-
In general, the wave function
$ \Phi_{\alpha\beta} $ with Dirac indices$ \alpha,\beta $ can be decomposed into 16 independent components,$ I_{\alpha\beta},\gamma^{\mu}_{\alpha\beta},(\gamma^{\mu}\gamma^5)_{\alpha\beta},\gamma^5_{\alpha\beta},\sigma^{\mu\nu}_{\alpha\beta} $ . For the pseudoscalar$ B_s $ meson, the light-cone matrix element is defined as$ \begin{split} &\int_0^1 {\frac{{{\rm d^{\,4}}z}}{{{{(2\pi )}^4}}}} {{\rm e}^{{\rm i}{k_1} \cdot z}}\langle 0|{b_\alpha }(0){\bar q_\beta }(z)|{\bar B_s}({P_{{B_s}}})\rangle = \\&\quad \frac{i}{{\sqrt {2{N_c}} }}{\left\{ ({\not\!\! P_{{B_s}}} + {m_{{B_s}}}){\gamma _5}\left[{\phi _{{B_s}}}({k_1}) + \frac{{\not\! n - \not \!v}}{{\sqrt 2 }}{\bar \phi _{{B_s}}}({k_1})\right]\right\} _{\alpha \beta }},\end{split}$
(1) where the light-cone vectors are
$ {{n}} = (1,0,0_T) $ and$ {{v}} = (0,1,0_T) $ . The two independent parts of the$ B_s $ meson light-cone distribution amplitude obey the following normalization conditions:$\int {\frac{{{\rm d^4}{k_1}}}{{{{(2\pi )}^4}}}} {\phi _{{B_s}}}({k_1}) = \frac{{{f_{{B_s}}}}}{{2\sqrt {2{N_c}} }},\quad \int {\frac{{{\rm d^4}{k_1}}}{{{{(2\pi )}^4}}}} {\bar \phi _{{B_s}}}({k_1}) = 0,$
(2) where
$ f_{B_s} $ is the decay constant of$ B_s $ meson. Since the contribution of$ \bar{\phi}_{B_s}(k_1) $ is numerically small [28], we neglect it and keep only the$ \phi_{B_s}(k_1) $ part in the above equation. In the momentum space the light-cone matrix of$ B_s $ meson can be expressed as follows:${\Phi _{{B_s}}} = \frac{i}{{\sqrt {2{N_c}} }}({\not\!\!P_{{B_s}}} + {m_{{B_s}}}){\gamma _5}{\phi _{{B_s}}}({k_1}).$
(3) Usually, the hard part is independent of
$ k^+ $ or/and$ k^- $ , thus one can integrate one of them out from$ \phi_{B_s}(k^+,k^-,k_{\perp}) $ . With b as the conjugate space coordinate of$ k_{\perp} $ , we can express$ \phi_{B_s}(x,k_{\perp}) $ in the b-space by${\Phi _{{B_s}}}{(x,b)_{\alpha \beta }} = \frac{i}{{\sqrt {2{N_c}} }}{[({\not\!\! P_{{B_s}}} + {m_{{B_s}}}){\gamma _5}]_{\alpha \beta }}{\phi _{{B_s}}}(x,b),$
(4) where x is the momentum fraction of the light quark in
$ B_s $ meson. In this paper, we adopt the following expression for$ \phi_{B_s}(x,b) $ ${\phi _{{B_s}}}(x,b) = {N_{{B_s}}}{x^2}{(1 - x)^2}{\rm{exp}}\left[ - \frac{{m_{{B_s}}^2{x^2}}}{{2\omega _b^2}} - \frac{{{{({\omega _b}b)}^2}}}{2}\right],$
(5) where
$ N_{B_s} $ is the normalization factor, which is determined by the above equation with b = 0. In our calculation, we adopt$ \omega_b = (0.50\pm0.05) {\rm GeV} $ [9] and$ f_{B_s} = (0.228\pm$ $ 0.004) {\rm GeV} $ [10], from which we determine$ N_{B_s} = 63.02 $ .The wave function of the charmed D meson, treated as the heavy-light system, is defined by the light-cone matrix element as follows [11]:
$ \begin{split} &\int_0^1 {\frac{{{\rm d^{\,4}}z}}{{{{(2\pi )}^4}}}} {{\rm e}^{{\rm i}{k_2} \cdot z}}\langle 0|{\bar c_\alpha }(0){q_\beta }(z)|{\bar D^0}({P_D}))\rangle =\\&\quad - \frac{i}{{\sqrt {2{N_c}} }}{\left\{ ({\not \!\!P_D} + m_D^0){\gamma _5}{\phi _D}({k_2})\right\} _{\beta \alpha }},\end{split}$
(6) which satisfies the normalization
$\int {\frac{{{\rm d^4}{k_2}}}{{{{(2\pi )}^4}}}} {\phi _D}({k_2}) = \frac{{{f_D}}}{{2\sqrt {2{N_c}} }}.$
(7) Here,
$ f_D $ is the decay constant, and the chiral D meson mass is taken as$ m^0_D = \displaystyle\frac{m_D^2}{m_c+m_d} = m_D+{\cal O}(\Lambda) $ . For the numerical calculation, we adopt the parametrization [50],$\begin{split} {\phi _D}({x_2},{b_2}) = &\frac{{{f_D}}}{{2\sqrt {2{N_c}} }}6{x_2}(1 - {x_2})[1 + {C_D}(1 - 2{x_2})]\\&\times{\rm{exp}}\left[ - \frac{{\omega _D^2b_2^2}}{2}\right],\end{split}$
(8) where the free shape parameter
$ C_D $ is$ C_D = 0.5\pm0.1 $ [14], and$ f_D $ ,$ \omega_D $ read as$ f_D = 0.209\pm 0.002 $ [10] and$ \omega_D = 0.1 $ [14].The S-wave two-pion distribution amplitude is then given as [46]
$ \begin{split} \Phi _{\pi \pi }^{S-\rm wave} =& \frac{1}{{\sqrt {2{N_c}} }}[\not \!\!p{\Phi _{\pi \pi }}(z,\xi ,m_{\pi \pi }^2) + {m_{\pi \pi }}\Phi _{\pi \pi }^s(z,\xi ,m_{\pi \pi }^2) \\&+ {m_{\pi \pi }}(\not\! n\not\! v - 1)\Phi _{\pi \pi }^T(z,\xi ,m_{\pi \pi }^2)],\end{split}$
