-
The interaction potential between the emitted cluster and daughter nucleus is a basic ingredient to study the decay process of a certain nucleus. After constructing the cluster-core interaction potential, it can be implemented in the time-independent Schrödinger wave equation to determine the incident and transmitted wave functions of the cluster-core system. Based on the Skyrme energy density functionals, the nuclear interaction potential, as a function of the separation distance r(fm) between the centers of mass of the interacting nuclei, is obtained by the difference between the energy expectation value E of the composite system at a finite separation distance r and that of individual separated nuclei at
$ r = \infty $ [21, 24, 25],$ \begin{split} V_N(r) =& E(r) - E(\infty) \\ =& \int \left\lbrace {\cal{H}}\left[ \rho_{pc}(\vec{x}) + \rho_{pD}(r, \vec{x}), \, \rho_{nc}(\vec{x}) + \rho_{nD}(r, \vec{x}) \right] \right. \\ & \left. - {\cal{H}}_c\left[ \rho_{pc}(\vec{x}) , \, \rho_{nc}( \vec{x}) \right] - {\cal{H}}_D\left[ \rho_{pD}(\vec{x}) , \, \rho_{nD}( \vec{x}) \right] \right\rbrace {\rm d}\vec{x}. \end{split} $
(1) $ {\cal{H}} $ ,$ {\cal{H}}_c $ , and$ {\cal{H}}_D $ in Eq. (1) define the energy density functionals of the composite system, the formed cluster, and the daughter nucleus, respectively.$ \rho_{ij}(i = p,n;j = c = D) $ represent the proton (p) and neutron (n) density distributions of both the emitted cluster (c) and the daughter nucleus (D). The Skyrme energy functional includes the kinetic and the nuclear (Sky) contributions,$\begin{split} {\cal{H}} \left( \rho_i, \tau_i, \vec{J}_i\right) =& \frac{\hbar^2}{2m}\sum\limits_{i = n,p}\tau_i\left(\rho_i,\vec{\nabla}\rho_i, \nabla^2 \rho_i \right) \\&+ {\cal{H}}_{\rm Sky}\left( \rho_i, \tau_i, \vec{J}_i\right) + {\cal{H}}_{\rm C}^{\rm exch}\left( \rho_p\right). \end{split} $
(2) Here,
$ \tau_i $ and$ \vec{J}_i $ respectively define the kinetic energy and the spin-orbit densities [21, 26, 27]. Regarding the nuclear part of the energy-density functional, we shall use the Skyrme-SLy4 parameterization [28] of the effective nucleon-nucleon, which includes zero- and finite-range, density-dependent, effective-mass, spin-orbit, tensor, and surface gradient terms. The last term in Eq. (2) considers the exchange Coulomb energy [13, 29]. The direct part of the Coulomb potential can be obtained by folding the proton-proton Coulomb interaction through the proton density distributions of the interacting nuclei [14],$ V_{\rm C}(r) = \int {\rm d}\vec{r}_1 \int {\rm d}\vec{r}_2 \frac{e^2}{|\vec{r} + \vec{r}_2 - \vec{r}_1|} \, \rho_{pc}(\vec{r}_1) \, \rho_{pD}(\vec{r}_2). $
(3) More details concerning the method of calculating the Coulomb and nuclear parts of the interaction potential can be found in Refs. [15, 21, 30]. The neutron (proton) density distribution of the involved nuclei heavier than α-particle can be expressed in the two-parameter Fermi form,
$ \rho_{n(p)} (r) = \frac{\rho_{0n(p)}}{1+ \exp\left[ {\dfrac{\left(r-R_{n(p)}\right)}{a_{n(p)}}}\right] } . $
(4) Based on a fit to a huge number of nuclear density distributions, which are obtained using Hartree-Fock calculations in terms of the Skyrme-SLy4 NN interaction, the half-density radii (
$ R_{n(p)} $ ) and diffuseness$ a_{n(p)} $ of finite nuclei have been parameterized as [31],$ \begin{split} & R_n ({\rm{fm}}) = 0.953\, N^{1/3} + 0.015\, Z + 0.774, \\ & R_p ({\rm{fm}}) = 1.322\, Z^{1/3} + 0.007\, N + 0.022, \\ & a_n ({\rm{fm}}) = 0.446 + 0.072 \, {N}/{Z}, \\ & a_p ({\rm{fm}}) = 0.449 + 0.071 \, {Z}/{N}. \end{split} $
(5) The saturation density
$ \rho_{0n(p)} $ is evaluated by normalizing the density to the corresponding nucleon number. This parameterization takes advantage of considering the isospin asymmetry dependence of the nuclear density distributions by giving the proton (neutron) density distribution as a function of both Z and N together. The α-particle density is usually taken as Gaussian distribution that is parameterized via electron scattering data [32]. For the favored decay modes with no angular momentum transferred by the emitted light cluster, we sum the nuclear and Coulomb potentials to construct the total potential,$ V_{\rm T}(r) = V_N(r) + V_{\rm C}(r). $
(6) The total potential
$ V_{\rm T}(r) $ is characterized by three classical turning points,$ r_{i = 1,2,3} $ (fm), at which$ V_{\rm T}(r_i) $ equals the Q-value ($ Q_{\rm C} $ ) of the decay process. Once we construct the total interaction potential, we implement it in the radial Schrödinger wave equation for the cluster-core dinuclear system,$ -\frac{\hbar^2}{2\mu}\frac{{\rm d}^2}{{\rm d}r^2} u_l(r) \,+\, \left( V_{\rm T}(r) + \frac{l(l+1) \hbar^2}{2\mu r^2} \right) u_{l}(r) = E \, u_{l}(r). $
(7) Here,
