-
The
$ S_3 $ $ S_3 $ HDM is an extension of the SM based on the discrete group$ S_3 $ , which comprises three$Y = {1}/{2}$ scalar doublets$ \phi_1, \phi_2 $ , and$ \phi_3 $ . Of these,$ \phi_1 $ and$ \phi_2 $ rotate into each other as doublets under$ S_3 $ , whereas$ \phi_3 $ remains a singlet under the same conditions. Thus, the most general scalar potential consistent with the gauge as well as$ S_3 $ -symmetry is [7, 8]$ \begin{aligned}[b] V(\phi) =& \mu_{11}^2(\phi_1^\dagger\phi_1+\phi_2^\dagger\phi_2)+ \mu_{33}^2\phi_3^\dagger\phi_3+ \lambda_1 (\phi_1^\dagger\phi_1+\phi_2^\dagger\phi_2)^2\\& +\lambda_2 (\phi_1^\dagger\phi_2 -\phi_2^\dagger\phi_1)^2 +\lambda_3 \Big\{(\phi_1^\dagger\phi_2+\phi_2^\dagger\phi_1)^2 \\&+(\phi_1^\dagger\phi_1-\phi_2^\dagger\phi_2) ^2\Big\} +\lambda_4 \Big\{(\phi_3^\dagger\phi_1)(\phi_1^\dagger\phi_2+\phi_2^\dagger\phi_1)\\& +(\phi_3^\dagger\phi_2)(\phi_1^\dagger\phi_1-\phi_2^\dagger\phi_2) + {\rm h. c.}\Big\}\\ & +\lambda_5(\phi_3^\dagger\phi_3)(\phi_1^\dagger\phi_1+\phi_2^\dagger\phi_2) + \lambda_6 \Big\{(\phi_3^\dagger\phi_1)(\phi_1^\dagger\phi_3)\\&+(\phi_3^\dagger\phi_2)(\phi_2^\dagger\phi_3)\Big\} +\lambda_7 \Big\{(\phi_3^\dagger\phi_1)(\phi_3^\dagger\phi_1) \\&+ (\phi_3^\dagger\phi_2)(\phi_3^\dagger\phi_2) +{\rm h. c.}\Big\} +\lambda_8(\phi_3^\dagger\phi_3)^2 \,. \end{aligned}$
(1) We take all the quartic couplings to be real to forbid
$C P$ -violation arising from the scalar sector. Following EW symmetry breaking (EWSB), the doublets can be expressed as$ {\phi _i} = \frac{1}{{\sqrt 2 }}\left( {\begin{array}{*{20}{c}} {\sqrt 2 w_i^ + }\\ {{v_i} + {h_i} + i{z_i}} \end{array}} \right)\;{\rm{for}}\;i = 1,2,3.{\rm{ }} $
(2) The vacuum expectation values
$ v_1, v_2, v_3 $ satisfy$ v_1^2 + v_2^2 + v_3^2 = (246 \; \text{GeV})^2 $ . In terms of the mass eigenstates, the spectrum consists of three$C P$ -even scalars$ h, H_1, H_2 $ , two$C P$ -odd scalars$ A_1, A_2 $ , and two charged scalars$ H_1^+, H_2^+ $ . The scalars in the mass eigenbasis are connected to those in the gauge eigenbasis through unitary transformations, and the form of such unitary matrices depends on whether the$ S_3 $ -invariance of the scalar potential is exact or allowed to be broken by terms of mass dimension-2. In the case of exact$ S_3 $ symmetry, minimizing the scalar potential enforces$ v_1 = \sqrt{3} v_2 $ [7, 8] if the conditions obtained thereafter are to be consistent with$ S_3 $ -invariance. In this case, tan$\beta = {2 v_2}/{v_3}$ can be defined, similar to that in a 2HDM. Subsequently, the diagonalizing matrices can be parameterized by two mixing angles, i.e., α and the aforementioned β. Exact forms of the unitary matrices can be found in [7] and therefore are not shown here. Similar to the case of a 2HDM, the relation$\alpha = \beta - {\pi}/{2}$ corresponds to the alignment, when the couplings of h to fermions and gauge bosons become equal to their corresponding SM values. Therefore, apart from the radiatively induced$ h \rightarrow \gamma \gamma $ channel, the LHC data on the signal strengths of h corresponding to the other channels are automatically satisfied upon tending to the$\alpha = \beta - {\pi}/{2}$ limit.The perturbativity and unitarity bounds on the quartic couplings
$ \lambda_i $ place an upper bound of$ < 1 $ TeV on the non-standard masses of the model [9]. To increase the non-standard scalar masses (later we shall discuss why this is required to satisfy flavor physics constraints),$ S_3 $ -symmetry is softy broken by dimension-2 operators. Then, the$C P$ -even sector, for example, relates the mass eigenbasis to the gauge eigenbasis through the most general$ 3 \times 3 $ orthogonal matrix$ {\cal{O}} $ as follows:$\left( {\begin{array}{*{20}{c}} {{h_1}}\\ {{h_2}}\\ {{h_3}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{O_{11}}}&{{O_{12}}}&{{O_{13}}}\\ {{O_{21}}}&{{O_{22}}}&{{O_{23}}}\\ {{O_{31}}}&{{O_{32}}}&{{O_{33}}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} h\\ {{H_1}}\\ {{H_2}} \end{array}} \right)$
