-
In this section, we discuss the
$ a_1(1260) $ production mechanism. Fig. 1 shows the basic tree-level Feynman diagram for the$ a_1(1260) $ production in the$ \gamma p \to $ $ a_1(1260)^+ n $ reaction via the$ \pi $ -exchange process.Figure 1. Feynman diagram for the
$\gamma p \to {a_1}{\left( {1260} \right)^ + }n$ reaction via$ \pi $ -exchange.For the
$ \pi NN $ vertex, we adopt the commonly used effective Lagrangian$\begin{split} {\cal L} =&-{\rm i}g_{\pi NN}\bar{N}\gamma_5 (\vec{\tau} \cdot \vec{\pi} )N = -{\rm i}g_{\pi NN}(\bar{p}\gamma_5p\pi^0+\sqrt{2}\bar{p}\gamma_5n\pi^+ \\ &+\sqrt{2}\bar{n}\gamma_5p\pi^--\bar{n}\gamma_5n\pi^0), \end{split}$
(1) where the standard value,
$ g_{\pi NN}^2/{4\pi} = 14.4 $ , is adopted as in Refs. [37, 38]. In addition, the form factor is introduced for suppressing the vertex coupling when one or two interacting particles go off-shell. For the$ \pi NN $ vertex, the form factor satisfies the relation$ F_{\pi NN}(q_{\pi}) = \frac{\Lambda_{\pi}^2-m_{\pi}^2}{\Lambda_{\pi}^2-q_{\pi}^2}, $
(2) where
$ \Lambda_{\pi} $ is a cut-off parameter [39, 40], which will be discussed in the following.$ q_{\pi} $ is the momentum of the exchanged$ \pi $ meson.The vertex depicting the interaction of
$ a_1(1260) $ and$ \pi \gamma $ is [17, 18]$ t_{a_1^+\to \pi^+\gamma} = g_{a_1\pi\gamma} \left( g^{\mu \nu}-\frac{p_{\gamma}^{\mu} p_{a_1}^{\nu}}{p_{\gamma} \cdot p_{a_1}} \right) \varepsilon_{\mu}(p_{a_1})\varepsilon_{\nu}(p_{\gamma}), $
(3) where
$ \varepsilon_{\mu}(p_{a_1}) $ and$ \varepsilon_{\nu}(p_{\gamma}) $ are the polarization vectors corresponding to$ a_1(1260) $ and photon, respectively.With the vertex above, we can easily get the partial decay width of
$ a_1\to \pi \gamma $ ,$ \Gamma_{a_1\to \pi \gamma} = \frac{g_{a_1\pi\gamma}^2}{24\pi M_{a_1}^3}(M_{a_1}^2-m_{\pi}^2), $
(4) where
$ M_{a_1} = 1230 $ MeV is the nominal mass of$ a_1(1260) $ . Using the partial decay width$ \Gamma_{a_1\to \pi \gamma} = 640\pm246 $ keV of$ a_1(1260) $ as listed in PDG [26], we get$ g_{a_1\pi\gamma} = 244 \pm 94 $ MeV, where the error is from the uncertainties of$ \Gamma_{a_1\to \pi \gamma} $ and the mass of$ a_1(1260) $ . In the following calculations, we take the average value$ g_{a_1\pi\gamma} = 244 $ MeV.With the above integrants, one can get the scattering amplitude of the
$ \gamma(p_1) p(p_2) \to a_1(1260)^+(p_4)+ n(p_3) $ process as$\begin{split} {\cal M} =& \frac{-\sqrt{2}{\rm i}g_{\pi NN}g_{a_1 \pi \gamma}}{q_{\pi}^2-m_{\pi}^2}\bar{u}(p_3)\gamma_5u(p_2)\\&\times \left( g^{\mu \nu}-\frac{p_1^{\mu} p_4^{\nu}}{p_1 \cdot p_4} \right) \varepsilon_{\mu}(p_4)\varepsilon_{\nu}(p_1) F_{\pi NN}(q_{\pi}). \end{split}$
(5) By defining
$ s = (p_1+p_2)^2 $ , the corresponding unpolarized differential cross-section reads$ \frac{{\rm d}\sigma}{{\rm d cos}\theta} = \frac{1}{32\pi s}\frac{\vert \vec{p}_4^{\ {\rm c.m.}}\vert}{\vert \vec{p}_1^{\ {\rm c.m.}}\vert}\left(\frac{1}{4}\sum_{\rm spins}\vert {\cal M}\vert^2 \right), $
(6) where
