-
In this section, we present the mechanism of the process
$ D_s^+\to \pi^+\pi^0\pi^0 $ . This process occurs in three steps, weak decay, hadronization, and final state interactions [7, 9, 12, 13]. First, the c quark of the initial$ D_s^+ $ weakly decays into an s quark and a$ W^+ $ boson, and the$ W^+ $ boson subsequently decays into a$ \bar d u $ quark pair. Then, all the quarks, along with the quark pair$ q\bar q $ (=$ u\bar u $ +$ d\bar d $ +$ s\bar s $ ) created from the vacuum with the quantum numbers$J^{PC}= 0^{++}$ , hadronize into hadrons, which can be classified as the$ W^+ $ internal emission of Figs. 1(a) and (b) and the$ W^+ $ external emission of Figs. 1(c) and (d).Figure 1. Quark level diagrams for the
$ D_{s}^{+} $ weak decays. (a) Internal emission of$ D_{s}^{+} \to K^{+}u\bar{s} $ , and hadronization of$ u\bar{s} $ through$ q\bar{q} $ with vacuum quantum numbers. (b) Internal emission of$D_{s}^{+} \to $ $ \bar{K}^0s\bar{d}$ , and hadronization of$ s\bar{d} $ through$ q\bar{q} $ with vacuum quantum numbers. (c) External emission of$ D_{s}^{+} \to \pi^{+}s\bar{s} $ , and hadronization of$ s\bar{s} $ through$ q\bar{q} $ with vacuum quantum numbers. (d) External emission of$ D_{s}^{+} \to u\bar{d}\eta $ , and hadronization of$ u\bar{d} $ through$ q\bar{q} $ with vacuum quantum numbers.For the
$ W^+ $ internal emissions of Figs. 1(a) and (b),$ s\bar{d} $ or$ u\bar{s} $ hadronize into$ \bar{K}^0 $ or$K^+$ , and the hadronization of the other quarks may be expressed as$ \sum\limits_{i}u(\bar q_{i} q_i)\bar s=\sum\limits_{i}M_{1i}M_{i3}=(M^2)_{13}, $
(1) $ \sum\limits_{i}s(\bar q_{i} q_{i})\bar d=\sum\limits_{i}M_{3i}M_{i2}=(M^2)_{32}, $
(2) where
$ i=1,\; 2,\; 3 $ correspond to the u, d, and s quarks, respectively, and M is the$ q\bar{q} $ matrix$ \begin{array}{*{20}{l}} M=\left(\begin{array}{ccc} u\bar{u} & u\bar{d} & u\bar{s}\\ d\bar{u} & d\bar{d} & d\bar{s} \\ s\bar{u} & s\bar{d} & s\bar{s} \end{array} \right)\,. \end{array} $
(3) Within
$S U(3)$ flavor symmetry, the matrix M can be written in terms of pseudoscalar mesons as [7]$ \begin{array}{*{20}{l}} M= \left(\begin{array}{ccc} \frac{\pi^0}{\sqrt{2}} +\frac{\eta}{\sqrt{3}}+\frac{\eta^\prime}{\sqrt{6}}& \pi^+ & K^+\\ \pi^-& -\frac{\pi^0}{\sqrt{2}} +\frac{\eta}{\sqrt{3}}+\frac{\eta^\prime}{\sqrt{6}} & K^0\\ K^-& \bar{K}^0 & - \frac{\eta}{\sqrt{3}}+\frac{2\eta^\prime}{\sqrt{6}} \end{array} \right)\,. \end{array} $
(4) Because
$ \eta^\prime $ has a large mass and does not play a role in the generation of$ f_0(980) $ , we ignore the$ \eta^\prime $ component in this study. Then, Eqs. (1) and (2) can be rewritten as$ (M^{2})_{13}=\frac{1}{\sqrt{2}}K^+\pi^0 + \pi^+K^0, $