(3) where
$ \begin{aligned}[b] O_{11} =& c_\phi c_\psi - c_\theta s_\phi s_\psi \,, \\ O_{12} = & -c_\phi s_\psi - c_\theta s_\phi c_\psi \,, \\ O_{13} =& s_\phi s_\theta \,, \\ O_{21} =& s_\phi c_\psi + c_\theta c_\phi s_\psi \,, \\ O_{22} =& -s_\phi s_\psi + c_\theta c_\phi c_\psi \,, \\ O_{23} = & -c_\phi s_\theta \,, \\ O_{31} = & s_\psi s_\theta \,, \\ O_{32} =& c_\psi s_\theta \,, \\ O_{33} = & c_\theta \,. \end{aligned}$
(4) $ \theta, \psi, \phi $ are the mixing angles.Now, the most general
$ S_3 $ -symmetric Yukawa potential for the up-type quark sector can be expressed as [7]$ \begin{aligned}[b] - {\cal{L}}_Y^{u} = & y_{1u} \Big( \overline Q_{1} \tilde\phi_3 u_{1R} + \overline Q_2 \tilde\phi_3 u_{2R} \Big) + y_{2u} \Big\{ \Big( \overline Q_{1}\tilde\phi_2 + \overline Q_2\tilde\phi_{1}\Big) u_{1R} \\&+ \Big( \overline Q_{1}\tilde\phi_{1} - \overline Q_2\tilde\phi_2 \Big)u_{2R} \Big\} + y_{3u} \overline Q_3\tilde\phi_3u_{3R} \\&+y_{4u} \overline Q_3 \Big( \tilde\phi_1 u_{1R} + \tilde\phi_2u_{2R} \Big) \\&+y_{5u} \Big( \overline Q_1 \tilde\phi_1 + \overline Q_2\tilde\phi_2 \Big) u_{3R} + {\rm{h.c.}} \end{aligned}$
(5) The Yukawa Lagrangian for the down-sector can be obtained by replacing
$ u \rightarrow d $ and$ \tilde{\phi} \rightarrow \phi $ . It should be noted that the fields$ u_i $ and$ d_i $ presented here do not denote physical quark fields. Their superpositions that are eigenstates will be given later. Following EWSB, the mass matrices of the fermions have the following texture [7]:$ \begin{aligned}[b]&{{\cal{M}}_f} = \frac{1}{{\sqrt 2 }}\left( {\begin{array}{*{20}{c}} {{y_{1f}}{v_3} + {y_{2f}}{v_2}}&{{y_{2f}}{v_1}}&{{y_{5f}}{v_1}}\\ {{y_{2f}}{v_1}}&{{y_{1f}}{v_3} - {y_{2f}}{v_2}}&{{y_{5f}}{v_2}}\\ {{y_{4f}}{v_1}}&{{y_{4f}}{v_2}}&{{y_{3f}}{v_3}} \end{array}} \right){\mkern 1mu} ,\\& {\rm{with}}\;f = u,d,l{\mkern 1mu} . \end{aligned} $
(6) Note that
$ {\cal{M}}_f $ in Eq. (6) is not Hermitian for$ y_{4f},y_{5f} \neq 0 $ and therefore is brought to a diagonal form by the following bi-unitary transformation:$ V_L^{\dagger} {\cal{M}}_f V_R = {\rm{diag}}(m_1,m_2,m_3), \tag{7a} $
$ m_1 = \frac{1}{\sqrt{2}}(y_{1f} v_3 - 2 y_{2f} v_2), \tag{7b} $
$ \begin{aligned}[b] m_{3,2} =& \frac{1}{2 \sqrt{2}}(2 y_{2f} v_2 + (y_{1f} + y_{3f}) v_3 \\ &\pm \sqrt{(y_{1f} v_3 + 2 y_{2f} v_2 - y_{3f} v_3)^2 + 16 y_{4f} y_{5f} v^2_2}) , \end{aligned}\tag{7c}$
where
$ m_i $ denotes the mass of the ith generation fermion. Therefore, it is possible to reproduce the observed values of the fermion masses by tuning the various Yukawa couplings and tan β appropriately.The matrices
$ V_L $ and$ V_R $ induce flavor-changing couplings with the Higgs in this model. The exact structure of the flavor-conserving and flavor-changing couplings can be found in Appendix B. -
From Appendix B, it can be seen that the flavor-changing couplings of SM Higgs involving the third generation of fermions are proportional to
$ y_{5f} $ , i.e., by taking$ y_{5f} $ to be negligible, one can ensure small flavor-changing couplings for the SM Higgs. Because the mass matrix of fermions is Hermitian for$ y_{4f}, y_{5f} = 0 $ ①, we assume$ y_{4f}, y_{5f} $ to be small for the entire analysis, which in turn gives small flavor-changing couplings to SM Higgs.Neglecting the small
$ y_{4f} $ and$ y_{5f} $ , the remaining three flavor-changing Yukawa couplings$ y_{1f} $ ,$ y_{2f} $ , and$ y_{3f} $ are fixed by the fermion masses$ m_1 $ ,$ m_2 $ , and$ m_3 $ as shown below.$ y_{1f} \simeq \frac{(m_1 + m_2)}{\sqrt{2} v_3} , \tag{9a}$
$ y_{2f} \simeq \frac{(m_2 - m_1)}{2 \sqrt{2} v_2} , \tag{9b} $
$ y_{3f} \simeq \frac{\sqrt{2} m_3}{v_3} . \tag{9c} $
For analysis, we vary
