-
In the UrQMD model, each hadron is represented by a Gaussian wave packet with the width of
$ \sigma^2 = $ 2$ {\rm fm}^2 $ for$ ^{197} {{\rm{Au}}}$ in the phase space [32–38]. The centroid$ {{r}}_{i} $ and$ {{p}}_{i} $ are propagated according to the Hamiltonian equations of motion via:$ {\dot{ p}}_{i} = -\frac{\partial{H}}{\partial{{{r}}_{i}}},\quad {\dot{ r}}_{i} = \frac{\partial{H}}{\partial{{{p}}_{i}}}. $
(1) Here, H depicts the n-body total Hamiltonian of the system, which consists of the kinetic energy and the effective potential energy V. Within the present code, the potential energy V is composed of the Coulomb potential energy, local potential energy, and isospin- and momentum-dependent potential energy,
$ V = V_{{\rm{Coul}}}+V_{{\rm{loc}}}+V_{{\rm{mom}}}. $
(2) The Coulomb potential energy can be written as
$ V_{{\rm{Coul}}} = \frac{1.44}{2}\sum\limits_{i,j,i\neq{j}}\frac{1}{r_{ij}}{\rm erf}\left(\frac{r_{ij}}{\sqrt{4\sigma^2}}\right). $
(3) Here,
$ r_{ij} $ is the distance between the i-th and the j-th charged particles. The$ {\rm erf} $ is the error function, which is written as erf(t) =$ \dfrac{2}{\sqrt{\pi}}\int_{0}^{t}{\rm e}^{-x^{2}}{\rm d}x $ .The local potential energy
$ V_{{\rm{loc}}} $ can be obtained with$ V_{{\rm{loc}}}(\rho) = \int u_{{\rm{loc}}}{\rm d}{{r}} $ . Here,$ u_{{\rm{loc}}} $ is provided by the Skyrme potential energy density functional [35, 39]$ \begin{split}u_{{\rm{loc}}} =& \frac{\alpha}{2}\frac{\rho^{2}}{\rho_{0}}+\frac{\beta}{\gamma+1}\frac{\rho^{\gamma+1}}{\rho_{0}^{\gamma}}+ \frac{g_{\rm{sur,iso}}}{2\rho_{0}}[\nabla(\rho_{n}-\rho_{p})]^{2} \\&+ \frac{g_{\rm{sur}}}{2\rho_{0}}(\nabla\rho)^{2}+\left[a_{\rm{sym}}\left(\frac{\rho}{\rho_{0}}\right)+b_{\rm{sym}}\left(\frac{\rho}{\rho_{0}}\right)^{2}\right]\rho \delta^{2}. \end{split} $
(4) Taking the isospin effects into consideration [40–43], the momentum-dependent potential energy
$ V_{{\rm{mom}}} $ can be written as$ V_{{\rm{mom}}} = \int u_{{\rm{mom}}} {\rm d}{{r}} $ , where$ \begin{split} u_{{\rm{mom}}} =& \sum\limits_{\tau}\frac{1+x}{4\rho_{0}}\int\int v({{p}},{{p}}^{\prime })f_{\tau}({{r}},{{p}})f_{\tau}({{r}},{{p}}^{\prime }){\rm d}{{p}}{\rm d}{{p}}^{\prime } \\&+\sum\limits_{\tau \neq \tau^{\prime }}\frac{1-x}{4\rho_{0}}\int\int v({{p}},{{p}}^{\prime })f_{\tau}({{r}},{{p}})f_{\tau^{\prime }}({{r}},{{p}}^{\prime }){\rm d}{{p}}{\rm d}{{p}}^{\prime }. \end{split} $
(5) Here,
$ v({{p}},{{p}}^{\prime }) = 0.00157 \ln^{2}[1+500 ({{p}}-{{p}}^{\prime })^{2}] $ was widely used in QMD-like models [44]. Along with$ \alpha = -396.4$ MeV,$ \beta = 331.8$ MeV, and$ \gamma = 1.14$ , a soft equation of state can be obtained for the isospin symmetric nuclear matter with the compressibility K = 200 MeV.$ {g}_{\rm{sur}} $ = 18.2 MeV fm2 and$ {g}_{\rm{sur,iso}} $ = 8.9 MeV fm2 are employed, as in our previous study [37], to prevent the initialized nuclei disintegration. By setting x =$ \pm0.6 $ , one can obtain different neutron and proton effective masses. For example, x = 0.6 represents$ m_{n}^{*}<m_{p}^{*} $ , while x = –0.6 represents$ m_{n}^{*}>m_{p}^{*} $ .