(5) $ (M^{2})_{32}=K^-\pi^+ - \frac{1}{\sqrt{2}}\bar{K^0}\pi^0. $
(6) For the
$ W^+ $ external emission of Fig. 1(c), the quarks$ u\bar{d} $ of the$ W^+ $ decay hadronize into$ \pi^+ $ , and the$ s\bar{s} $ pair, along with the created$ q\bar{q} $ pair, hadronize into the states$ \begin{aligned}[b] \sum\limits_{i}s(\bar q_{i} q_i)\bar s =&\sum\limits_{i}M_{3i}M_{i3}=(M^2)_{33} \\ =& K^+K^-+K^0\bar{K}^0+\frac{1}{3}\eta \eta. \end{aligned} $
(7) For the
$ W^+ $ external emission of Fig. 1(d), the$ s\bar{s} $ pair may hadronize into the η meson, and the quarks$ u\bar{d} $ of the$ W^+ $ decay, along with the created$ q\bar{q} $ pair, hadronize into$ \pi^+\eta $ , which contributes to the process$ D_s^+\to \pi^+\eta\eta $ . Thus, we have$ \begin{aligned}[b] \sum\limits_{i}u(\bar q_{i} q_i)\bar d (s\bar{s}) =&\sum\limits_{i}M_{1i}M_{i2} M_{33} \\ =&(M^2)_{21} \left(-\frac{1}{\sqrt3}\eta\right)= - \frac{2}{3}\pi^+\eta \eta. \end{aligned} $
(8) Then, the processes involved in the decay of
$ D^+_s $ into all possible states can be expressed as$ H^{(a)} =V_{cs}V_{ud}\left(\frac{1}{\sqrt{2}}\pi^0K^++\pi^+K^{0} \right)\bar{K}^0, $
(9) $ H^{(b)} =V_{cs}V_{ud}\left(\pi^+K^--\frac{1}{\sqrt{2}}\pi^0\bar {K}^0 \right) K^+, $
(10) $ H^{(c)}= CV_{cs}V_{ud}\left(K^+K^-+K^0\bar{K^0}+\frac{1}{3}\eta \eta \right)\pi^+, $
(11) $ H^{(d)}= CV_{cs}V_{ud}\left(-\frac{2}{3}\eta \eta \pi^+\right), $
(12) where
$ V_{ud} $ and$ V_{cs} $ are the CKM matrix elements. Because the external emission of$ W^+ $ bosons is color-favored relative to the$ W^+ $ internal emission, an extra color factor C can be introduced to account for the relative weight of the$ W^+ $ external emission with respect to the$ W^+ $ internal emission. For the$ W^+ $ external emission, the$ u\bar d $ quark pair from the$ W^+ $ decay can form the color singlet$ \pi^+ $ , and u and$ \bar{d} $ have three choices of colors, whereas for the$ W^+ $ internal emission, u,$ \bar{d} $ , s, and$ \bar s $ quarks from the$ W^+ $ decay have fixed colors. Thus, the factor C is taken to be three in this study [26–29]. Now, we have all the possible components after hadronization,②$ \begin{aligned}[b] H=& H^{(a)}+H^{(b)}+ H^{(c)}+ + H^{(d)}\\ =&V_{p}V_{cs}V_{ud}\left\{C( K^+K^-+K^0\bar{K}^0+\frac{1}{3}\eta\eta )\pi^+ \right. \\ &\left. + \bar{K^0}K^0\pi^+ + K^+ K^-\pi^+\right\} \\ =&V_{p}V_{cs}V_{ud}\left\{ (C+1)\left( K^+K^-\pi^++K^0\bar{K}^0\pi^+ \right) \right. \\ &\left. -\frac{C}{3}\eta\eta \pi^+ \right\}, \end{aligned} $
(13) where