$ y_{4f} $ and$ y_{5f} $ as$ -0.005 \leq y_{4f} \leq 0.005 , \; -0.005 \leq y_{5f} \leq 0.005 . $
(10) $ v_1, v_2 $ , and$ v_3 $ can be expressed in terms of the mixing-angles β and γ as$ v_1 = v\; {\rm{sin}} \beta \; {\rm{cos}} \gamma , \tag{11a} $
$ v_2 = v\; {\rm{sin}} \beta \; {\rm{sin}} \gamma , \tag{11b} $
$ v_3 = v\; {\rm{cos}} \beta . \tag{11c} $
We set the masses of the mass eigenstates to be
$ m_h = 125.3\; {\rm{GeV}} , ~ m_{H_1} = m_{H_2} = m_{A_1} = m_{A_2} = 1 \; {\rm{TeV}}. $
To ensure that the lightest Higgs (h) of the model behaves as an SM Higgs, the couplings of h to gauge bosons and fermions (mentioned in Appendix B) are considered to be identical to those of the SM-Higgs via suitable choices of the angles
$ \beta, \gamma, \theta, \phi, \psi $ . While fixing γ, we take the flavor-changing couplings of h to the first two generations of the up and down type quarks, i.e.,$ y_{huc} $ and$ y_{hds} $ , to be zero. Thus, two benchmark points are chosen with different mixing angle values, as shown in Table 1. The values of$ y_{1f}, y_{2f}, y_{3f} $ at the EW scale are fixed by Eq. (9) and given in Table 1 for two different benchmark points BP1 and BP2. We take$ y_{4u} $ and$ y_{5u} $ to be zero at the EW scale. The corresponding values for$ y_{4d} $ and$ y_{5d} $ ($ << y_{1d}, y_{2d}, y_{3d} $ ) on the EW scale are fixed by flavor physics constraints, such as meson-mixing and meson-decays, as described in the next subsection. In Fig. 1, the cyan colored points represent the parameter space spanned by$ y_{4d} $ and$ y_{5d} $ at the EW scale for two different benchmark points.Benchmark Angle $ y_{iu} $ $ y_{id} $ BP1 $ \beta = $ 0.314159$ y_{1u} = 0.00385 $ $ y_{1d} = 0.00030 $ $ \gamma = $ 0.839897$ y_{2u} = 0.00794 $ $ y_{2d} = 0.00056 $ $ \theta = $ 1.20$ y_{3u} = 0.99708 $ $ y_{3d} = 0.01872 $ $ \phi = $ 4.94$ \psi = $ 1.82BP2 $ \beta = $ 0.314159$ y_{1u} = 0.00385 $ $ y_{1d} = 0.00030 $ $ \gamma = $ 1.12824$ y_{2u} = 0.00654 $ $ y_{2d} = 0.00046 $ $ \theta = $ 2.10$ y_{3u} = 0.99708 $ $ y_{3d} = 0.01872 $ $ \phi = $ 2.54$ \psi = $ 1.49Table 1. Angles and values of the Yukawa couplings
$ y_{iu} $ and$ y_{id} $ (for$ i = 1,2,3 $ ) at the electroweak scale for BP1 and BP2. -
In this subsection, we discuss the relevant processes contributing to the flavor physics constraints on the flavor-changing couplings to fermions.
-
The effective Hamiltonian for the process
$ B_s \rightarrow \mu^+ \mu^- $ can be calculated as [10]$\begin{aligned}[b] {\cal{H}}_{\rm{eff}} =& - \frac{G_{\rm F}}{\sqrt{2}} \frac{\alpha_{\rm{em}}}{\pi s_{\rm W}^2} V_{tb} V_{ts}^*(C_A {\cal{O}}_A + C_S {\cal{O}}_S\\& + C_P {\cal{O}}_P + C_S' {\cal{O}}_S' + C_P' {\cal{O}}_P') + {\rm{h.c.}} \, \end{aligned} $
(13) where
$G_{\rm F}$ is the Fermi constant,$ \alpha_{\rm{em}} $ is the fine structure constant,$ V_{ij} $ are the Cabibbo-Kobayashi-Masakawa (CKM) matrix elements, and$s_{\rm W} = {\rm {sin}} \theta_{\rm W}, \theta_{\rm W}$ being the Weinberg angle.The operators
$ {\cal{O}}_i $ and$ {\cal{O}}_i' $ are defined as$ {\cal{O}}_A = (\overline{s}\gamma_\mu P_L b)(\overline{\mu} \gamma^\mu \gamma_5 \mu)\,, $
(14) $ {\cal{O}}_S = (\overline{s} P_R b)(\overline{\mu} \mu) \,, $
(15) $ {\cal{O}}_P = (\overline{s} P_R b)(\overline{\mu} \gamma_5 \mu) \,, $
(16) $ {\cal{O}}_S' = (\overline{s} P_L b)(\overline{\mu} \mu) \,, $
(17) $ {\cal{O}}_P' = (\overline{s} P_L b)(\overline{\mu} \gamma_5 \mu) \,. $
(18) Here, the Wilson coefficient
$ C_A $ receives contributions from the SM only. In contrast, within the scope of the SM, the Wilson coefficients$ C_S^{\rm{SM}}, C_S^{'\rm{SM}}, C_P^{\rm{SM}}, C_P^{'\rm{SM}} $ from Higgs-penguin diagrams are highly suppressed.Therefore, we approximate
$ C_S^{\rm{SM}} = C_S^{'\rm{SM}} = C_P^{\rm{SM}} = C_P^{'\rm{SM}} = 0\,. $
(19) The NP contributions to the scalar and pseudoscalar Wilson coefficients are