$ \mu = m_c m_D/(m_c + m_D) $ is the reduced mass of the cluster ($ m_c $ )-daughter ($ m_D $ ) system.$ u_l(r) $ represents the radial wave function,$ \psi = Y_{lm}(\theta,\phi) u_l(r)/r $ , that can be obtained by numerically solving Eq. (7). On the time scale, the half-lives in comparison to the observed α-decays of radioactive nuclei (1 μs – billions of years) are significantly longer than the times of standard nuclear motions (10-21 s). Then, the mean time before decay is in the range of 1015 – 1028 nuclear periods. Within this long time, the nucleus has numerous opportunities to set a pattern of motion, or to get clustered and emit the formed light cluster. These states can be safely considered to be quasi-stationary [33]. Another factor supporting the quasi- stationary state description of α and cluster decays is that all observed decay widths of heavy nuclei are significantly smaller than the corresponding Q-values by numerous orders of magnitude. This makes the decaying state almost a bound state [34], and subsequently the cluster decaying state is specified by a narrow resonant solution, including only outgoing components [35, 36]. The wave functions of the quasi-stationary decaying states, which are obtained by solving time-independent Schrödinger equations as an excellent approximation, are successfully used to study the α and heavier cluster decays in numerous studies [16, 34-42].After determining the normalized incident (
$ u_{li} $ ) and transmitted ($ u_{lt} $ ) wave functions at both sides of the Coulomb barrier, we can calculate the penetration probability in terms of their squared amplitudes [16, 17],$P = \frac{|A(u_{lt}(r>>r_3))|^2}{|A(u_{li}(r_2))|^2}. $
(8) The amplitude of the transmitted wave function in Eq. (8) is calculated at a sufficiently large distance [17], where the amplitude becomes constant. The assault frequency at which the formed cluster hits the Coulomb barrier can be obtained using the Wentzel-Kramers-Brillouin (WKB) approximation as the inverse of the time taken by the cluster to make one oscillation within the internal pocket of the interaction potential, between
$ r_1 $ and$ r_2 $ [19, 20],$ \nu = \left[ \int_{r_1}^{r_2} \frac{2\mu}{\hbar k(r)} {\rm d}r \right]^{-1}.$
(9) The wave number k in Eq. (9) is determined as
$ k(r) = \sqrt{ 2 \mu |V_{\rm T}(r)-Q_c|/ \hbar^2} $ . The half-life of the nucleus can be obtained in terms of P,$ \nu $ , and the preformation probability (S) of the formed cluster as$ T_{1/2} = \frac{\ln 2}{S\, \nu \, P}. $
(10) The emitted cluster must be formed before beginning its trials to penetrate the barrier. The preformation probability can be then defined as the quantum mechanical probability of finding the cluster-core as distinguished dinuclear system at a point near to the first turning point of the relative motion. As the obtained wave function is normalized to unity, then this probability can be estimated by integrating the squared incident wave function from the origin to a certain distance
$ R_0 $ , from the center of the parent nucleus, at which the cluster is expected to be formed [16]. This standard quantum mechanical probability indicates the weight of the cluster-core configuration, as distinguishable entities in the ground state, at$ R_0 $ . To find the expected value of the formation distance$ R_0 $ , we can employ an iterative procedure in terms of the experimentally observed half-life and the calculated penetration probability and assault frequency through the relation,$ \int\limits_{0}^{R_0} |u_{li}(r)|^2 \, {\rm d}r = \frac{\ln(2)}{P \, \nu \, T_{1/2}^{\rm exp}}. $
(11)
Formation region of emitted α and heavier particles inside radioactive nuclei
- Received Date: 2020-01-16
- Available Online: 2020-07-01
Abstract: We investigate the formation distance (R0) from the center of the radioactive parent nucleus at which the emitted cluster is most probably formed. The calculations are performed microscopically starting with the solution to the time-independent Schrödinger wave equation for the cluster-core system, using nuclear potentials based on the Skyrme-SLy4 nucleon-nucleon interactions and folding Coulomb potential, to determine the incident and transmitted wave functions of the system. Our results show that the emitted cluster is mostly formed in the pre-surface region of the nucleus, under the effect of Pauli blocking from the saturated core density. The deeper α-formation distance inside the nucleus allows less preformation probability and indicates a more stable nucleus for a longer half-life. Furthermore, the α-particle tends to be formed at a slightly deeper region inside the nuclei, with larger isospin asymmetry, and in the closed shell nuclei. Regarding the heavy clusters, we observed that the formation distance of the emitted clusters heavier than α-particle increased via increasing the isospin asymmetry of the formed cluster rather than by increasing its mass number. The partial half-life of a certain cluster-decay mode increased with increase of either the mass number or the isospin asymmetry of the emitted cluster.