$ V_p $ denotes the factors of the production vertices containing all the dynamics. After the preliminary weak decay, the meson pairs of$ K^{+}K^{-} $ ,$ K^{0}\bar{K}^0 $ , and$ \eta\eta $ may undergo the S-wave final state interaction to give rise to the$ \pi^{0}\pi^{0} $ final state, where the scalar meson$ f_0(980) $ can be dynamically generated, as shown in Fig. 2.The amplitude of the S-wave pseudoscalar-pseudoscalar interaction, generating the scalar
$ f_0(980) $ , can now be written as$ \begin{aligned}[b] {\mathcal{M}}_{f_{0}(980)}=&V_p\Bigg[(C+1) G_{K^+K^-}t_{K^+K^-\to \pi^0\pi^0} \\ & +(C+1) G_{K^0\bar{K}^0} t_{K^0\bar{K}^0 \to \pi^0\pi^0 } \\ &\left. -\frac{C}{3} G_{\eta\eta} t_{\eta\eta \to \pi^0\pi^0 } \right] , \end{aligned} $
(14) where
$ G_i $ is the loop function of the two-meson propagator, and$ t_{i\to j} $ is the transition amplitude of the i-channel to j-channel, both of which are functions of the$ \pi^0 \pi^0 $ invariant mass$ M_{\pi^0\pi^0} $ . The loop function is given by$ \begin{equation} G_{i}= {\rm i} \int \frac{{\rm d}^4 q}{(2 \pi)^4} \, \frac{1}{(P-q)^2 - m_1^2 + {\rm i} \epsilon} \, \frac{1}{q^2 - m^2_2 + {\rm i} \epsilon}, \end{equation} $
(15) where
$ m_1 $ and$ m_{2} $ are the masses of the two mesons in the loop of the i-channel, and P and q are the four-momenta of the two-meson system and second meson, respectively. The Mandelstam invariant$ s=P^2=M_{\pi^0\pi^0}^2 $ . The loop function of Eq. (15) is logarithmically divergent, and there are two methods of solving this singular integral, either using the three-momentum cut-off method, or the dimensional regularization method. The choice of a particular regularization scheme does not, of course, affect our argumentation. In this study, we perform the integral for q in Eq. (15) with a cut-off$ |\vec{q}_{\rm max}|= 600 $ MeV [30, 31]. The transition amplitude$ t_{i\to j} $ can be obtained by solving the Bethe-Salpeter equation in coupled channels,$ \begin{equation} T=[1-VG]^{-1}V, \end{equation} $
(16) where V is a
$ 5\times5 $ matrix of the interaction kernel. We take five channels,$ \pi^+\pi^- $ ,$ \pi^0\pi^0 $ ,$ K^+K^- $ ,$ K^0\bar{K}^0 $ , and$ \eta\eta $ . The explicit expressions of the$ 5\times5 $ matrix elements in the S-wave are given by [32–33]$ \begin{aligned}[b]& V_{11}=-\frac{1}{2f^2}s,\; \; \; V_{12}=-\frac{1}{\sqrt{2}f^2}(s-m^2_\pi), \\ & V_{13}=-\frac{1}{4f^2}s,\; \; V_{14}=-\frac{1}{4f^2}s, \\ &V_{15}=-\frac{1}{3\sqrt{2}f^2}m^2_\pi,\; \; \; V_{22}=-\frac{1}{2f^2}m^2_\pi, \\ & V_{23}=-\frac{1}{4\sqrt{2} f^2}s,\; \; \; V_{24}=-\frac{1}{4\sqrt{2} f^2}s, \\ & V_{25}=-\frac{1}{6f^2}m^2_\pi,\; \; V_{33}=-\frac{1}{2f^2}s,\; \; \; V_{34}=-\frac{1}{4f^2}s, \\ &V_{35}=-\frac{1}{12\sqrt{2}f^2}(9s-6m^2_\eta-2m^2_\pi), \\& V_{44}=-\frac{1}{2f^2}s,\; \; V_{45}=-\frac{1}{12\sqrt{2}f^2}(9s-6m^2_\eta-2m^2_\pi), \\&V_{55}=-\frac{1}{18f^2}(16m^2_K-7m^2_\pi), \end{aligned} $