$ C_S^{\rm{NP}} = - \kappa \sum\limits_{\Phi_S}\left(\frac{y_{\Phi_S sb}\; y_{\Phi_S \mu\mu}}{m_{\Phi_S}^2}\right),\; \Phi_S = h, H_1, H_2\,. $
(20) $ C_S^{'\rm{NP}} = C_S^{\rm{NP}} \,, $
(21) $ C_P^{\rm{NP}} = \kappa \sum\limits_{\Phi_P}\left(\frac{y_{\Phi_P sb}\; y_{\Phi_P \mu\mu}}{m_{\Phi_P}^2}\right),\; \Phi_P = A_1, A_2\,. $
(22) $ C_P^{'\rm{NP}} = - C_P^{\rm{NP}} \,, $
(23) where
$\kappa = \dfrac{\pi^2}{G_{\rm F}^2 m_W^2 V_{tb} V_{ts}^*}$ ,$ m_W $ is the mass of the W-boson,$ y_{\Phi_{S(P)} sb} $ is the Yukawa coupling between the scalar (pseudoscalar) and the first two generations of down quarks, and$ y_{\Phi_{S(P)} \mu \mu} $ is the Yukawa coupling between the scalar (pseudoscalar) and muons.From the Hamiltonian in Eq. (13), the branching ratio of the process
$ B_s \rightarrow \mu^+ \mu^- $ is [11, 12]$\begin{aligned}[b] {\rm{Br}}(B_s \rightarrow \mu^+ \mu^- ) =& \frac{\tau_{B_s} G_F^4 m_W^4}{8 \pi^5} |V_{tb} V_{ts}^*|^2 f_{B_s}^2 m_{B_s} m_\mu^2\\&\times \sqrt{ 1 - \frac{4 m_\mu^2}{m_{B_s}^2}} (|P|^2 + |S|^2)\,. \end{aligned} $
(24) where
$ m_{B_s} $ ,$ \tau_{B_s} $ , and$ f_{B_s} $ are the mass, lifetime, and decay constant of the$ B_s $ meson, respectively (values can be found in Ref. [13]), and$ \begin{aligned}[b] P \equiv & C_A + \frac{m_{B_s}^2}{2 m_\mu} \left(\frac{m_b}{m_b + m_s}\right) (C_P - C_P')\,, \\ S \equiv & \sqrt{ 1 - \frac{4 m_\mu^2}{m_{B_s}^2}} \frac{m_{B_s}^2}{2 m_\mu} \left(\frac{m_b}{m_b + m_s}\right) (C_S - C_S')\,, \end{aligned}$
(25) where
$ C_A = - \eta_Y Y_0 $ ,$ \eta_Y = 1.0113 $ ,$ Y_0 = \dfrac{x}{8} \Bigg(\dfrac{(4-x)}{(1-x)} + \dfrac{3 x \; {\rm{ln}}x}{(1-x)^2}\Bigg) $ ,$ x = \dfrac{m_t^2}{m_W^2} $ [14], and$ m_t $ ,$ m_b $ ,$ m_s $ , and$ m_\mu $ are the top quark, bottom quark, strange quark, and muon masses, respectively.For
$ B_s-\overline{B}_s $ oscillations, the measured branching ratio of$ B_s \rightarrow \mu^+ \mu^- $ should be calculated as a time-integrated value [15],$ \overline{{\cal{B}}}(B_s \rightarrow \mu^+ \mu^-) = \left(\frac{1 + {\cal{A}}_{\Delta \Gamma} y_s}{1 - y_s^2}\right) {\rm{Br}}(B_s \rightarrow \mu^+ \mu^-) \,. $
(26) where
$ \begin{aligned}[b] y_s =& \frac{\Gamma_s^L - \Gamma_s^H}{\Gamma_s^L + \Gamma_s^H} = \frac{\Delta \Gamma_s}{2 \Gamma_s} \,, \\ {\cal{A}}_{\Delta \Gamma} = & \frac{|P|^2 {{\rm{cos}}} (2 \phi_P - \phi_s^{NP}) - |S|^2 {{\rm{cos}}} (2 \phi_S - \phi_s^{NP}) }{|P|^2 + |S|^2} \,. \end{aligned}$
(27) Here,
$ \phi_{S(P)} $ are the phases associated with$ S(P) $ , and$ \phi_s^{\rm NP} $ is the CP phase originating from$ B_s-\overline{B}_s $ mixing. Within the scope of the SM,$ {\cal{A}}_{\Delta \Gamma} = 1 $ .$ \Gamma_s^L $ and$ \Gamma_s^H $ are the decay widths of the light and heavy mass eigenstates of$ B_s $ .Because the couplings
$ y_{\Phi_{S(P)} sb} $ and$ y_{\Phi_{S(P)} \mu \mu} $ are constrained by$ \overline{{\cal{B}}}(B_s \rightarrow \mu^+ \mu^-) $ data (Appendix B), it is clear that stringent bounds are imposed on the mixing angles and some Yukawa couplings in the down-sector.During the analysis, we use a
$ 2\sigma $ -experimental value of$ \overline{{\cal{B}}}(B_s \rightarrow \mu^+ \mu^-) $ (available in Table 2) for data fitting.Observables SM value Experimental value $ {\cal{\overline{B}}}(B_s \rightarrow \mu^+ \mu^-) $ (10$ ^{-9}) $ 3.66 $ \pm 0.14 $ [25]3.09 $ ^{+0.46\; +0.15}_{-0.43\; -0.11} $ [25]${\rm Br}(B_d \rightarrow \mu^+ \mu^-)$ (10$ ^{-10}) $ 1.03 $ \pm 0.05 $ [25]1.2 $ ^{+0.8}_{-0.7}\pm 0.1 $ [25]$ \Delta m_s $ (ps$ ^{-1} $ )18.3 $ \pm2.7 $ [26, 27]17.749 $ \pm 0.019\; ({\rm{stat}})\pm 0.007\; ({\rm{syst.}}) $ [28–33]$ \Delta m_d $ (ps$ ^{-1} $ )0.528 $ \pm 0.078 $ [26, 27]0.5065 $ \pm 0.0019 $ [34]$ \Delta m_K $ ($ 10^{-3} $ ps$ ^{-1} $ )4.68 $ \pm 1.88 $ 5.293 $ \pm 0.009 $ [13]Table 2. Standard model prediction and experimental values of different flavor physics observables.