(9) where
$ z $ is the momentum fraction carried by the spectator positive quark,$ \Phi_{\pi\pi} $ ,$ \Phi_{\pi\pi}^s $ and$ \Phi_{\pi\pi}^T $ are twist-2 and twist-3 distribution amplitudes.$ m_{\pi\pi} $ is the invariant mass of the pion pair. We consider that the two-pion system moves in the n direction.$ \xi $ as the momentum fraction of$ \pi^+ $ in the pion pair. The asymptotic forms are parametrized as [51-53]$\begin{split} {\Phi _{\pi \pi }} =& \frac{{{F_s}(m_{\pi \pi }^2)}}{{2\sqrt {2{N_c}} }}{a_2}6z(1 - z)3(2z - 1),\;\\\Phi _{\pi \pi }^s =& \frac{{{F_s}(m_{\pi \pi }^2)}}{{2\sqrt {2{N_c}} }},\;\Phi _{\pi \pi }^T = \frac{{{F_s}(m_{\pi \pi }^2)}}{{2\sqrt {2{N_c}} }}(1 - 2z).\end{split}$
(10) Here,
$ F_s(m_{\pi\pi}^2) $ and$ a_2 $ are the timelike scalar form factor and the Gegenbauer coefficient, respectively. As a first approximation, the S-wave resonances used to parametrize$ F_s(m_{\pi\pi}^2) $ include both the resonant and nonresonant parts of the S-wave two-pion distribution amplitude. Therefore, we take into account$ f_0(980), $ $f_0(1500) $ and$ f_0(1790) $ in the$ s\bar s $ density operator, and$ f_0(500) $ in the$ u\bar u $ density operator:$\begin{split} F_s^{s\bar s}(m_{\pi \pi }^2) =& \frac{{{c_1}m_{{f_0}(980)}^2{{\rm e}^{{\rm i}{\theta _1}}}}}{{m_{{f_0}(980)}^2 - m_{\pi \pi }^2 - i{m_{{f_0}(980)}}({g_{\pi \pi }}{\rho _{\pi \pi }} + {g_{KK}}{\rho _{KK}})}}\\ & + \frac{{{c_2}m_{{f_0}(1500)}^2{{\rm e}^{{\rm i}{\theta _2}}}}}{{m_{{f_0}(1500)}^2 - m_{\pi \pi }^2 - i{m_{{f_0}(1500)}}{\Gamma _{{f_0}(1500)}}(m_{\pi \pi }^2)}}\\ & + \frac{{{c_3}m_{{f_0}(1790)}^2{{\rm e}^{{\rm i}{\theta _3}}}}}{{m_{{f_0}(1790)}^2 - m_{\pi \pi }^2 - i{m_{{f_0}(1790)}}{\Gamma _{{f_0}(1790)}}(m_{\pi \pi }^2)}},\\ F_s^{u\bar u}(m_{\pi \pi }^2) =& \frac{{{c_0}m_{{f_0}(500)}^2}}{{m_{{f_0}(500)}^2 - m_{\pi \pi }^2 - i{m_{{f_0}(500)}}{\Gamma _{{f_0}(500)}}(m_{\pi \pi }^2)}}. \end{split}$
(11) $ c_0 $ ,$ c_i $ and$ \theta_i $ ,$ i = 1,2,3 $ , are tunable parameters.$ m_S $ is the pole mass of the resonance, and$ \Gamma_S(m_{\pi\pi}) $ is the energy dependent width of the S-wave resonance which decays into two pions. For the contribution of$ f_0(980) $ , an anomalous structure was found around 980 MeV in the$ \pi^+\pi^- $ scattering [54, 55]. This was accompanied by the observation of a narrow anomaly (less than 100 MeV wide) in the S-wave phase shift associated with an enhancement in the$ (I = 0)~ K\bar K $ system at threshold. It was shown that the anomaly could be understood as a narrow two-channel resonance, which combines the$ \pi\pi $ and$ K\bar K $ channels [56]. Generally, the Breit-Wigner (BW) model can be applied to describe an unstable particle as an isolated resonance. Since the resonance$ f_0(980) $ is near the threshold of$ K\bar K $ of about 992 MeV, the model should be modified to include the coupled channels$ f_0(980)\to \pi\pi $ and$ f_0(980)\to K\bar K $ [56]. Therefore, the Breit-Wigner form proposed by Flatté and adopted widely in many studies of the$ \pi-\pi $ and$ K\bar K $ system is also used in this work. In the Flatté model, the phase space factors$ \rho_{\pi\pi} $ and$ \rho_{KK} $ are given as [48]$\begin{split} {\rho _{\pi \pi }} =& \frac{2}{3}\sqrt {1 - \frac{{4m_{{\pi ^ \pm }}^2}}{{m_{\pi \pi }^2}}} + \frac{2}{3}\sqrt {1 - \frac{{4m_{{\pi ^0}}^2}}{{m_{\pi \pi }^2}}} ,\\{\rho _{KK}} =& \frac{1}{2}\sqrt {1 - \frac{{4m_{{K^ \pm }}^2}}{{m_{\pi \pi }^2}}} + \frac{1}{2}\sqrt {1 - \frac{{4m_{{K^0}}^2}}{{m_{\pi \pi }^2}}} .\end{split}$
(12) -
According to the factorization theorem, the amplitude of a process can be calculated as an expansion in
$ \alpha_s(Q) $ and$ \Lambda/Q $ , where Q denotes a large momentum transfer, and$ \Lambda $ is a small hadronic scale. Usually, the factorization formula for the nonleptonic b-meson decays can be expressed as$\begin{split} A \sim & \int_0^1 {\rm d} {x_1} {\rm d} {x_2} {\rm d} {x_3}\int {{{\rm d}^2}} {{{b}}_1}{{\rm d}^2}{{{b}}_2}{{\rm d}^2}{{{b}}_3}\;C(t){\phi _B}({x_1},{{{b}}_1},t)\\& \times H({x_1},{x_2},{x_3},{{{b}}_1},{{{b}}_2},{{{b}}_3},t){\phi _2}({x_2},{{{b}}_2},t){\phi _3}({x_3},{{{b}}_3},t),\end{split}$