(17) where
$ f=93 $ MeV is the pion decay constant, s is invariant mass square of the meson-meson system, and$ m_\pi $ ,$ m_K $ , and$ m_\eta $ are the masses of the pion, kaon, and η mesons, respectively [1]. The unitary normalization$ |\eta\eta> \to \dfrac{1}{\sqrt{2}}|\eta\eta> $ and$ |\pi^0\pi^0>\to \dfrac{1}{\sqrt{2}}|\pi^0\pi^0> $ is easily considered to identify the particle when using the loop function G without an extra factor [30].In addition to the scalar
$ f_0(980) $ , BESIII has observed the enhancement structure around 1300 MeV in the$ \pi^0\pi^0 $ invariant mass distribution, which could be associated with the resonances$ f_0(1370) $ and$ f_2(1270) $ . Hence, we also take into account contributions from the intermediate resonances$ f_0(1370) $ and$ f_2(1270) $ .For the contribution of
$ f_0(1370) $ in the decay$ D_s^+ \to \pi^+\pi^0\pi^0 $ , we describe it using the Breit-Winger form,$ \mathcal{M}_{f_0(1370)}=\frac{\alpha \times m^2_{f_0(1370)}}{m^{2}_{\pi^{0}\pi^{0}}-M^{2}_{f_{0}(1370)}+ {\rm i} \Gamma_{f_{0}(1370)}M_{f_{0}(1370)}} , $
(18) where α is the strength of
$ f_0(1370) $ . Considering that the mass and width of$ f_0(1370) $ have large uncertainties [1], we fix its mass to be 1300 MeV, the center position of the enhancement structure in the$ \pi^0\pi^0 $ invariant mass distribution of BESIII measurements [15], and take the width as a free parameter.Considering that
$ f_2(1270) $ couples to$ \pi^0\pi^0 $ in the D-wave, we can write the contribution of this resonance as [34]$ \mathcal{M}_{f_2(1270)}=\frac{\beta \times(3{\rm cos}^2\theta-1)\times{\tilde{p}_{\pi^0}^2}}{M^2_{\pi^0\pi^0}-M^2_{f_2(1270)}+ {\rm i} {M_{f_2(1270)}}\Gamma_{f_{2}(1270)}}, $
(19) where β represents the strength of the D-wave amplitudes. The mass and width of
$ f_2(1270) $ are$ M_{f_2(1270)}= $ 1275.5 MeV and$ \Gamma_{f_2(1270)}=186.7 $ GeV, taken from the Review of Particle Physics [1].$ \tilde{p}_{\pi^0} $ is the momentum of$ \pi^0 $ in the$ \pi^0\pi^0 $ rest frame,$ \tilde{p}_{\pi^0}=\frac{\lambda ^{1/2}\left(M^2_{\pi^0\pi^0},m^2_{\pi^0},M^2_{\pi^0}\right)}{2M_{\pi^0\pi^0}}. $
(20) The parameter θ is the angle between the momentum of
$ \pi^0 $ and$ \pi^+ $ in the rest frame of the$ \pi^0\pi^0 $ system [34],$ {\rm cos}\theta=\frac{M^2_{\pi^+\pi^0}-M^2_{D^+_s}-M^2_{\pi^0}+2\tilde p^0_{D^+_s}\tilde p^0_{\pi^0}}{2\tilde p_{\pi^+}\tilde p_{\pi^0}}, $
(21) where
