV. From the figure, one can find that more$ d_{N\Omega} $ dibaryons are concentrated in the forward angle area even in the case of$ P_K=10 $ GeV, which results from the Ω exchange. -
Besides the
$ K^- p \to d_{N\Omega} \bar{\Xi}^0 $ process, we estimated the beam energy dependences of the cross sections for$ K^- p\to \Xi^0 {\Lambda} \bar{\Xi}^0 $ and$ K^- p \to \Xi^- \Sigma^+ \bar{\Xi}^0 $ , where$ \Xi^0 \Lambda $ and$ \Xi^- \Sigma^+ $ are the daughter particles of$ d_{N\Omega} $ . As indicated in Ref. [47], the dibaryon$ d_{N\Omega} $ dominantly decays into$ \Lambda \Xi^0 $ , and the branching ratio is estimated to be approximately$ 95\% $ . Thus, one can experimentally detect$ d_{N\Omega} $ in the$ \Lambda \Xi^0 $ invariant mass distributions of the$ K^-p \to \Xi^0 {\Lambda} \bar{\Xi}^0 $ process, as shown in Fig. 2(a), where Λ can be reconstructed by$ p\pi^- $ and$ n\pi^0 $ , while$ \Xi^0 $ can be reconstructed by the cascade decay processes$ \Xi^0 \to \Lambda \pi^0\to p \pi^- \pi^0 $ or$ \Xi^0 \to \Lambda \pi^0\to n \pi^0 \pi^0 $ . Our estimations indicate that the cross sections for$K^-p \to \Xi^0 \Lambda \bar{\Xi}^0$ increase sharply near the threshold and become very weakly dependent on the beam energy as shown in Fig. 4(a) . In particular, the cross section is estimated to be$ 13^{+20}_{-7}\ \mathrm{n b} $ at$ P_K=20 $ GeV, where the center value is estimated with$ \Lambda=0.6 $ , whereas the uncertainties result from the variation of Λ from 0.55 GeV to 0.65 GeV.Figure 4. (color online) Cross sections for
$ K^-p \to\Xi^0 \Lambda\bar{\Xi}^0 $ (diagram (a)) and$ K^- p \to \Xi^-\Sigma^+ \bar{\Xi}^0 $ (diagram (b)) depending on the beam energy.Furthermore, the branching ratio of
$ d_{N\Omega}\to \Xi^- \Sigma^+ $ is sizable, and the final states are charged, which may be easier to be detected. Thus, in the present work, we also estimate the cross sections for$ K^- p \to \Xi^- \Sigma^+\bar{\Xi}^0 $ . As shown in Fig. 4(b), the beam energy dependences of the cross sections for$ K^- p \to \Xi^- \Sigma^+\bar{\Xi}^0 $ are very similar to the ones for$ K^- p\to \Xi^0 \Lambda \bar{\Xi}^0 $ , and the magnitude of the cross section is estimated to be$ 0.5^{+0.5}_{-0.2}\ \mathrm{n b} $ at$ P_K=20 $ GeV.
Production of $ {\boldsymbol{d}_{\boldsymbol{N\Omega}}} $ dibaryon in kaon induced reactions
- Received Date: 2022-12-08
- Available Online: 2023-05-15
Abstract: In this paper, we propose to investigate the