(13) where the Wilson coefficients and the typical scale t. The hard kernel
$ H(x_i,{b}_i, { t}) $ , representing b-quark decay sub-amplitude, and the nonperturbative meson wave function$ \phi_{i}(x_i,{b}_i, { t}) $ , describe the evolution from scale t to the lower hadronic scale$ \Lambda_{\rm QCD} $ . For a review of this approach, see Ref. [7].The effective Hamiltonian for
$ \bar B_s^0\to D^0(\bar D^0) \pi^+\pi^- $ is given as${{\cal H}_{\rm eff}} = \frac{{{G_F}}}{{\sqrt 2 }}{V_{Qb}}{V_{qs}}({C_1}{O_1} + {C_2}{O_2}),\;(Q = c,u,\;q = u,c),$
(14) with
$ {O}_1 = (\bar c_{\alpha} b_{\beta})_{V-A}(\bar s_{\beta} u_{\alpha})_{V-A} $ ,$ {O}_2 = (\bar c_{\alpha} b_{\alpha})_{V-A}(\bar s_{\beta} u_{\beta})_{V-A} $ for the$ \bar B_s^0 \to D^0 \pi^+\pi^- $ process, and$ {O}_1 = (\bar u_{\alpha} b_{\beta})_{V-A}(\bar s_{\beta} c_{\alpha})_{V-A} $ ,$ {O}_2 = (\bar u_{\alpha} b_{\alpha})_{V-A}(\bar s_{\beta} c_{\beta})_{V-A} $ for the process$ \bar B_s^0 \to \bar D^0 \pi^+\pi^- $ . In particular, the penguin operators do not contribute to the processes. Using the above effective Hamiltonian, we obtain the typical Feynman diagrams for the$ \bar B_s^0 \to D^0 \pi^+\pi^- $ process shown in Fig. 1, in which the first row represents the color-suppressed emission process, and the second row indicates the W-exchange process. In the factorization framework, the factorizable diagrams in Fig. 1 (a,b,e,f) are relevant for$ a_2 $ , and the non-factorizable diagrams in Fig. 1 (c,d,g,h) are proportional to$ C_2 $ [57], whereFigure 1. (color online) Typical Feynman diagrams for the three-body decays
$\bar B_s^0 \to D^0(\bar D^0)\pi^+\pi^-$ . For the three-body process, the operators at the quark level are${\cal O}_1, {\cal O}_2$ , which correspond to two kinds of Feynman diagrams: the color-suppressed and the W-exchange. The color-suppressed diagrams are shown in panels (a-d) and (a'-d'); the W-exchange diagrams are shown in panels (e-h) and (e'-h').${a_1} = {C_2} + {C_1}/{N_c},\quad {a_2} = {C_1} + {C_2}/{N_c}.$
(15) We will work in the light-cone coordinates. The momenta of the mesons are defined as follows:
$\begin{split} {P_{{B_s}}} =& (p_1^ + ,p_1^ - ,{0_ \bot }),\quad {P_{\pi \pi }} = (p_2^ + ,0,{0_ \bot }),\;\\{P_D} =& (p_1^ + - p_2^ + ,m_{{B_s}}^2/(2p_1^ + ),{0_ \bot }).\end{split}$
(16) Accordingly, the momentum transfer and the light-cone components can be obtained as
$q^2 = (P_{B_s}-P_{\pi\pi})^2 = $ $ (1-\rho)m_{B_s}^2 $ ,$ \rho = 1-\displaystyle\frac{m_D}{m_{B_s}} $ ,$ p_1^- = m_{B_s}^2/(2p_1^+) $ and$ p_2^+ = (m_{B_s}^2-$ $q^2)p_1^+/m_{B_s}^2 $ . In the heavy quark limit, the mass difference between b-quark (c-quark) and$ B_s(D) $ meson is negligible,$ m_{B_s,D} = m_{b,c} +\bar \Lambda $ ($ \bar \Lambda $ is of the order of the QCD scale). Since$ m_{B_s}\gg m_{D}\gg \bar \Lambda $ , we expand the amplitudes in terms of$ \displaystyle\frac{m_D}{m_{B_s}} $ ,$ \displaystyle\frac{\bar \Lambda}{m_D} $ , and for high order$ \displaystyle\frac{\bar \Lambda}{m_{B_s}} $ . For the leading order of the expansion,$ \rho\sim1, q^2\sim0 $ . The momenta of the light quarks in the mesons ($ k_1,k_3 $ represent the momenta of the light quarks in$ B_s $ and D mesons,$ k_2 $ is the momentum of the positive quark in the pion-pair system) are given as${k_1} = (0,{x_1}P_{{B_s}}^ - ,{k_{1 \bot }}),\;{k_2} = ({x_2}P_{\pi \pi }^ + ,0,{k_{2 \bot }}),\;{k_3} = (0,{x_3}P_D^ - ,{k_{3 \bot }}).$
(17) In the