$ \tilde{p}^0_{D_s^+} $ ($ \tilde{p}^0_{\pi^0} $ ) is the energy of$ D_s^+ $ ($ \pi^0 $ ) in the$ \pi^0\pi^0 $ rest frame, and$ \tilde{p}_{\pi^+}=\tilde{p}_{D_s^+} $ is the$ \pi^+ $ ($ D_s^+ $ ) momentum in the same frame. We give the explicit forms of these variables below.$ \begin{aligned}[b] \tilde{p}_{\pi^+}=& \tilde{p}_{D^+_s} = \frac{\lambda^{1/2}\left(M^2_{D^+_s}, M^2_{\pi^0\pi^0}, m^2_{\pi^+} \right)}{2M_{\pi^0\pi^0}} , \\ \tilde{p}^0_{D^+_s} =& \sqrt{M^2_{D^+_s} + \tilde{p}^2_{D^+_s}}, \\ \tilde{p}^0_{\pi^0} =& \frac{M_{\pi^0\pi^0}}{2}, \end{aligned} $
(22) where
$ \lambda(x,y,z)=x^2+y^2+z^2-2xy-2yz-2xz $ .Consequently, the total amplitude of
$ D_s^+ \to \pi^+\pi^0\pi^0 $ can be described by$ {\mathcal{M}}=a_{\rm bg}+{\mathcal{M}}_{f_0(980)}+{\mathcal{M}}_{f_0(1370)}+{\mathcal{M}}_{f_2(1270)}, $
(23) where the constant
$ a_{\rm bg} $ is the background contribution③. As a result, the amplitude of Eq. (23) depends on the two independent invariant masses$ M_{\pi^0\pi^0} $ and$ M_{\pi^+\pi^0} $ , and the double differential width for the process$ D_s^+ \to \pi^+\pi^0\pi^0 $ is given by$ \begin{equation} \frac{{\rm d}^2\Gamma}{{\rm d}M_{\pi^0\pi^0}{\rm d} M_{\pi^+\pi^0}}= \frac{M_{\pi^0\pi^0}M_{\pi^+\pi^0}}{(2\pi)^{3}8m^3_{D^+_{s}}}|\mathcal{M}|^2. \end{equation} $
(24) We can obtain
${{\rm d}\Gamma}/{{\rm d}M_{\pi^0\pi^0}}$ and${{\rm d}\Gamma}/{{\rm d}M_{\pi^+\pi^0}}$ by integrating Eq. (24) over the other invariant mass variable with relations as follows:$ \begin{equation} \frac{{\rm d}\Gamma}{{\rm d}M_{\pi^0\pi^0}}=\int\frac{M_{\pi^0\pi^0}M_{\pi^+\pi^0}}{(2\pi)^{3}8m^3_{D^+_{s}}}|\mathcal{M}|^2 {\rm d} M_{\pi^+\pi^0}. \end{equation} $
(25) With a given
$ M_{\pi^0\pi^0} $ , the upper and lower bounds of$ M_{\pi^+\pi^0} $ are$ \begin{aligned}[b] (M^2_{\pi^+\pi^0})_{\rm max}=&\left(E^*_{\pi^+}+E^*_{\pi^0}\right)^2 \\ & -\left(\sqrt{E^{*2}_{\pi^+}-m^{*2}_{\pi^+}}-\sqrt{E^{*2}_{\pi^0}-m^{*2}_{\pi^0}}\right)^2, \end{aligned} $
(26) $ \begin{aligned}[b] (M^2_{\pi^+\pi^0})_{\rm min}=&\left(E^*_{\pi^+}+E^*_{\pi^0}\right)^2 \\ & -\left(\sqrt{E^{*2}_{\pi^+}-m^{*2}_{\pi^+}}+\sqrt{E^{*2}_{\pi^0}-m^{*2}_{\pi^0}}\right)^2, \end{aligned} $
(27) where
$ E_{\pi^{+}}^{*} $ and$ E^{*}_{\pi^{0}} $ are the energies of$ \pi^{+} $ and$ \pi^{0} $ in the$ \pi^{0}\pi^{0} $ rest frame, respectively,$ \begin{aligned}[b] E^{*}_{\pi^+}=&\frac{m^{2}_{D^+_{s}}-M^{2}_{\pi^0\pi^0}-m^2_{\pi^+}}{2M_{\pi^0\pi^0}}, \\ E^{*}_{\pi^{0}}=&\frac{M^{2}_{\pi^{0}\pi^0}-m^{2}_{\pi^0}+m^2_{\pi^0}}{2M_{\pi^0\pi^0}}. \end{aligned} $
(28) We can similarly obtain the
$ \pi^{+}\pi^{0} $ invariant mass distribution.
Role of the scalar ${{\boldsymbol f}_{\bf 0}\boldsymbol{(980)} }$ in the process ${ {\boldsymbol D}_{\boldsymbol s}^{\bf +}\bf \to \boldsymbol\pi^{\bf +} \boldsymbol\pi^{\bf 0} \boldsymbol\pi^{\bf 0}} $
- Received Date: 2022-12-22
- Available Online: 2023-04-15
Abstract: Based on BESIII measurements of the reaction