$ \theta $ is the scattering angle of$ a_1^+ $ meson relative to the beam direction in the c.m. frame, while$ \vec{p}_1^{\ {\rm c.m.}} $ and$ \vec{p}_4^{\ {\rm c.m.}} $ are the three-momenta of the initial photon and the final$ a_1^+ $ , respectively.In Fig. 2, the solid, dashed and dotted lines are obtained with
$ \Lambda_{\pi} = 1.0 $ , 1.3 and 1.6 GeV, respectively. From Fig. 2 one can see that the total cross-section via$ \pi $ exchange increases very rapidly close to the threshold, and the peak position of the total cross-section is$ E_{\gamma} \sim 2.6 $ GeV. The total cross-section is proportional to$ g_{a_1\pi\gamma}^2 $ , which indicates that the cross-section is proportional to the partial decay width$ \Gamma_{a_1\to \pi \gamma} $ . Since the exact value of$ \Gamma_{a_1\to \pi \gamma} $ is not determined by theory or experiment, in this work we take$ \Gamma_{a_1\to \pi \gamma} = 640 $ keV. The result is comparable with the cross-section of$ a_2(1320) $ photoproduction [41]. -
Next, we consider the
$\gamma p\to a_1(1260)^+n\to\rho^0\pi^+n\to $ $ \pi^+\pi^+\pi^-n $ and$ \gamma p\to \rho^0p\to\pi^+\pi^+\pi^-n $ processes. Here$ \gamma p\to \rho^0p\to\pi^+\pi^+\pi^-n $ can occur via the nucleon pole term [42]. -
The
$ \gamma p\to a_1(1260)^+n\to\rho^0\pi^+n\to\pi^+\pi^+\pi^-n $ reaction with$ \pi $ exchange is shown in Fig. 3, where the relevant kinematic variables are shown. As discussed in the introduction, we take the coupling of$ a_1(1260) $ to the$ \rho \pi $ channel as obtained in Ref. [8].Figure 3. Feynman diagram for the
$ \gamma p \to {a_1}{\left( {1260} \right)^ + }n \to {\rho ^0}{\pi ^ + }n \to$ $ {\pi ^ + }{\pi ^ + }{\pi ^ - }n$ reaction via$\pi$ exchange.The
$ a_1^+\rho^0\pi^+ $ vertex can be written as$ -{\rm i}t_1 = -{\rm i}\frac{g_{a_1\rho\pi}}{\sqrt{2}}\varepsilon_{a_1}^{\mu} \varepsilon_{\mu}, $
(7) where
$ \varepsilon_{a_1} $ and$ \varepsilon $ are the polarization vectors of$ a_1(1260) $ and$ \rho $ , respectively.$ g_{a_1\rho\pi} $ is the coupling of$ a_1(1260) $ to$ \rho\pi $ . We take$ g_{a_1\rho\pi} = (-3795+{\rm i}2330) $ MeV as obtained in Ref. [8], where only the$ S $ -wave interaction was considered. Note that there is also a$ D $ -wave contribution to the$ a_1\rho\pi $ vertex as investigated in Ref. [43], where the$ D $ -wave contribution was found to be small.For the vertex of
$ a_1(1260)^+ $ interacting with$ \rho^0\pi^+ $ , we also introduce a form factor$ F_{a_1\rho\pi} $ , which is$ F_{a_1\rho\pi}(q_{a_1}) = \frac{\Lambda_{a_1}^4}{\Lambda_{a_1}^4+(q_{a_1}^2-M_{a_1}^2)^2}, $
(8) with a typical value of
$ \Lambda_{a_1} = 1.5 $ GeV as in Refs. [20, 44].The
$ a_1(1260) $ propagator is$ G_{a_1}^{\alpha \beta}(q_{a_1}) = {\rm i} \frac{-g^{\alpha \beta}+q_{a_1}^{\alpha}q_{a_1}^{\beta}/M_{a_1}^2}{q_{a_1}^2-M_{a_1}^2+iM_{a_1}\Gamma_{a_1}}, $
(9) where the width
$ \Gamma_{a_1} $ is dependent on its four-momentum squared, and we can take the form as in Refs. [45, 46],$ \Gamma_{a_1} = \Gamma_0+\Gamma_{3\pi}, $
(10) where