-
All formulae are the same as in the case of
$ B_s \rightarrow \mu^+ \mu^- $ in Subsection III.A.1 after the replacement of$ s \rightarrow d $ . Here, we also use the experimental bound on the branching ratio (quoted in Table 2) within a$ 2 \sigma $ -window. -
The effective Hamiltonian for
$ B_s-\overline{B}_s $ -mixing can be written as [16, 17]$ {\cal{H}}_{\rm{eff}}^{\Delta B = 2} = \frac{G_{\rm F}^2}{16 \pi^2} m_{W}^2 (V_{tb} V_{tq}^*)^2 \sum\limits_i C_i {\cal{O}}_i + {\rm{h.c.}} \,, $
(28) where the operators
$ {\cal{O}}_i $ can be expressed as [16, 17]$ \begin{aligned}[b] {\cal{O}}^{VLL}_1 =& (\overline{q}^\alpha \gamma_\mu P_L b^\alpha)(\overline{q}^\beta \gamma_\mu P_L b^\beta)\,, \\ {\cal{O}}^{SLL}_1 = & (\overline{q}^\alpha P_L b^\alpha)(\overline{q}^\beta P_L b^\beta) \,, \\ {\cal{O}}^{SRR}_1 =& (\overline{q}^\alpha P_R b^\alpha)(\overline{q}^\beta P_R b^\beta) \,, \\ {\cal{O}}^{LR}_2 = & (\overline{q}^\alpha P_L b^\alpha)(\overline{q}^\beta P_R b^\beta) \, \end{aligned}$
(29) α and β being the color indices (not to be confused with mixing angles).
The contribution from the SM arises via
$ {\cal{O}}^{VLL}_1 $ . The SM contribution to the transition matrix element of$ B_q-\overline{B}_q $ mixing is given by [16, 17]$\begin{aligned}[b] M_{12}^{q({\rm SM})} =& \frac{G_{\rm F}^2}{16 \pi^2} m_W^2 (V_{tb} V_{tq}^*)^2 \left[C^{VLL}_1 \langle {\cal{O}}^{VLL}_1 \rangle \right]\,, \\ =& \frac{G_{\rm F}^2 m_W^2 m_{B_q}}{12 \pi^2} S_0(x_t)\eta_{2B} |V_{tq}^* V_{tb}|^2 f_{B_q}^2 \hat{B}_{B_q}^{(1)} \,, \end{aligned} $
(30) where,
$ \begin{aligned}[b] S_0(x_t) =& \frac{4 x_t - 11 x_t^2 + x_t^3}{4(1-x_t)^2} - \frac{3 x_t^3\; {\rm{ln}} x_t}{2 (1 - x_t)^3}\,, \\ x_t = & \frac{m_t^2 (\mu_t)}{m_W^2} \,, \\ \eta_{2B} =& \left[\alpha_s (\mu_W)\right]^{\frac{6}{23}} \,, \\ \hat{B}_{B_q}^{(1)} =& 1.4 \,. \end{aligned}$
(31) The NP-contributions reflect through the remaining operators
$ {\cal{O}}^{SLL}_1 $ ,$ {\cal{O}}^{SRR}_1 $ , and$ {\cal{O}}^{LR}_2 $ generated by Higgs FCNC interactions. The corresponding Wilson coefficients contain model information and are calculated as$ \begin{aligned}[b] C^{SRR}_1 = & \frac{16 \pi^2}{G_{\rm F}^2 m_W^2 (V_{tb} V_{tq}^*)^2 }\left[ \sum\limits_{\Phi_S} \frac{y_{\Phi_S b q}^2}{m_{\Phi_S}^2} - \sum\limits_{\Phi_P} \frac{y_{\Phi_P b q}^2}{m_{\Phi_P}^2}\right] \,, \\ C^{SLL}_1 =& C^{SRR}_1 \,, \\ C^{LR}_2 =& \frac{32 \pi^2}{G_{\rm F}^2 m_W^2 (V_{tb} V_{tq}^*)^2 }\left[ \sum\limits_{\Phi_S} \frac{y_{\Phi_S b q}^2}{m_{\Phi_S}^2} + \sum\limits_{\Phi_P} \frac{y_{\Phi_P b q}^2}{m_{\Phi_P}^2}\right] \,. \end{aligned} $
(32) where
$ \Phi_S = h, H_1, H_2 $ , and$ \Phi_P = A_1, A_2 $ .The overall transition matrix element of
$ B_q-\overline{B}_q $ mixing containing SM and NP contributions is given by [16, 17],$\begin{aligned}[b] M_{12}^q =& \langle B_q |{\cal{H}}_{\rm{eff}}^{\Delta B = 2}|\overline{B}_q \rangle \,, \\ =& \frac{G_{\rm F}^2}{16 \pi^2} m_W^2 (V_{tb} V_{tq}^*)^2 \sum\limits_i C_i \langle B_q |{\cal{O}}_i|\overline{B}_q \rangle \,. \\ = & M_{12}^{q(\rm SM)} + M_{12}^{q(\rm NP)} \,, = M_{12}^{q(\rm SM)} \\&+ \frac{G_{\rm F}^2}{16 \pi^2} m_W^2 (V_{tb} V_{tq}^*)^2 \Big[C^{SLL, NP}_1 \langle {\cal{O}}^{SLL}_1 \rangle \\&+ C^{SRR, NP}_1 \langle {\cal{O}}^{SRR}_1 \rangle + C^{LR, NP}_2 \langle {\cal{O}}^{LR}_2 \rangle \Big] \,. \end{aligned} $
(33) Here, [18]
$ \begin{aligned}[b] \langle {\cal{O}}^{VLL}_1 \rangle =& c_1 f_{B_q}^2 m_{B_q}^2 B_{B_q}^{(1)} (\mu)\,, \\ \langle {\cal{O}}^{SLL}_1 \rangle =& c_2 \left(\frac{m_{B_q}}{m_b(\mu) + m_q(\mu)}\right)^2 f_{B_q}^2 m_{B_q}^2 B_{B_q}^{(2)} (\mu) \,, \\ \langle {\cal{O}}^{SRR}_1 \rangle =& \langle {\cal{O}}^{SLL}_1 \rangle \,, \\ \langle {\cal{O}}^{LR}_2 \rangle =& c_4 \left[\left(\frac{m_{B_q}}{m_b(\mu) + m_q(\mu)}\right)^2 + d_4 \right] f_{B_q}^2 m_{B_q}^2 B_{B_q}^{(4)} (\mu) \,, \end{aligned} $
(34) where
$ c_1 = {2}/{3}, \; c_2 = - {5}/{12} , \; c_4 = {1}/{2},\; d_4 = {1}/{6} , B_{B_q}^{(1,2,4)}(\mu) = $ $1 $ .$ f_{B_q} $ and$ m_{B_q} $ can be found in [18, 19].Now, the mass difference of
$ B_q-\overline{B}_q $ can be written as$ \Delta m_q = 2 |M_{12}^q| \,. $
(35) Because all Yukawa couplings are taken to be real, the CP-violation phase becomes zero.