$ k_T $ -factorization, the color-suppressed emission Feynman diagrams can be calculated out, with the formulas labeled as$ e_{x} $ (x = 1,2,3,4) in the subscript. Thus, the factorization formulas for the color-suppressed$ D^0 $ -emission diagrams are given as$\begin{split} {{\cal M}_{e12}} =& 8\pi {C_F}m_{{B_s}}^4{f_D}\int_0^1 {\rm d} {x_1}{\rm d}{x_2}\int_0^{1/\Lambda } {{b_1}}{\rm d}{b_1}{b_2}{\rm d}{b_2}{\phi _B}({x_1},{b_1})\\&\times\{ {E_{{e_1}}}({t_{{e_1}}}){h_{{e_1}}}({x_1},{x_2},{b_1},{b_2}){a_2}({t_{{e_1}}})\\ &\times[{r_0}(1 - 2{x_2})(\phi _{\pi \pi }^s(s\bar s,{x_2}) - \phi _{s\bar s,\pi \pi }^T({x_2})) \\&+ (2 - {x_2}){\phi _{\pi \pi }}(s\bar s,{x_2})] - 2{r_0}\phi _{\pi \pi }^s(s\bar s,{x_2})\\&\times{E_{{e_2}}}({t_{{e_2}}}){h_{{e_2}}}({x_1},{x_2},{b_1},{b_2}){a_2}({t_{{e_2}}})\} ,\\ {{\cal M}_{e34}} =& \displaystyle\frac{{32\pi {C_F}m_{{B_s}}^4}}{{\sqrt {2{N_c}} }}\int_0^1 {\rm d} {x_1}{\rm d}{x_2}{\rm d}{x_3}\int_0^{1/\Lambda } {{b_1}} {\rm d}{b_1}{b_3}{\rm d}{b_3}{\phi _B}({x_1},{b_1})\\&\times{\phi _D}({{\bar x}_3},{b_3}){C_2}({t_{{e_3}}})\{ {E_{{e_3}}}({t_{{e_3}}}){h_{{e_3}}}({x_1},{x_2},{x_3},{b_1},{b_3})\\&\times[{r_0}{{\bar x}_2}(\phi _{\pi \pi }^s(s\bar s,{x_2}) + \phi _{\pi \pi }^T(s\bar s,{x_2})) + {x_3}{\phi _{\pi \pi }}(s\bar s,{x_2})]\\ & - {E_{{e_4}}}({t_{{e_4}}}){h_{{e_4}}}({x_1},{x_2},{x_3},{b_1},{b_3})[{r_0}{{\bar x}_2}(\phi _{\pi \pi }^s(s\bar s,{x_2}) \\&- \phi _{\pi \pi }^T(s\bar s,{x_2})) + ({{\bar x}_3} + {{\bar x}_2}){\phi _{\pi \pi }}(s\bar s,{x_2})]\} , \end{split}$
(18) where
$ r_0 = \displaystyle\frac{m_{\pi\pi}}{m_{B_s}} $ ,$ C_F $ is the color factor.$ \phi_{\pi\pi}(s\bar s,x_2) $ represents the two-pion distribution amplitude defined by the$ s\bar s $ operator. The hard kernels$ E_{e_x} $ and$ h_{e_x} $ are given in the following.The factorization formulas for the W-exchange
$ D^0 $ diagrams$ {\cal M}_{w12} $ and$ {\cal M}_{w34} $ are given as$\begin{split} {{\cal M}_{w12}} =& 8\pi {C_F}m_{{B_s}}^4{f_{{B_s}}}\int_0^1 {\rm d} {x_2}{\rm d}{x_3}\int_0^{1/\Lambda } {{b_2}} {\rm d}{b_2}{b_3}{\rm d}{b_3}{\phi _D}({x_3},{b_3})\\&\times\{ {E_{{w_1}}}({t_{{w_1}}}){h_{{w_1}}}({x_2},{x_3},{b_2},{b_3}){a_2}({t_{{w_1}}})[{x_3}{\phi _{\pi \pi }}(u\bar u,{x_2}) \\&+ 2{r_0}{r_D}({x_3} + 1)\phi _{\pi \pi }^s(u\bar u,{x_2})] - [{x_2}{\phi _{\pi \pi }}(u\bar u,{x_2}) \\&- {r_0}{r_D}(2{x_2} + 1)\phi _{\pi \pi }^s(u\bar u,{x_2}) + {r_0}{r_D}(1\! -\! 2{x_2})\phi _{\pi \pi }^T(u\bar u,{x_2})]\\ &\times{E_{{w_2}}}({t_{{w_2}}}){h_{{w_2}}}({x_2},{x_3},{b_2},{b_3}){a_2}({t_{{w_2}}})\} ,\\ {{\cal M}_{w34}} =& \displaystyle\frac{{32\pi {C_F}m_{{B_s}}^4}}{{\sqrt {2{N_c}} }}\!\!\int_0^1 \!\!\!{\rm d} {x_1}{\rm d}{x_2}{\rm d}{x_3}\int_0^{1/\Lambda } \!\!\!{{b_1}} {\rm d}{b_1}{b_2}{\rm d}{b_2}{\phi _{{B_s}}}({x_1},{b_1}) \end{split}$
$\begin{split} &\times{\phi _D}({x_3},{b_2})\{ {E_{{w_3}}}({t_{{w_3}}}){h_{{w_3}}}({x_1},{x_2},{x_3},{b_1},{b_2}){C_2}({t_{{w_3}}})\\ &\times[{x_2}{\phi _{\pi \pi }}(u\bar u,{x_2}) + {r_0}{r_D}({x_2} + {x_3})\phi _{\pi \pi }^s(u\bar u,{x_2}) \\&+ {r_0}{r_D}({x_2} - {x_3})\phi _{\pi \pi }^T(u\bar u,{x_2})] + [ - {x_3}{\phi _{\pi \pi }}(u\bar u,{x_2}) \\ &- {r_0}{r_D}({x_2} + {x_3} + 2)\phi _{\pi \pi }^s(u\bar u,{x_2}) + {r_0}{r_D}({x_2} - {x_3})\\ &\times\phi _{\pi \pi }^T(u\bar u,{x_2})]{E_{{w_4}}}({t_{{w_4}}}){h_{{w_4}}}({x_1},{x_2},{x_3},{b_1},{b_2}){C_2}({t_{{w_4}}})\} , \end{split}$
(19) where
$ r_D = \displaystyle\frac{m_{D}}{m_{B_s}} $ ,$ \phi_{\pi\pi}(u\bar u,x_2) $ represents the distribution amplitude of the$ u\bar u $ operator. Due to the helicity suppression, the contribution of the factorizable diagrams$ {\cal M}_{w12} $ is suppressed significantly. Therefore, the dominant contribution comes from the non-factorizable diagrams$ {\cal M}_{w34} $ .In the
$ \bar D^0 $ -emission process, the two factorizable diagrams have the same factorization$ {\cal M}_{e12} = {\cal M}_{e'12} $ . Accordingly, we give the factorization formulas for the non-factorizable emission diagrams$ {\cal M}_{e'34} $ , the factorizable W-exchange diagrams$ {\cal M}_{w'12} $ and the non-factorizable W-exchange diagrams$ {\cal M}_{w'34} $ as follows:$\begin{split} {{\cal M}_{e'34}} =& \frac{{32\pi {C_F}m_{{B_s}}^4}}{{\sqrt {2{N_c}} }}\!\!\int_0^1 \!\!{\rm d} {x_1}{\rm d} {x_2}{\rm d}{x_3}\!\!\int_0^{1/\Lambda } \!\!{{b_1}}{\rm d}{b_1}{b_3}{\rm d}{b_3}{\phi _B}({x_1},{b_1})\\ &\times{\phi _D}({{\bar x}_3},{b_3})\{ {E_{{{e'}_3}}}({t_{{{e'}_3}}}){h_{{{e'}_3}}}({x_1},{x_2},{x_3},{b_1},{b_3}){C_2}({t_{{{e'}_3}}})\\ &\times[{r_0}({{\bar x}_2})(\phi _{\pi \pi }^s(s\bar s,{x_2}) + \phi _{\pi \pi }^T(s\bar s,{x_2})) + {x_3}{\phi _{\pi \pi }}(s\bar s,{x_2})]\\ & - \!