$ f_{\tau} $ is the phase-space density. For infinite nuclear matter at zero temperature,$ f_{\tau} $ can be written as a step function$ f_{\tau}({{r}},{{p}}) $ =$ \dfrac{2}{h^{3}}\Theta(p_{F_{\tau}}-p) $ , in which$ p_{F_{\tau}} $ is the Fermi momenta of baryons. They can be written as$ p_{F_{n}} = \hbar c\left(\dfrac{3\pi^{2}\rho}{2}\right)^{\frac{1}{3}}\left(1+\delta\right)^{\frac{1}{3}} $ ,$ p_{F_{p}} = \hbar c\left(\dfrac{3\pi^{2}\rho}{2}\right)^{\frac{1}{3}}\left(1-\delta\right)^{\frac{1}{3}} $ , and$ p_{F} = \hbar c\left(\dfrac{3\pi^{2}\rho}{2}\right)^{\frac{1}{3}} $ .In the mean field approximation, the above potential energy density yields the following single-particle potential:
$ \begin{split} U_{\tau}(\rho,\delta,{{p}}) =& \alpha\frac{\rho}{\rho_{0}}+\beta\frac{\rho^{\gamma}}{\rho_{0}^{\gamma}}+\left[a_{\rm{sym}}\left(\frac{\rho}{\rho_{0}}\right)+b_{\rm{sym}}\left(\frac{\rho}{\rho_{0}}\right)^{2}\right] \delta^{2} \\ & +\frac{\left|\tau\right|}{\tau} \left[a_{\rm{sym}}\left(\frac{\rho}{\rho_{0}}\right)+b_{\rm{sym}}\left(\frac{\rho}{\rho_{0}}\right)^{2}\right]2\rho\delta \\ & +\frac{1+x}{\rho_{0}}\int v({{p}},{{p}}^{\prime})f_{\tau}({{r}},{{p}}^{\prime}){\rm d}{{p}}^{\prime} \\ & +\frac{1-x}{\rho_{0}}\int v({{p}},{{p}}^{\prime})f_{\tau^{\prime}}({{r}},{{p}}^{\prime}){\rm d}{{p}}^{\prime}. \end{split}$
(6) The nucleon effective mass
$ m^{*} $ in nuclear medium is defined as$ m^{*}_{\tau} = m_0/\left(1+\frac{m_0}{\left|{{p}}\right|}\left|\frac{{\rm d}U_{\tau}}{{\rm d}{{p}}}\right|\right). $
(7) $ m_0 $ = 0.938 GeV/c2 denotes the free mass. The effective mass as a function of momentum is plotted in Fig. 1.Figure 1. (color online) Effective mass of neutron and proton as a function of momentum at
$ \delta = 0.2$ and$ \rho = \rho_0 $ .The energy per nucleon
$ E(\rho,\delta) $ of the isospin asymmetric nuclear matter, can be written as$\begin{split} E(\rho,\delta) =& \frac{3}{5}\frac{p_{F_{n}}^{2}}{2m}\frac{\rho_{n}}{\rho}+\frac{3}{5}\frac{p_{F_{p}}^{2}}{2m}\frac{\rho_{p}}{\rho}\\&+\frac{u_{\rm loc}(\rho,\delta)}{\rho}+\frac{u_{\rm mom}(\rho,\delta)}{\rho}. \end{split}$
(8) Within the parabolic approximation (
$ E(\rho,\delta) = E(\rho,0) + $ $ E_{\rm sym}(\rho)\delta^{2} + {\cal{O}}(\delta^{4}) $ ), which is widely used in the literature, the symmetry energy can be written as the following three parts,$ \begin{split} E_{\rm sym}(\rho) = & E_{\rm sym}^{\rm kin}(\rho)+E_{\rm sym}^{\rm loc}(\rho) + E_{\rm sym}^{\rm mom}(\rho), \\ E_{\rm sym}^{\rm kin}(\rho) = & \frac{1}{\delta^{2}}\left(\frac{3}{5}\frac{p_{F_{n}}^{2}}{2m}\frac{\rho_{n}}{\rho}+\frac{3}{5}\frac{p_{F_{p}}^{2}}{2m}\frac{\rho_{p}}{\rho}-\frac{3}{5}\frac{p_{F}^{2}}{2m}\right), \\ E_{\rm sym}^{\rm mom}(\rho) = & \frac{1}{4\delta^{2}}\sum\limits_{\tau}\frac{1+x}{\rho\rho_{0}}\int\int