From Eq. (32), it is evident that the mass difference
$ \Delta m_q $ is solely dependent on the Yukawa couplings$ y_{\Phi_{S(P)}bq} $ and masses$ m_{\Phi_{S(P)}} $ . The experimental constraint on$ \Delta m_q $ can be translated to some bound on the mixing angles and several of the Yukawa couplings in the down-sector. Here, we also use the$ 2\sigma $ - experimental values of$ \Delta m_q $ available in Table 2. -
For brevity, we do not present detailed formulae for
$ K_0-\overline{K}_0 $ mixing, which are similar to$ B_q-\overline{B}_q $ oscillations. The detailed formulae for$ K_0-\overline{K}_0 $ mixing can be found in Refs. [16, 20].The NP contribution to the mass difference
$ \Delta m_K $ involves the Yukawa couplings$ y_{\Phi_{S(P)} ds} $ and masses$ m_{\Phi_{S(P)}} $ . They, in turn, restrict the mixing angles and Yukawa couplings.With the hadronic uncertainties on
$ K_0-\overline{K}_0 $ mixing being relatively large [21, 22], we allow for a 50% range of$(\Delta m_K)_{\rm exp}$ (Table 2) while considering the Higgs FCNC effects on$ \Delta m_K $ . For this conservative estimate, we follow [22].The aforementioned relevant flavor physics observables are shown in Table 2.
-
The constraints on the flavor-changing Yukawa couplings in the up-sector originate from
$ D_0-\overline{D}_0 $ mixing and the process$ t \rightarrow c h $ .$ D_0-\overline{D}_0 $ mixing imposes constraints on the couplings$ y_{\Phi_{S(P)} uc} $ , similar to$ B_q-\overline{B}_q $ and$ K_0-\overline{K}_0 $ mixing in the down-sector. Because$ y_{\Phi_{S(P)} uc} $ is proportional to$ y_{2u} $ , which is fixed by the quark masses, the mixing angles are only affected by this constraint. Detailed formulae can be found in Ref. [23]. We use the$ 2 \sigma $ -allowed range for the experimental value of the mass difference$ \Delta m_{D_0-\overline{D}_0} $ (mentioned in Table 2).The process
$ t \rightarrow c h $ gives a bound on the flavor-changing coupling$ y_{hct} $ [24], which is somehow less stringent. -
The one-loop beta RGEs of the Yukawa couplings are listed below.