{E_{{{e'}_4}}}({t_{{{e'}_4}}}){h_{{{e'}_4}}}({x_1},{x_2},{x_3},{b_1},{b_3}){C_2}({t_{{{e'}_4}}})[{r_0}{{\bar x}_2}(\phi _{\pi \pi }^s(s\bar s,{x_2}) \\ &- \phi _{\pi \pi }^T(s\bar s,{x_2})) + ({{\bar x}_3} + {{\bar x}_2}){\phi _{\pi \pi }}(s\bar s,{x_2})]\} ,\\ {{\cal M}_{w'12}} =& 8\pi {C_F}m_{{B_s}}^4{f_{{B_s}}}\int_0^1 {\rm d} {x_2}{\rm d}{x_3}\int_0^{1/\Lambda } {{b_2}} {\rm d}{b_2}{b_3}{\rm d}{b_3}{\phi _{\bar D}}({x_3},{b_3})\\ &\times\{ {E_{{{w'}_1}}}({t_{{{w'}_1}}}){h_{{{w'}_1}}}({x_2},{x_3},{b_2},{b_3}){a_2}({t_{{{w'}_1}}})\\ &\times[(1 - {x_2}){\phi _{\pi \pi }}(u\bar u,{x_2}) + {r_0}{r_D}(2{x_2} - 3)\phi _{\pi \pi }^s(u\bar u,{x_2}) \\ &+ {r_0}{r_D}(1 - 2{x_2})\phi _{\pi \pi }^T(u\bar u,{x_2})]+ [ - {x_3}{\phi _{\pi \pi }}(u\bar u,{x_2}) \\ & + 2{r_0}{r_D}({x_3} + 1)\phi _{\pi \pi }^s(u\bar u,{x_2})]{E_{{{w'}_2}}}({t_{{{w'}_2}}})\\ & \times{h_{{{w'}_2}}}({x_2},{x_3},{b_2},{b_3}){a_2}({t_{{{w'}_2}}})\} ,\\ {{\cal M}_{w'34}} =& \frac{{32\pi {C_F}m_{{B_s}}^4}}{{\sqrt {2{N_c}} }}\!\!\int_0^1 \!\!{\rm d} {x_1}{\rm d}{x_2}{\rm d}{x_3}\!\!\int_0^{1/\Lambda } \!\!{{b_1}} {\rm d}{b_1}{b_2}{\rm d}{b_2}{\phi _{{B_s}}}({x_1},{b_1})\\ & \times{\phi _{\bar D}}({x_3},{b_2})\{ {E_{{{w'}_3}}}({t_{{{w'}_3}}}){h_{{{w'}_3}}}({x_1},{x_2},{x_3},{b_1},{b_2}){C_2}({t_{{{w'}_3}}})\\ &\times[{x_3}{\phi _{\pi \pi }}(u\bar u,{x_2}) - {r_0}{r_D}(1 - {x_2} + {x_3})\phi _{\pi \pi }^s(u\bar u,{x_2})\\ & + {r_0}{r_D}({x_2} + {x_3} - 1)\phi _{\pi \pi }^T(u\bar u,{x_2})] + [({x_2} - 1){\phi _{\pi \pi }}(u\bar u,{x_2})\\ & + {r_0}{r_D}( - {x_2} + {x_3} + 3)\phi _{\pi \pi }^s(u\bar u,{x_2}) + {r_0}{r_D}({x_2} + {x_3} - 1)\\ & \times\phi _{\pi \pi }^T(u\bar u,{x_2})]{E_{{{w'}_4}}}({t_{{{w'}_4}}}){h_{{{w'}_4}}}({x_1},{x_2},{x_3},{b_1},{b_2}){C_2}({t_{{{w'}_4}}})\} . \end{split}$
(20) In the following, we give the forms for the offshellness of the intermediate gluon
$ \beta_{e_x} $ /$ \beta_{w_x} $ and quarks$ \alpha_{e_x} $ /$ \alpha_{w_x} $ ($ x = 1,2,3,4 $ ) in the$ \bar B_s^0 \to D^0 \pi^+\pi^- $ process.$\begin{split} {\alpha _{{e_1}}} =& (1 - {x_2})m_{{B_s}}^2\rho ,\;\;{\alpha _{{e_2}}} = {x_1}m_{{B_s}}^2\rho ,\;\;\\{\alpha _{{e_3}}} =& {x_1}(1 - {x_2})m_{{B_s}}^2\rho ,\;\;{\alpha _{{e_4}}} = {x_1}(1 - {x_2})m_{{B_s}}^2\rho ,\\ {\alpha _{{w_1}}} =& {x_3}m_{{B_s}}^2\rho ,\;\;{\alpha _{{w_2}}} = (1 - \rho + {x_2}\rho )m_{{B_s}}^2,\;\\{\alpha _{{w_3}}} =& {x_2}{x_3}m_{{B_s}}^2\rho ,\;\;{\alpha _{{w_4}}} = {x_2}{x_3}m_{{B_s}}^2\rho ,\\ {\beta _{{e_1}}} =& {x_1}(1 - {x_2})m_{{B_s}}^2\rho ,\;\;{\beta _{{e_2}}} = {x_1}(1 - {x_2})m_{{B_s}}^2\rho ,\;\\ {\beta _{{e_3}}} =& [({x_1} - {x_3})(1 - {x_2}\rho ) + (1 - \rho )]m_{{B_s}}^2,\;\\{\beta _{{e_4}}} =& (1 - {x_2})({x_1} + {x_3} - 1)m_{{B_s}}^2\rho ,\\ {\beta _{{w_1}}} =& {x_2}{x_3}m_{{B_s}}^2\rho ,\;\;{\beta _{{w_2}}} = {x_2}{x_3}m_{{B_s}}^2\rho ,\;\\ {\beta _{{w_3}}} =& ({x_3} - {x_1}){x_2}m_{{B_s}}^2\rho ,\;\\{\beta _{{w_4}}} =& ((1 - {x_1} - {x_3})(1 - {x_2}\rho ) - 1)m_{{B_s}}^2. \end{split}$
(21) For
$ B_s^0 \to \bar D^0 \pi^+\pi^- $ , we have$\begin{split} {\alpha _{{{e'}_1}}} =& (1 - {x_2})m_{{B_s}}^2\rho ,\;\;{\alpha _{{{e'}_2}}} = {x_1}m_{{B_s}}^2\rho ,\;\\{\alpha _{{{e'}_3}}} =& {x_1}(1 - {x_2})m_{{B_s}}^2\rho ,\;\;{\alpha _{{{e'}_4}}} = {x_1}(1 - {x_2})m_{{B_s}}^2\rho ,\\ {\alpha _{{{w'}_1}}} =& (1 - {x_2}\rho )m_{{B_s}}^2,\;\;{\alpha _{{{w'}_2}}} = {x_3}m_{{B_s}}^2\rho ,\\{\alpha _{{{w'}_3}}} = &{x_3}(1 - {x_2})m_{{B_s}}^2\rho ,\;\;{\alpha _{{{w'}_4}}} = {x_3}(1 - {x_2})m_{{B_s}}^2\rho ,\\ {\beta _{{{e'}_1}}} =& {x_1}(1 - {x_2})m_{{B_s}}^2\rho ,\;\;{\beta _{{{e'}_2}}} = {x_1}(1 - {x_2})m_{{B_s}}^2\rho ,\\ {\beta _{{{e'}_3}}} =& (1 - {x_2})({x_1} - {x_3})m_{{B_s}}^2\rho ,\\{\beta _{{{e'}_4}}} =& [({x_1} + {x_3} - 1)(1 - {x_2}\rho ) + (1 - \rho )]m_{{B_s}}^2,\\ {\beta _{{{w'}_1}}} =& {x_3}(1 - {x_2})m_{{B_s}}^2\rho ,\;\;{\beta _{{{w'}_2}}} = {x_3}(1 - {x_2})m_{{B_s}}^2\rho ,\\ {\beta _{{{w'}_3}}} =& (1 - {x_2})({x_3} - {x_1})m_{{B_s}}^2\rho ,\\{\beta _{{{w'}_4}}} =& ((1 - {x_1} - {x_3})(1 - \rho + {x_2}\rho ) - 1)m_{{B_s}}^2. \end{split}$
(22) The hard kernel functions