$ \Gamma_{3\pi} $ is the decay width for the process$a_1(1260)\to $ $ \rho\pi \to 3\pi $ [44], and$ \Gamma_0 $ is the decay width for the other processes. Following the experimental result in Ref. [24] for the total decay width of$ a_1(1260) $ , we take$ \Gamma_{0} = 201 $ MeV for$ \Gamma_{a_1} = 367 $ MeV at$ \sqrt{q_{a_1}^2} = 1230 $ MeV.For the structure of the
$ \rho \pi \pi $ vertex, we use the general interaction as,$ {{\cal L}_{PPV}} = -{\rm i}g<V^{\mu}[P,\partial_{\mu}P]>, $
(11) where
$ <> $ stands for the trace in$ SU(3) $ , and$ g = \displaystyle\frac{m_{V}}{2f} $ , with$ m_{V} = m_{\rho} $ , and$ f = 93 $ MeV is the pion decay constant. The$ \rho \pi \pi $ vertex can then be written as$ {-{\rm i}t} = -{\rm i}\sqrt{2}g(p_7-p_6)_{\lambda}\varepsilon^{\lambda}(p_4). $
(12) For the vertex of
$ \rho $ interacting with$ \pi\pi $ , we also introduce a form factor$ F_{\rho\pi\pi} $ , which satisfies the relation$ F_{\rho\pi\pi}(q_{\rho}) = \frac{\Lambda_{\rho}^4}{\Lambda_{\rho}^4+(q_{\rho}^2-m_{\rho}^2)^2}, $
(13) with a typical value of
$ \Lambda_{\rho} = 1.5 $ GeV as used in Ref. [44].The
$ \rho $ propagator is$ G_{\rho}^{\sigma\lambda}(q_{\rho}) = {\rm i} \frac{-g^{\sigma \lambda}+q_{\rho}^{\sigma}q_{\rho}^{\lambda}/m_{\rho}^2}{q_{\rho}^2-m_{\rho}^2+im_{\rho}\Gamma_{\rho}}, $
(14) where
$ \Gamma_\rho $ is energy dependent. Because the dominant decay channel of$ \rho $ is$ \pi \pi $ , we take$ \Gamma_{\rho}(M^2_{\rm inv}) = \Gamma_{{\rm on}}\left (\frac{q_{{\rm off}}}{q_{{\rm on}}}\right )^3 \frac{m_{\rho}}{M_{\rm inv}}, $
(15) with
$ \Gamma_{\rm on} = 149.1 $ MeV, and$ q_{\rm on} = \frac{\sqrt{m^2_\rho - 4m^2_\pi}}{2}, $
(16) $ q_{\rm off} = \frac{\sqrt{M^2_{\rm inv} - 4m^2_\pi}}{2}, $
(17) where
$ M^2_{\rm inv} = q_{\rho}^2 = (p_6+p_7)^2 $ or$ (p_5+p_7)^2 $ is the invariant mass squared of the$ \pi^+ \pi^- $ system. We take$ m_\rho = 775.26 $ MeV in this work.It is worth to mention that the parametrization of the width of
$ \rho $ meson shown in Eq. (15) is meant to take into account the phase space of each decay mode as a function of the energy [40, 47, 48]. In the present work we take explicitly the phase space for the P-wave decay of the$ \rho $ into two pions.We finally obtain the scattering amplitude for the diagram shown in Fig. 3,
$ \begin{split} {\cal M}_{I} =& \frac{\sqrt{2}{\rm i}g_{\pi NN}g_{a_1 \pi \gamma}}{q_{\pi}^2-m_{\pi}^2}\bar{u}(p_3)\gamma_5u(p_2)\left( g^{\mu \nu}-\frac{p_1^{\mu} q_{a_1}^{\nu}}{p_1 \cdot q_{a_1}} \right) \\ &\times\varepsilon_{\nu}(p_1)G^{a_1}_{\mu\sigma}(q_{a_1}) F_{\pi NN}(q_{\pi})F_{a_1\rho\pi}(q_{a_1})(g_{\rho\pi}g) \\ &\times\Big( G_{\rho}^{\sigma\lambda}(p_6+p_7)(p_7-p_6)_{\lambda}F_{\rho\pi\pi}(p_6+p_7)\\ &+( G_{\rho}^{\sigma\lambda}(p_5+p_7)(p_7-p_5)_{\lambda}F_{\rho\pi\pi}(p_5+p_7) \Big). \end{split}$
(18) -
Besides the resonance contribution of the