v({{p}},{{p}}^{\prime })\\ &\times f_{\tau}({{r}},{{p}})f_{\tau}({{r}},{{p}}^{\prime }){\rm d}{{p}}{\rm d}{{p}}^{\prime }+\frac{1}{4\delta^{2}}\sum\limits_{\tau \neq \tau^{\prime }}\frac{1-x}{\rho\rho_{0}}\\ &\times\int\int v({{p}},{{p}}^{\prime }) f_{\tau}({{r}},{{p}})f_{\tau^{\prime }}({{r}},{{p}}^{\prime }){\rm d}{{p}}{\rm d}{{p}}^{\prime }\\ &-\frac{1}{\delta^{2}}\frac{1}{\rho\rho_{0}}\int\int v({{p}},{{p}}^{\prime })f({{r}},{{p}})f({{r}},{{p}}^{\prime }){\rm d}{{p}}{\rm d}{{p}}^{\prime },\\ E_{\rm sym}^{\rm loc}(\rho) =& a_{\rm sym}\left(\frac{\rho}{\rho_{0}}\right)+b_{\rm sym}\left(\frac{\rho}{\rho_{0}}\right)^{2}. \end{split} $
(9) The nuclear symmetry energy
$ S_0 $ =$ E_{\rm{sym}}(\rho_0) $ and its slope$ L = 3\rho_{0}\frac{\partial E_{\rm{sym}}(\rho)}{\partial\rho}|_{\rho = \rho_{0}} $ at the saturation density are displayed in Table 1. The density dependence of nuclear symmetry energy with different parameter sets is shown in Fig. 2. To investigate the effect of$ m_{n-p}^{*} $ on the elliptic flow in HICs, we need to minimize the impact of the nuclear symmetry energy. Thus, two parameter sets with different$ m_{n-p}^{*} $ , which correspond to almost the same density-dependent nuclear symmetry energy$ E_{\rm{sym}}(\rho) $ , are employed. Furthermore, parameter sets with the same$ m_{n-p}^{*} $ but different$ E_{\rm{sym}}(\rho) $ are also considered. Three different$ E_{\rm{sym}}(\rho) $ given by SKz4, SKM*, and SV-sym34 interactions are also shown for comparison.Para $ a_{\rm sym} $ $ b_{\rm sym} $ $ {S}_{0} $ L $ m_n^* $ $ m_p^* $ asy-hard ( $ m_{n}^{*} < m_{p}^{*} $ )5.6 8.0 31.0 108.8 0.81 0.84 asy-hard ( $ m_{n}^{*} > m_{p}^{*} $ )11.5 9.8 31.0 106.8 0.84 0.81 asy-soft ( $ m_{n}^{*} < m_{p}^{*} $ )30.6 −17.0 31.0 33.8 0.81 0.84 asy-soft ( $ m_{n}^{*} > m_{p}^{*} $ )36.5 −15.3 31.0 31.8 0.84 0.81 Table 1. Saturation properties of nuclear matter as obtained with selected parameters of this study. Effective proton and neutron masses are calculated for neutron-rich nuclear matter at
$ \delta = 0.2$ and ρ =$ \rho_{0} $ = 0.16 fm−3.Figure 2. (color online) Density dependence of nuclear symmetry energy. Lines depict symmetry energies incorporating isospin- and momentum-dependent interaction (iso-MDI). Symmetry energies (i.e., Skz4, SkM*, and SV-sym34) used in a previous UrQMD model [35, 36] incorporating the isospin-independent momentum-dependent interaction (MDI) are also shown for comparison.
Nucleon effective mass splitting and density-dependent symmetry energy effects on elliptic flow in heavy ion collisions at Elab= 0.09 ~ 1.5 GeV/nucleon
- Received Date: 2019-12-10
- Accepted Date: 2020-03-02
- Available Online: 2020-07-01
Abstract: By incorporating an isospin-dependent form of the momentum-dependent potential in the ultra-relativistic quantum molecular dynamics (UrQMD) model, we systematically investigate effects of the neutron-proton effective mass splitting