$ h_{e_x} $ ($ h_{e'_x} $ ) and$ h_{w_x} $ ($ h_{w'_x} $ ) are written as$\begin{split} {h_{{e_i}}}({x_1},{x_2},{b_1},{b_2}) =& [\theta ({b_1} - {b_2}){I_0}(\sqrt {{\alpha _{{e_i}}}} {b_2}){K_0}(\sqrt {{\beta _{{e_i}}}} {b_1}) + ({b_1} \leftrightarrow {b_2})]{K_0}(\sqrt {{\beta _{{e_i}}}} {b_1}){S_t}({\alpha _{{e_i}}}/(m_{{B_s}}^2\rho )),\\ {h_{{e_j}}}({x_1},{x_2},{x_3},{b_1},{b_3}) =& [\theta ({b_1} - {b_3}){I_0}\left(\sqrt {{\alpha _{{e_j}}}} {b_3}\right){K_0}\left(\sqrt {{\beta _{{e_j}}}} {b_1}\right) + ({b_1} \leftrightarrow {b_3})] \left\{ {\begin{array}{*{20}{l}} {{K_0}\left(\sqrt {{\beta _{{e_j}}}} {b_1}\right),}&{{\beta _{{e_j}}} \geqslant 0,}&{}\\ {\displaystyle\frac{{i\pi }}{2}H_0^{(1)}\left(\sqrt {|{\beta _{{e_j}}}|} {b_1}\right),}&{{\beta _{{e_j}}} < 0,}&{} \end{array}} \right.,\\ {h_{{w_k}}}({x_1},{x_2},{b_2},{b_3}) =& {\left(i\displaystyle\frac{\pi }{2}\right)^2}H_0^{(1)}(\sqrt {{\beta _{{w_k}}}} {b_2})[\theta ({b_2} - {b_3})H_0^{(1)}(\sqrt {{\alpha _{{w_k}}}} {b_2}){J_0}(\sqrt {{\alpha _{{w_k}}}} {b_3}) + ({b_2} \leftrightarrow {b_3})]{S_t}({\alpha _{{w_k}}}/(m_{{B_s}}^2\rho )),\\ {h_{{w_l}}}({x_1},{x_2},{x_3},{b_1},{b_2}) =& i\frac{\pi }{2}[\theta ({b_1} - {b_2})H_0^{(1)}(\sqrt {{\alpha _{{w_l}}}} {b_1}){J_0}(\sqrt {{\alpha _{{w_l}}}} {b_2}) + ({b_1} \leftrightarrow {b_2})] \left\{ {\begin{array}{*{20}{l}} {{K_0}(\sqrt {{\beta _{{w_l}}}} {b_1}),}&{{\beta _{{w_l}}} \leqslant 0,}&{}\\ {\displaystyle\frac{{i\pi }}{2}H_0^{(1)}(\sqrt {|{\beta _{{w_l}}}|} {b_1}),}&{{\beta _{{w_l}}} > 0,}&{} \end{array}} \right.. \end{split}$
(23) where
$ i,k = 1,2 $ and$ j,l = 3,4 $ , and$ I_0 $ ,$ K_0 $ and$ H_0 = J_0+i Y_0 $ are the Bessel functions. The threshold re-summation factor$ S_t(x) $ is parametrized as${S_t}(x) = \frac{{{2^{1 + 2c\Gamma (3/2 + c)}}}}{{\sqrt \pi \Gamma (1 + c)}}{[x(1 - x)]^c},$
(24) with the parameter
$ c = 0.4 $ in this work. The evolution factors$ E_{x}(t) $ in the factorization formulas are given by$\begin{split} {E_{{e_i}}}(t) =& {\alpha _s}(t){\rm{exp}}( - {S_{{B_s}}}(t) - {S_{\pi \pi }}(t)),\\ {E_{{e_j}}}(t) =& {\alpha _s}(t){\rm{exp}}( - {S_{{B_s}}}(t) - {S_{\pi \pi }}(t) - {S_D}(t)){|_{{b_1} = {b_2}}},\\ {E_{{w_k}}}(t) =& {\alpha _s}(t){\rm{exp}}( - {S_{\pi \pi }}(t) - {S_D}(t)),\\ {E_{{w_l}}}(t) = &{\alpha _s}(t){\rm{exp}}( - {S_{{B_s}}}(t) - {S_{\pi \pi }}(t) - {S_D}(t)){|_{{b_2} = {b_3}}}, \end{split}$
(25) where
$\begin{split} {S_{{B_s}}}(t) = s({x_1}{m_{{B_s}}},{b_1}) + \frac{5}{3}\int_{1/{b_1}}^t {\frac{{\rm d\bar \mu }}{{\bar \mu }}} {\gamma _q}({\alpha _s}(\bar \mu )), \end{split}$
$\begin{split} {S_D}(t) =& s({x_3}{m_{{B_s}}},{b_3}) + 2\int_{1/{b_3}}^t {\frac{{\rm d\bar \mu }}{{\bar \mu }}} {\gamma _q}({\alpha _s}(\bar \mu )),\\ {S_{\pi \pi }}(t) =& s({x_2}{m_{{B_s}}},{b_2}) + s((1 - {x_2}){m_{{B_s}}},{b_2}) \\&+ 2\int_{1/{b_2}}^t {\frac{{\rm d\bar \mu }}{{\bar \mu }}} {\gamma _q}({\alpha _s}(\bar \mu )), \end{split}$
(26) with the quark anomalous dimension
$ \gamma_{q} = -\alpha_s/\pi $ . The explicit expression for$ s(Q,b) $ can be found, for example, in Appendix A of Ref. [9]. The hard scales are chosen as$\begin{split} {t_{{e_i}}} =& \max(\sqrt {{\alpha _{{e_i}}}} ,\sqrt {{\beta _{{e_i}}}} ,1/{b_1},1/{b_2}),\;\\{t_{{e_j}}} =& \max(\sqrt {{\alpha _{{e_j}}}} ,\sqrt {{\beta _{{e_j}}}} ,1/{b_1},1/{b_3}),\\ {t_{{w_k}}} =& \max(\sqrt {{\alpha _{{w_k}}}} ,\sqrt {{\beta _{{w_k}}}} ,1/{b_2},1/{b_3}),\\{t_{{w_l}}} =& \max(\sqrt {{\alpha _{{w_l}}}} ,\sqrt {{\beta _{{w_l}}}} ,1/{b_1},1/{b_2}). \end{split}$
(27) Therefore, we obtain the total decay amplitudes,
$\begin{split} {\cal A}({{\bar B}_s} \to {D^0}{\pi ^ + }{\pi ^ - }) =& \frac{{{G_F}}}{{\sqrt 2 }}{V_{cb}}V_{us}^*({{\cal M}_{e12}} + {{\cal M}_{e34}} \\&+ {{\cal M}_{w12}} + {{\cal M}_{w34}}),\\ {\cal A}({{\bar B}_s} \to {{\bar D}^0}{\pi ^ + }{\pi ^ - }) =& \frac{{{G_F}}}{{\sqrt 2 }}{V_{ub}}V_{cs}^*({{\cal M}_{e'12}} + {{\cal M}_{e'34}}\\& + {{\cal M}_{w'12}} + {{\cal M}_{w'34}}). \end{split}$
(28) The differential branching ratio for the decays