$ a_1(1260) $ resonance, we study another kind of reaction mechanism for the$ \gamma p \to\pi^+\pi^+\pi^-n $ reaction, which is depicted in Fig. 4, where we have considered the contribution from$ \gamma p \to\rho^0 p \to\pi^+\pi^-\pi^+n $ . In Fig. 4, the relevant kinematic variables are also shown.Figure 4. Feynman diagram for the
$\gamma p \to {\rho ^0}{\pi ^ + }n \to {\pi ^ + }{\pi ^ + }{\pi ^ - }n$ reaction via$\pi $ exchange.To compute the contribution of Fig. 4, we take the interaction density for
$ \rho \gamma \pi $ as [49, 50],$ {\cal L_{\rho\gamma\pi}} = \frac{eg_{\rho\gamma\pi}}{m_{\rho}}\epsilon^{\mu\nu\alpha\beta}\partial_{\mu}\rho_{\nu}\partial_{\alpha}A_{\beta}\pi, $
(19) where
$ A_{\beta},\pi $ and$ \rho_{\nu} $ denote the fields of the photon,$ \pi $ and$ \rho $ , respectively. The coupling constant$ g_{\rho\gamma\pi} $ can be obtained from the experimental decay width$ \Gamma_{\rho^0 \to \pi^0\gamma} $ [26] , which leads to$ g_{\rho\gamma\pi} = 0.76 $ .Other vertexes are the same as given above. With the above preparation, we get the transition amplitude for the diagram shown in Fig. 4,
$ \begin{split} {\cal M}_{II} =& \frac{-\sqrt{2}g_{\pi NN}g_{\pi NN}}{q_{\pi}^2-m_{\pi}^2}\frac{eg_{\rho\gamma\pi}}{m_{\rho}}gF_{\pi NN}(q_{\pi})\bar{u}(p_3)\gamma_5 \\ &\times\Bigg(\frac{({p_3}\!\!\!\!\!\!\!\!/+{p_5}\!\!\!\!\!\!\!\!/ \ )+m_p}{(p_3+p_5)^2-m_p^2}\gamma_5 u(p_2)F_{N}(p_3+p_5)\epsilon^{\mu\nu\alpha\beta}\\ &\times(p_6+p_7)_{\alpha}p_{1\beta}\epsilon_{\nu} G_{\rho}^{\mu\sigma}(p_6+p_7)(p_7-p_6)_{\sigma}F_{\rho\pi\pi}(p_6+p_7)\\&+\frac{({p_3}\!\!\!\!\!\!\!\!/+{p_6}\!\!\!\!\!\!\!\!/ \ )+m_p}{(p_3+p_6)^2-m_p^2}\gamma_5 u(p_2)F_{N}(p_3+p_6)\epsilon^{\mu\nu\alpha\beta}(p_5+p_7)_{\alpha}\\ &\times p_{1\beta}\epsilon_{\nu} G_{\rho}^{\mu\sigma}(p_5+p_7)(p_7-p_5)_{\sigma}F_{\rho\pi\pi}(p_5+p_7)\Bigg), \quad\;\;\;(20) \end{split}$
with
$ F_{N}(q_{p}) = \frac{\Lambda_{N}^4}{\Lambda_{N}^4+(q_{p}^2-m_{p}^2)^2}, $
(21) where
$ \Lambda_{\pi} = 0.6 $ GeV and$ \Lambda_{N} = 0.5 $ GeV are taken from Refs. [49, 50, 51]. This choice of the cut-off leads to a satisfactory explanation of the$ \rho^0 $ photoproduction at low energies. Note that the value of$ \Lambda_{\pi} $ is different from the one we used for the$ \gamma p \to na_1(1260)^+ $ production. Other cut-off parameters are the same as given above. -
The total cross-section of the
$ \gamma p\to\pi^+\pi^+\pi^-n $ reaction can be obtained by integrating the invariant amplitude in the four-body phase space:$ \begin{split}{\rm d}\sigma(\gamma p \to \pi^+\pi^+\pi^-n ) =& \frac{1}{2!}\frac{2m_p\cdot2 m_n}{4\vert p_1\cdot p_2 \vert}\left(\frac{1}{4}\sum\limits_{\rm spins}\vert {\cal M}\vert^2 \right)\\ &\times (2\pi)^4{\rm d}\phi_4(p_1+p_2;p_3;p_5,p_6,p_7), \end{split} $
(22) with
$ {\cal M} = {\cal M}_{I}+{\cal M}_{II}, $
(23) where 2! is a statistical factor for the final two
$ \pi^+ $ mesons, and the four-body phase space is defined as [26]$\begin{split} & {\rm d}\phi_4(p_1+p_2;p_3;p_5,p_6,p_7) =\\ & - \frac{1}{16(2\pi)^8\sqrt{s}} \vert \vec{p}_6^{\ *a}\vert \vert \vec{p}_5^{\ *b} \vert \vert \vec{p_3} \vert {\rm d}\Omega_6^{*a} {\rm d}\Omega_5^{*b} {\rm d}\Omega_3 {\rm d}M_{\pi^+\pi^-} {\rm d}M_{\pi^+\pi^+\pi^-}, \end{split} $