$ \begin{aligned}[b]\\ 16 \pi^2 \frac{{\rm d} y_{1u}}{{\rm d}t} =& \frac{1}{2} (9 y_{1d}^2 y_{1u}-8 y_{1d} y_{2d} y_{2u}+4 y_{1l}^2 y_{1u}+15 y_{1u}^3+2 y_{1u} y_{2d}^2+6 y_{1u} y_{2u}^2+6 y_{1u} y_{3d}^2 \\& +2 y_{1u} y_{3l}^2+6 y_{1u} y_{3u}^2+2 y_{1u} y_{4u}^2+y_{1u} y_{5d}^2+y_{1u} y_{5u}^2-4 y_{3d} y_{4u} y_{5d}) + a_u y_{1u} \,, \\ 16 \pi^2 \frac{{\rm d} y_{2u}}{{\rm d}t} =& \frac{1}{2} (y_{1d}^2 y_{2u}-4 y_{1d} y_{1u} y_{2d}+3 y_{1u}^2 y_{2u}+14 y_{2d}^2 y_{2u}-4 y_{2d} y_{4d} y_{4u}+4 y_{2l}^2 y_{2u}+18 y_{2u}^3 \\& +6 y_{2u} y_{4d}^2 +2 y_{2u} y_{4l}^2+8 y_{2u} y_{4u}^2+3 y_{2u} y_{5d}^2+2 y_{2u} y_{5l}^2+7 y_{2u} y_{5u}^2) + a_u y_{2u}\,, \\ 16 \pi^2 \frac{{\rm d} y_{3u}}{{\rm d}t} =& 6 y_{1d}^2 y_{3u}-4 y_{1d} y_{4d} y_{5u}+\frac{1}{2} y_{3u} (4 y_{1l}^2+12 y_{1u}^2+3 y_{3d}^2+2 y_{3l}^2+9 y_{3u}^2 \\& +2 (y_{4d}^2+y_{4u}^2+2 y_{5u}^2)) + a_u y_{3u}\,, \\ 16 \pi^2 \frac{{\rm d} y_{_{4u}}}{{\rm d}t} =& y_{1u}^2 y_{4u}-2 y_{1u} y_{3d} y_{5d}+6 y_{2d}^2 y_{4u}-4 y_{2d} y_{2u} y_{4d}+\frac{1}{2} y_{4u} (4 y_{2l}^2+16 y_{2u}^2+y_{3d}^2+y_{3u}^2 \\ & +2 (2 y_{4d}^2+y_{4l}^2+5 y_{4u}^2+3 y_{5d}^2+y_{5l}^2+3 y_{5u}^2)) + a_u y_{4u} \,, \\ 16 \pi^2 \frac{{\rm d} y_{5u}}{{\rm d}t} = & \frac{1}{2} (y_{5u} (y_{1d}^2+y_{1u}^2+6 y_{2d}^2+4 y_{2l}^2+14 y_{2u}^2+2 y_{3u}^2+6 y_{4d}^2+2 y_{4l}^2+6 y_{4u}^2+3 y_{5d}^2+2 y_{5l}^2) \\& -4 y_{1d} y_{3u} y_{4d}+11 y_{5u}^3) + a_u y_{5u}\,, \end{aligned}$ $ \begin{aligned}[b] 16 \pi^2 \frac{{\rm d} y_{1d}}{{\rm d}t} = & \frac{1}{2} (15 y_{1d}^3+y_{1d} (4 y_{1l}^2+9 y_{1u}^2+6 y_{2d}^2+2 y_{2u}^2+6 y_{3d}^2+2 y_{3l}^2+6 y_{3u}^2+2 y_{4d}^2+y_{5d}^2+y_{5u}^2) \\ & -4 (2 y_{1u} y_{2d} y_{2u}+y_{3u} y_{4d} y_{5u})) + a_d y_{1d} \,, \\ 16 \pi^2 \frac{{\rm d} y_{2d}}{{\rm d}t} = & \frac{1}{2} (3 y_{1d}^2 y_{2d}-4 y_{1d} y_{1u} y_{2u}+y_{1u}^2 y_{2d}+18 y_{2d}^3+4 y_{2d} y_{2l}^2+14 y_{2d} y_{2u}^2+8 y_{2d} y_{4d}^2+2 y_{2d} y_{4l}^2 \\ & +6 y_{2d} y_{4u}^2+7 y_{2d} y_{5d}^2+2 y_{2d} y_{5l}^2+3 y_{2d} y_{5u}^2-4 y_{2u} y_{4d} y_{4u}) + a_d y_{2d}\,, \\ 16 \pi^2 \frac{{\rm d} y_{3d}}{{\rm d}t} = & 6 y_{1d}^2 y_{3d}+2 y_{1l}^2 y_{3d}+6 y_{1u}^2 y_{3d}-4 y_{1u} y_{4u} y_{5d}+\frac{9 y_{3d}^3}{2}+y_{3d} y_{3l}^2+\frac{3 y_{3d} y_{3u}^2}{2} \\& +y_{3d} y_{4d}^2+y_{3d} y_{4u}^2+2 y_{3d} y_{5d}^2 + a_d y_{3d} \,, \\ 16 \pi^2 \frac{{\rm d} y_{4d}}{{\rm d}t} =& y_{1d}^2 y_{4d}-2 y_{1d} y_{3u} y_{5u}+8 y_{2d}^2 y_{4d}-4 y_{2d} y_{2u} y_{4u}+\frac{1}{2} y_{4d} (4 y_{2l}^2+12 y_{2u}^2+y_{3d}^2+y_{3u}^2 \\& +2 (5 y_{4d}^2+y_{4l}^2+2 y_{4u}^2+3 y_{5d}^2+y_{5l}^2+3 y_{5u}^2)) + a_d y_{4d} \,, \\ 16 \pi^2 \frac{{\rm d} y_{5d}}{{\rm d}t} = & \frac{1}{2} (y_{5d} (y_{1d}^2+14 y_{2d}^2+4 y_{2l}^2+6 y_{2u}^2+2 y_{3d}^2+6 y_{4d}^2+2 y_{4l}^2+6 y_{4u}^2+11 y_{5d}^2+2 y_{5l}^2+3 y_{5u}^2) \\ & +y_{1u}^2 y_{5d}-4 y_{1u} y_{3d} y_{4u}) + a_d y_{5d} \,, \\ 16 \pi^2 \frac{{\rm d} y_{1l}}{{\rm d}t} = & \frac{1}{2} y_{1l} (12 y_{1d}^2 + 7 y_{1l}^2 + 2 (6 y_{1u}^2 + 3 y_{2l}^2 + 3 y_{3d}^2 + y_{3l}^2 + 3 y_{3u}^2 + y_{4l}^2) + y_{5l}^2) + a_l y_{1l}\,, \\ 16 \pi^2 \frac{{\rm d} y_{2l}}{{\rm d}t} = & \frac{1}{2} y_{2l} (3 y_{1l}^2 + 12 y_{2d}^2 + 10 y_{2l}^2 + 12 y_{2u}^2 + 6 y_{4d}^2 + 4 y_{4l}^2 + 6 y_{4u}^2 + 6 y_{5d}^2 + 3 y_{5l}^2 + 6 y_{5u}^2) + a_l y_{2l}\,, \\ 16 \pi^2 \frac{{\rm d} y_{3l}}{{\rm d}t} =& \frac{1}{2} y_{3l} (12 y_{1d}^2 + 4 y_{1l}^2 + 12 y_{1u}^2 + 6 y_{3d}^2 + 5 y_{3l}^2 + 6 y_{3u}^2 + 2 y_{4l}^2 + 4 y_{5l}^2) + a_l y_{3l}\,, \\ 16 \pi^2 \frac{{\rm d} y_{4l}}{{\rm d}t} = & \frac{1}{2} y_{4l} (2 y_{1l}^2 + 12 y_{2d}^2 + 8 y_{2l}^2 + 12 y_{2u}^2 + y{3l}^2 + 6 y_{4d}^2 + 6 y_{4l}^2 + 6 y_{4u}^2 + 6 y_{5d}^2 + 2 y_{5l}^2 + 6 y_{5u}^2) + a_l y_{4l}\,, \\ 16 \pi^2 \frac{{\rm d} y_{5l}}{{\rm d}t} = & \frac{1}{2} y_{5l} (y_{1l}^2 + 12 y_{2d}^2 + 6 y{2l}^2 + 12 y_{2u}^2 + 2 y_{3l}^2 + 6 y_{4d}^2 + 2 y_{4l}^2 + 6 y_{4u}^2 + 6 y_{5d}^2 + 7 y_{5l}^2 + 6 y_{5u}^2) + a_l y_{5l}\,. \end{aligned}\tag{A1}$
With
$ \begin{aligned}[b] a_d = - 8 g_s^2 - \frac{9}{4} g^2 - \frac{5}{12} g'^2 \,, \qquad\quad a_u = - 8 g_s^2 - \frac{9}{4} g^2 - \frac{17}{12} g'^2 \,,\qquad\quad a_l = - \frac{9}{4} g^2 - \frac{15}{4} g'^2 \,. \end{aligned}\tag{A2}$
-
Below, we show the interactions between the neutral
$C P$ -even scalars$ h, H_1, H_2 $ and the gauge bosons$ V = W^{\pm},Z $ .$ g_{hVV} = \big(O_{11}s_\beta c_\gamma + O_{21}s_\beta s_\gamma + O_{31} c_\beta\big) \frac{n M_V^2}{v}, \tag{B1a} $
$ g_{H_1VV} = \big(O_{12}s_\beta c_\gamma + O_{22}s_\beta s_\gamma + O_{32} c_\beta\big) \frac{n M_V^2}{v} , \tag{B1b}$
$ g_{H_2VV} = \big(O_{13}s_\beta c_\gamma + O_{23}s_\beta s_\gamma + O_{33} c_\beta\big) \frac{n M_V^2}{v} ,\tag{B1c} $
where
$ n = 2(1) $ for$ W^{\pm}(Z) $ .The flavor-conserving couplings of h with u-quarks are
$ y_{huu} = O_{31} y_{1u} - O_{21} s_\gamma y_{2u} - O_{11} c_\gamma y_{2u} , \tag{B2a}$
$ y_{hcc} = O_{31} y_{1u} + O_{21} s_\gamma y_{2u} + O_{11} c_\gamma y_{2u} , \tag{B2b}$
$ y_{htt} = \frac{O_{31}}{c_\beta} y_{3u} . \tag{B2c}$
The flavor-violating couplings with u-quarks are
$ y_{huc} = \frac{y_{2u}}{\sqrt{2}}\Big(-O_{21} c_\gamma + O_{11} s_\gamma\Big), \tag{B3a} $
$ y_{hut} = \frac{y_{5u}}{2}\Big(O_{21} \sqrt{1 + s_\gamma} - O_{11} \sqrt{1 - s_\gamma}), \tag{B3b} $
$ y_{hct} = \frac{y_{5u}}{2}\Big(O_{21} \sqrt{1 - s_\gamma} + O_{11} \sqrt{1 + s_\gamma}), \tag{B3c} $
$ y_{H_1uc} = \frac{y_{2u}}{\sqrt{2}}\Big(-O_{22} c_\gamma + O_{12} s_\gamma\Big), \tag{B3d} $
$ y_{H_1ut} = \frac{y_{5u}}{2}\Big(O_{22} \sqrt{1 + s_\gamma} - O_{12} \sqrt{1 - s_\gamma}),\tag{B3e} $
$ y_{H_1ct} = \frac{y_{5u}}{2}\Big(O_{22} \sqrt{1 - s_\gamma} + O_{12} \sqrt{1 + s_\gamma}), \tag{B3f}$
$ y_{H_2uc} = \frac{y_{2u}}{\sqrt{2}}\Big(-O_{23} c_\gamma + O_{13} s_\gamma\Big), \tag{B3g} $
$ y_{H_2ut} = \frac{y_{5u}}{2}\Big(O_{23} \sqrt{1 + s_\gamma} - O_{13} \sqrt{1 - s_\gamma}), \tag{B3h}$
$ y_{H_2ct} = \frac{y_{5u}}{2}\Big(O_{23} \sqrt{1 - s_\gamma} + O_{13} \sqrt{1 + s_\gamma}). \tag{B3i} $
The corresponding couplings for the down-sector can be obtained via the substitutions
$ u \rightarrow d $ ,$ c \rightarrow s $ , and$ t \rightarrow b $ .It is noted that the flavor-violating couplings of
$ A_1 $ ($ A_2 $ ) are the same as the corresponding couplings of$ H_1 $ ($ H_2 $ ).
Flavor-alignment in an S3-symmetric Higgs sector and its RG-behavior
- Received Date: 2022-03-31
- Available Online: 2022-12-15
Abstract: A three Higgs-doublet model exhibiting