$ \bar B_s^0 \to D^0(\bar D^0) \pi^+\pi^- $ follows the formula given in [58, 59]$\frac{{{\rm d}{\cal B}}}{{{\rm d}{m_{\pi \pi }}}} = {\tau _{{B_s}}}\frac{{{m_{\pi \pi }}|\overrightarrow {{p_1}} ||\overrightarrow {{p_3}} |}}{{4{{(2\pi )}^3}m_{{B_s}}^3}}|{\cal A}{|^2},$
(29) with the
$ B_s $ meson mean lifetime$ \tau_{B_s} $ . The kinematic variables$ |\overrightarrow{p_1}| $ and$ |\overrightarrow{p_3}| $ denote the magnitudes of the$ \pi^+ $ and D momenta in the center-of-mass frame of the pion pair,$\begin{split} |\overrightarrow {{p_1}} | =& \frac{1}{2}\sqrt {m_{\pi \pi }^2 - 4m_{{\pi ^ \pm }}^2} , \\ |\overrightarrow {{p_3}} | =& \frac{1}{{2{m_{\pi \pi }}}}\sqrt{\left[m_{{B_s}}^2 - {{({m_{\pi \pi }} + {m_D})}^2}\right]\left[m_{{B_s}}^2 - {{({m_{\pi \pi }} - {m_D})}^2}\right]}. \end{split}$
(30) -
We adopt the following inputs (in units of GeV) [58, 59]
$\begin{aligned} \Lambda _{{\bar {M\;\;\,}\!\!\!\! }S}^{f = 4} =& 0.250,\;\;{m_{{B_s}}} = 5.367,\;\;{m_{{D^0}}} = 1.869,\;\;{m_{{\pi ^ \pm }}} = 0.140,\;\;\\{m_{{\pi ^0}}} =& 0.135,\;\;{m_{{K^ \pm }}} = 0.494,\\ {m_{{K^0}}} =& 0.498,\;\;{m_b} = 4.66,\;\;{m_s} = 0.095,\;\;\\{\tau _{{B_s}}} =& 1.512 \times {10^{ - 12}}s,\;\;{G_F} = 1.166 \times {10^{ - 5}}, \end{aligned}$
and the CKM matrix elements are taken as:
$\begin{split} |{V_{us}}| =& 0.2252,\;\;|{V_{ub}}| = 3.89 \times {10^{ - 3}},\\|{V_{cs}}| =& 0.97345,\;\;|{V_{cb}}| = 40.6 \times {10^{ - 3}}.\end{split}$
The parameters of the scalar form factor
$ F_s(m_{\pi\pi}^2) $ are extracted from the LHCb data for the process$ B_s\to $ $ J/\psi\pi^+\pi^- $ , given in [48, 60] (mass and widths are given in units of GeV):$\begin{split} & m({f_0}(500)) = 0.5,\;\;m({f_0}(980)) = 0.97,\\& m({f_0}(1500)) = 1.5,\;\;m({f_0}(1790)) = 1.81,\\ &\Gamma ({f_0}(500)) = 0.4,\;\;\Gamma ({f_0}(1500)) = 0.12,\;\;\Gamma ({f_0}(1790)) = 0.32,\\ &{g_{\pi \pi }} = 0.167,\;\;{g_{KK}} = 3.47{g_{\pi \pi }},\\ &{c_0} = 3.500,\;\;{c_1} = 0.900,\;\;{c_2} = 0.106,\;\;{c_3} = 0.066,\\ &{\theta _1} = - \frac{\pi }{2},\;\;{\theta _2} = \frac{\pi }{4},\;\;{\theta _3} = 0. \end{split}$
We calculate the branching ratios for the different resonances in the S-wave pion-pair wave function, which are given in Table 1. In this table, the first uncertainties are from
$ \omega_b = 0.50\pm0.05 $ in the$ B_s $ wave function, the second arise from$ a_2 = 0.2\pm0.2 $ in the pion-pair wave function, and the third are from the QCD scale$ \Lambda = 0.25\pm0.05 $ . The errors from the parameter$ C_D $ in the D meson wave function, the variations of the CKM matrix elements and the mean lifetime of$ B_s $ are small and have been omitted. However, the above results are sensitive to$ \omega_b $ and$ a_2 $ , namely the$ B_s $ and S-wave two-pion wave functions. Future measurements of decay branching ratios will be valuable for understanding$ B_s $ physics and the S-wave two-pion resonances.Resonances Branching ratio ( $\times10^{-6}$ )$\bar B_s^0\to D^0f_0(500)[f_0(500)\to\pi^+\pi^-]$ $0.13_{-0.03}^{+0.04}(\omega_b)_{-0.09}^{+0.19}(a_2)_{-0.01}^{+0.04}(\Lambda_{\rm QCD})$ $\bar B_s^0\to D^0f_0(980)[f_0(980)\to\pi^+\pi^-]$ $0.45_{-0.12}^{+0.12}(\omega_b)_{-0.13}^{+0.53}(a_2)_{-0.11}^{+0.09}(\Lambda_{\rm QCD})$ $\bar B_s^0\to D^0f_0(1500)[f_0(1500)\to\pi^+\pi^-]$ $0.11_{-0.03}^{+0.04}(\omega_b)_{-0.02}^{+0.08}(a_2)_{-0.03}^{+0.02}(\Lambda_{\rm QCD})$ $\bar B_s^0\to D^0f_0(1790)[f_0(1790)\to\pi^+\pi^-]$ $0.035_{-0.010}^{+0.012}(\omega_b)_{-0.003}^{+0.017}(a_2)_{-0.008}^{+0.007}(\Lambda_{\rm QCD})$ $\bar B_s^0\to \bar D^0f_0(500)[f_0(500)\to\pi^+\pi^-]$ $0.11_{-0.04}^{+0.05}(\omega_b)_{-0.09}^{+0.22}(a_2)_{-0.02}^{+0.00}(\Lambda_{\rm QCD})$ $\bar B_s^0\to \bar D^0f_0(980)[f_0(980)\to\pi^+\pi^-]$ $0.16_{-0.05}^{+0.06}(\omega_b)_{-0.11}^{+0.17}(a_2)_{-0.01}^{+0.01}(\Lambda_{\rm QCD})$ $\bar B_s^0\to \bar D^0f_0(1500)[f_0(1500)\to\pi^+\pi^-]$ $0.039_{-0.013}^{+0.014}(\omega_b)_{-0.022}^{+0.031}(a_2)_{-0.001}^{+0.001}(\Lambda_{\rm QCD})$ $\bar B_s^0\to \bar D^0f_0(1790)[f_0(1790)\to\pi^+\pi^-]$ $0.011_{-0.003}^{+0.004}(\omega_b)_{-0.006}^{+0.008}(a_2)_{-0.000}^{+0.000}(\Lambda_{\rm QCD})$ Table 1. Branching ratios from the different intermediate resonances.