(24) where
$ \vert\vec{p}_6^{\ *a}\vert $ and$ \Omega_6^{*a} $ are the three-momentum and solid angle of the out-going$ \pi^+ $ in the c.m. frame of the final$ \pi^+\pi^- $ system,$ \vert \vec{p}_5^{\ *b} \vert $ and$ \Omega_5^{*b} $ are the three-momentum and solid angle of the out-going$ \pi^+ $ in the c.m. frame of the final$ \pi^+\pi^+\pi^- $ system, and$ \vert \vec{p}_3 \vert $ and$ \Omega_3 $ are the three-momentum and solid angle of the out-going$ n $ in the c.m. frame of the initial$ \gamma p $ system. In the above equation,$ M_{\pi^+\pi^-} $ is the invariant mass of the$ \pi^+\pi^- $ two body system, and$ M_{\pi^+\pi^+\pi^-} $ is the invariant mass of the$ \pi^+\pi^+\pi^- $ three body system, and$ s = (p_1+p_2)^2 $ is the invariant mass squared of the initial$ \gamma p $ system.In Ref. [33], the
$ \gamma p\to\pi^+\pi^+\pi^-n $ reaction was studied in the photon energy range$ 4.8-5.4 $ GeV. The 3$ \pi $ mass distributions are measured from the$ 1^{++}(\rho\pi)_S $ partial wave. In Fig. 5, we show the theoretical results,$ c_1{\rm d}\sigma/{\rm d}M_{\pi^+\pi^+\pi^-} $ , for the$ \pi^+\pi^+\pi^- $ invariant mass distributions for the$ \gamma p\to\pi^+\pi^+\pi^-n $ reaction at$ E_{\gamma} = 5.1 $ GeV, compared with the experimental measurements of Ref. [33]. The theoretical results are obtained with$ c_1 = 21.5 $ and$ c_1 = 18 $ for$ M_{a_1} = 1080 $ and$ 1230 $ MeV, respectively, which have been adjusted to the experimental data reported by the CLAS collaboration [33]. From Fig. 5, it is seen that the bump structure around$ 1.4-1.6 $ GeV may account for the nuclear pole contribution. If we use$ M_{a_1} = 1080 $ MeV, the$ \pi^+\pi^+\pi^- $ invariant mass distributions agree well with the experimental data. On the other hand, the theoretical results with$ M_{a_1} = 1230 $ MeV can not describe the bump structure around 1.1 GeV.Figure 5. The 3
$\pi$ invariant mass spectrum for the$\gamma p\to \pi^+\pi^+\pi^-n$ process compared with the data obtained by the CLAS collaboration from the$1^{++}(\rho\pi)_S$ partial wave [33]. Left and right plots correspond to$M_{a_1} = 1080$ and 1230 MeV , respectively.In addition to the differential cross-section, we also calculated the total cross-section for the
$ \gamma p\to \pi^+\pi^+\pi^-n $ process as a function of the photon beam energy$ E_{\gamma} $ . The results are shown in Fig. 6, where one can see that the total cross-section increases rapidly near the threshold, and the peak of the total cross-section is at$ E_{\gamma} = 2.5 $ and 2.9 GeV corresponding to$ M_{a_1} = 1080 $ and$ 1230 $ MeV, respectively. The differential and total cross-sections could be checked in future experiments, such as those at CLAS.
Study of the $ {{a_1}}$ (1260) resonance in the $ {{\gamma p \to \pi^+\pi^+\pi^- n}} $ reaction
- Received Date: 2019-01-08
- Available Online: 2019-06-01
Abstract: Within an effective Lagrangian approach and resonance model, we study the