Including all S-wave resonances
$ f_0(500) $ ,$ f_0(980) $ ,$ f_0(1500) $ and$ f_0(1790) $ in the scalar form factor, we obtain the total branching ratio$\begin{split} {\cal B}(\bar B_s^0 \to {D^0}{({\pi ^ + }{\pi ^ - })_S}) =& 0.77_{ - 0.18}^{ + 0.19}({\omega _b})_{ - 0.28}^{ + 1.00}({a_2})_{ - 0.12}^{ + 0.11}\\&\times({\Lambda _{\rm QCD}}) \times {10^{ - 6}},\\ {\cal B}(\bar B_s^0 \to {{\bar D}^0}{({\pi ^ + }{\pi ^ - })_S}) =& 0.47_{ - 0.15}^{ + 0.19}({\omega _b})_{ - 0.33}^{ + 0.60}({a_2})_{ - 0.05}^{ + 0.02}\\&\times({\Lambda _{\rm QCD}}) \times {10^{ - 6}}. \end{split}$
(31) We found the contributions of
$\bar B_s^0\to D^0f_0(500) [f_0(500)\to $ $ \pi^+\pi^-] $ ,$\bar B_s^0 \to D^0f_0(980) [f_0(980)\to\pi^+\pi^-] $ ,$ \bar B_s^0\to D^0f_0(1500) $ $[f_0(1500)\to \pi^+\pi^-] $ and$ \bar B_s^0\to D^0f_0(1790) [f_0(1790)\to\pi^+\pi^-] $ to be respectively 16.4%, 59.3%, 14.6% and 4.5% of the total$ \bar B_s^0\to D^0 (\pi^+\pi^-)_S $ decay rate. For the$ \bar B_s^0\to \bar D^0 (\pi^+\pi^-)_S $ process, the corresponding rates are respectively 24.6%, 35.2%, 8.3% and 2.4% . This indicates that the$ f_0(500) $ and$ f_0(980) $ contributions are dominant, and that the contribution from$ f_0(980) $ is larger than$ f_0(500) $ in the$ D^0 $ ($ \bar D^0 $ ) final state. LHCb collaboration measured the upper limit of the branching ratio of$ {\cal B}(B_s \to \bar D^0 f_0(980))<3.1\times10^{-6} $ [61], which roughly agrees with our value.In order to compare the two channels
$ \bar B_s\to D^0 (\pi\pi)_S $ and$ \bar B_s\to \bar D^0 (\pi\pi)_S $ , we determine the rate of their branching ratios${R_1} = \frac{{{\cal B}(\bar B_s^0 \to {D^0}{{({\pi ^ + }{\pi ^ - })}_S})}}{{{\cal B}(\bar B_s^0 \to {{\bar D}^0}{{({\pi ^ + }{\pi ^ - })}_S})}} \sim 1.64,$
(32) which significantly deviates from the ratio of the CKM factors:
${R_{\rm CKM}} = |\frac{{{V_{cb}}V_{us}^*}}{{{V_{ub}}V_{cs}^*}}| \sim 5.83.$
(33) In these two decays, there are competition effects from the CKM factors and dynamical decay amplitudes. In these processes, the dominant contributions come from the emission diagrams and non-factorizable W-exchange diagrams. Although the emission diagrams result in similar factorization formulas and numerical results for the two channels, the formulas for the non-factorizable W-exchange diagrams are different. We found that the non-factorizable W-exchange process for
$ \bar B_s^0 \to \bar D^0 \pi^+ \pi^- $ is numerically larger than for$ \bar B_s^0 \to D^0 \pi^+ \pi^- $ , with the CKM factor inversed. As a result, their final branching ratios are similar.The CKM element for
$ \bar B_s^0\to D^0(\bar D^0) (\pi^+\pi^-)_S $ is$ V_{cb}V_{us}^* $ ($ V_{ub}V_{cs}^* $ ), where$ V_{ub} $ is sensitive to$ \gamma $ . Therefore, we can get the dependence of our results on$ \gamma $ by providing a parameter$ D_{{\rm CP}\pm} $ defined as [62]$\begin{split} \sqrt 2 {\cal A}(\bar B_s^0 \to {D_{{\rm CP} \pm }}{({\pi ^ + }{\pi ^ - })_S}) =& {\cal A}(\bar B_s^0 \to {D^0}{({\pi ^ + }{\pi ^ - })_S}) \\&\pm {\cal A}(\bar B_s^0 \to {\bar D^0}{({\pi ^ + }{\pi ^ - })_S}).\end{split}$
(34) Accordingly, the dependence of the branching ratio
$ {\cal B}(\bar B_s^0 \to D_{{\rm CP}\pm}(\pi^+\pi^-)_S) $ on$ \gamma $ is shown in Fig. 2(a,b). The corresponding physical observable measured by the experiments is defined asFigure 2. (color online) The dependence of the differential branching ratios
${\cal B}(\bar B_s^0 \to D_{{\rm CP}\pm}(\pi^+\pi^-)_S)$ on$\gamma$ are shown in panels (a,b). In panels (c,d), the corresponding physical observable that is measured$R_{{\rm CP}\pm}$ is shown as function of$\gamma$ . The shaded (green) regions denote the current bound$\gamma=73.5^{+4.2}_{-5.9}$ .${R_{{\rm CP} \pm }} = \frac{{4{\cal B}(\bar B_s^0 \to {D_{{\rm CP} \pm }}{{({\pi ^ + }{\pi ^ - })}_S})}}{{{\cal B}(\bar B_s^0 \to {D^0}{{({\pi ^ + }{\pi ^ - })}_S}) + {\cal B}(\bar B_s^0 \to {{\bar D}^0}{{({\pi ^ + }{\pi ^ - })}_S})}}.$
(35) The dependence of
$ R_{{\rm CP}\pm} $ on$ \gamma $ is shown in Fig. 2(c,d). The current bound for$ \gamma $ is$ \gamma = (73.5^{+4.2}_{-5.9})^\circ $ [63].The predicted dependence of the differential branching ratio
$ {\rm d}{\cal B}/{\rm d} m_{\pi\pi} $ on the pion-pair invariant mass$ m_{\pi\pi} $ is presented in Fig. 3(a) and Fig. 3(b) for the resonances$ f_0(500) $ ,$ f_0(980) $ ,$ f_0(1500) $ and$ f_0(1790) $ in the decays$ \bar B_s\to D^0 \pi^+\pi^- $ and$ \bar B_s\to \bar D^0 \pi^+\pi^- $ . The figures show that the main contribution to the two decays lies in the region around the pole mass$ m_{f_0(980)} = 0.97 $ , while$ f_0(500) $ gives a contribution primarily in the region below$ m_{\pi\pi} = 1~{\rm GeV} $ . The other resonances,$ f_0(1500) $ and$ f_0(1790) $ , still give considerable contributions to the processes. Therefore, we hope that more precise data from LHCb and the future KEKB may test our theoretical calculations.
S-wave contributions to ${{{\bar B}_s^0\to (D^0,{\bar D}^0)\pi^+\pi^-}}$ in the perturbative QCD framework
- Received Date: 2019-03-12
- Available Online: 2019-07-01
Abstract: