-
To reject the backgrounds from
$ \Lambda_c^{+} $ decays in the measurement of the cross section of$ e^+e^-\to D_s^+ \overline{D}{}^{(*)0} K^- $ , we further demand that$ RQ(D_s^+) < 2.59 {\rm{GeV}}/c^2 $ . Figure 2 presents evident peaks in the distribution of$ RQ(K^-D_s^+) $ around the signal positions of$ \overline{D}{}^{*0} $ and$ \overline{D}{}^{0} $ , which correspond to the processes$ e^+e^- \to D^+_s \overline{D}{}^{*0}K^- $ and$ D^+_s \overline{D}{}^{0}K^- $ , respectively.Figure 2. (color online) Distributions of
${ RQ(K^- D_s^+) }$ for the${ D_s^+ }$ signal candidates in regions A+B in Fig. 1(c), for data taken at${ \sqrt{s} = 4.600 }$ GeV. The solid line shows the total fit to the data points and the dashed lines represent the${ \overline{D}{}^{0} }$ and${ \overline{D}{}^{*0} }$ signals.To determine the signal yields of the processes
$ e^+e^-\to D_s^+ \overline{D}{}^{(*)0} K^- $ at 4.600 GeV, an unbinned maximum likelihood fit is performed to the$ RQ(K^-D_s^+) $ spectrum as shown in Fig. 2. The signal peaks are described by the MC-determined signal shapes and the background shape is taken as an ARGUS function [43]. In the fit to data, the endpoint of the background shape is fixed at the value obtained from a fit of an ARGUS function to the$ RQ(K^-D_s^+) $ spectrum in the background MC sample. The Born cross section is calculated as$ \sigma^{B} = \frac{N_{\rm obs}}{{\cal{L}}({1}+\delta)\dfrac{1}{|1-\Pi|^2}\cal{B}\epsilon}, $
(1) where
$ N_{\rm obs} $ is the number of the observed signal candidates,$ \cal{L} $ is the integrated luminosity,$ \epsilon $ is the detection efficiency determined from MC simulations,$ (1+\delta) $ is the radiative correction factor [44],$ \displaystyle\frac{1}{|1-\Pi|^2} $ is the vacuum polarization factor [45], and$ \cal{B} $ is branching fraction of$ D^+_s \to K^+ K^- \pi^+ $ . The detection efficiencies are estimated based on MC simulations, assuming the two-body final states of$ D_s^+ D_{s1}(2536)^- $ and$ D_s^+ D^*_{s2}(2573)^- $ dominate the decays to$ D_s^+ \overline{D}{}^{(*)0} K^- $ according to the studies in Secs. 4.2 and 4.3. The numerical results are given in Table 1.${ \sqrt{s} }$ /GeV4.600 4.575 4.527 4.467 4.416 ${ \cal{L} \; ( \rm pb^{-1} )}$ 567 48 110 110 1029 ${ \frac{1}{|1-\Pi|^2} }$ 1.059 1.059 1.059 1.061 1.055 ${ 1+\delta }$ 0.765 0.755 0.735 ${ \epsilon }$ (%)16.1 14.3 13.2 ${ D^+_s \overline{D}{}^{*0} K^- }$ ${ N_{\rm obs} }$ ${ 41.0\pm9.3 }$ ${ 0.0_{-0.0}^{+2.0} }$ ${ 2.3_{-2.3}^{+3.9} }$ ${ \sigma^B }$ (pb)${ 10.1\pm2.3\pm0.8 }$ ${ 0.0_{-0.0-0.0}^{+7.3+1.1} }$ ${ 3.9_{-3.9}^{+6.6}\pm 0.4 }$ ${ N^{\rm up} }$ 3.7 6.7 ${ \sigma^{B}_{U.L.}}$ (pb)13.5 11.3 ${ 1+\delta }$ 0.694 0.698 0.702 0.691 0.762 ${ \epsilon }$ (%)22.3 23.9 20.3 18.2 14.6 ${ D^+_s \overline{D}{}^{0} K^- }$ ${ N_{\rm obs} }$ ${ 98.4\pm 11.7 }$ ${ 0.0_{-0.0}^{+3.0} }$ ${ 1.7_{-1.7}^{+4.5} }$ ${ 4.1_{-4.1}^{+7.1} }$ ${ 1.2_{-1.2}^{+8.0} }$ ${ \sigma^B }$ (pb)${ 19.4\pm2.3\pm1.6 }$ ${ 0.0_{-0.0-0.0}^{+6.5+0.9} }$ ${ 1.9_{-1.9}^{+5.0}\pm 0.2 }$ ${ 5.1_{-5.1}^{+8.9} \pm 0.4 }$ ${ 0.3_{-0.3}^{+1.2}\pm 0.1 }$ ${ N^{\rm up} }$ 5.8 7.3 10.6 10.5 ${ \sigma^{B}_{U.L.}}$ (pb)12.7 8.1 13.2 1.6 Table 1. Cross section measurements at different energy points. For the cross sections, the first set of uncertainties are statistical and the second are systematic. The uncertainties of the number of observed signals are statistical only. The four samples with lower center-of-mass energies suffer from low statistics, we therefore set the lower and upper boundary of the uncertainties of Nobs as 0 and the upper limits at the 68.3% confidence level, respectively.
-
For the candidates surviving the basic event selections, we further select the signal candidates for
$ e^+e^-\to D_s^+ \overline{D}{}^{*0} K^- $ by requiring$1.993 < RQ(K^- D_s^+) < $ $ 2.024\;{ \rm{GeV}}/c^2 $ , as shown in Fig. 3(a). The$ RQ(D_s^+) $ distribution of the remaining events is displayed in Fig. 4(a), where a clear$ D_{s1}(2536)^- $ signal peak near the nominal$ D_{s1}(2536)^- $ mass is visible. An unbinned maximum likelihood fit is performed to the distribution, where the signal shape is taken as a sum of the efficiency-weighted D-wave and S-wave Breit-Wigner functions convolved with the detector resolution function,$ [{\cal{ E}} \cdot (f \cdot BW_{S} + (1-f)\cdot $ $ BW_{D} )] \otimes {{\cal{ R}}}$ . Here, the resolution function$ {{\cal{ R}}} $ (plotted in Fig. 4(c)) and the efficiency$ {{\cal{ E}}} $ (plotted in Fig. 4(b)) are determined from MC simulations, and$ f $ is the fraction of the$ S $ -wave Breit-Wigner function. The S-wave and D-wave Breit-Wigner functions are BWS =$\displaystyle\frac{1}{(RQ^2 - m^2)^2 + m^2 \Gamma^2} \cdot p \cdot q $ , and$ BW_{D} = \displaystyle\frac{1}{(RQ^2 - m^2)^2 + m^2 \Gamma^2}\cdot $ $ p^5 \cdot q$ , respectively, where m and$ \Gamma $ are the mass and width of the$ D_{s1}(2536)^- $ to be determined and$ p(q) $ is the momentum of$ K^- $ ($ D_s^+ $ ) in the rest frame of$ K^- \overline{D}{}^{*0} $ ($ e^+e^- $ ) system. The backgrounds are described with a first-order polynomial function. The parameter$ f $ is fixed to 0.72 [46], while the other parameters are determined in the fit.Figure 3. (color online) At 4.600 GeV, (a) the
${ RQ(K^- D_s^+) }$ distribution for the${ D_s^+ }$ candidates from signal regions A and B in Fig. 1(c); (b) the${ RQ(K^- D_s^+) }$ distribution for the${ D_s^+ }$ candidates from signal regions A in Fig. 1(d). Fits with the sum of a Gaussian function and a first-order polynomial function are implemented to determine the signal regions for the${ \overline{D}{}^{(*)0} }$ candidates, which are indicated with arrows.Figure 4. (color online) At 4.600 GeV, the
${ RQ(D_s^+) }$ spectra in the samples of${ e^+e^-\to D_s^+ \overline{D}^{*0} K^- }$ (left) and${ e^+e^-\to D_s^+ \overline{D}^{0} K^- }$ (right). Plots (a) and (d) show the result of the unbinned maximum likelihood fits. Data are denoted by the dots with error bars. The dash-dotted and dotted lines are the background and signal contributions, respectively. Plots (b) and (e) show the efficiency functions. Plots (c) and (f) show the${ RQ(D_s^+) }$ resolution functions determined from MC simulations.In this fit, the number of signal candidates is estimated to be
$ 24.0 \pm 5.7(\rm{stat}) $ . The mass and width of the$ D_{s1}(2536)^- $ are measured to be$(2537.7 \pm 0.5({\rm stat}) \pm $ $ 3.1({\rm syst}))\;{ {\rm MeV}}/c^2 $ , and$ (1.7 \pm 1.2(\rm{stat}) \pm 0.6(\rm{syst}))\;{ \rm{MeV}} $ , respectively. The branching fraction weighted Born cross section is determined to be${\sigma^{B}}(e^+e^-\!\!\to\!\! D^+_s D_{s1}(2536)^- + c.c.)\cdot $ $ {\cal{B}}( D_{s1}(2536)^- \to \overline{D}{}^{*0} K^-) = (7.5 \pm 1.8 \pm 0.7)$ pb. The relevant systematic uncertainties are discussed later and summarized in Table 3.${ \sigma^B(e^+e^- \to D^+_s \overline{D}^{(*)0} K^-) }$ at different${ \sqrt{s} }$ /GeV${ e^+e^-\to D_s^+D_{sJ}^- }$ at 4.600 GeVsource 4.600 4.575 4.527 4.467 4.416 ${ D_{s1}(2536)^- }$ ${ D^*_{s2}(2573)^- }$ tracking 4 4 4 4 4 4 4 particle ID 4 4 4 4 4 4 4 luminosity 1 1 1 1 1 1 1 branching faction 3 3 3 3 3 3 3 center-of-mass energy ${ \cdots }$ ${ \cdots }$ ${ \cdots }$ ${ \cdots }$ ${ \cdots }$ ${ \cdots }$ ${ \cdots }$ fit range ( ${ \cdots }$ , 2)(2, ${ \cdots }$ )(4, 3) ( ${ \cdots }$ , -)( ${ \cdots }$ , -)3 4 background shape (3, 1) (1, 4) (4, 5) (5, -) (6, -) 4 5 line shape (3, 4) (2, 3) (1, 1) (1, -) ( ${ \cdots }$ , -)4 3 total: (8, 8) (7, 8) (9, 9) (8, -) (9, -) 9 10 Table 3. Relative systematic uncertainties (in %) on the cross section measurement. The first value in brackets is for
${ D^+_s \overline{D}{}^{0} K^- }$ , and the second for${ D^+_s \overline{D}{}^{*0} K^- }$ . “${ \cdots }$ ” means the uncertainty is negligible. “-” means unavailable due to${ \sqrt{s} }$ being below the production threshold. -
To study the
$ D^*_{s2}(2573)^- $ properties, we select the signal candidates of the process$ e^+e^-\to D_s^+ \overline{D}{}^{0} K^- $ by requiring$ RQ(K^- D_s^+) $ in the$ \overline{D}{}^{0} $ signal region of$ (1.850, 1.880)\;{ \rm{GeV}}/c^2 $ , as shown in Fig. 3(b). To avoid affecting the$RQ({D^+_s}) $ distribution, the forementioned requirement$RQ({D^+_s})<2.59\;{\rm{Gev}}/c^2 $ is not applied here, and only the$ D^+_s$ candldates in region A of Fig. 1 are used. For the selected events, the corresponding$ RQ(D_s^+) $ distribution is plotted in Fig. 4(d), where a clear$ D^*_{s2}(2573)^- $ signal peak near the known$ D^*_{s2}(2573)^- $ mass is observed.An unbinned maximum likelihood fit is performed to the
$ RQ(D_s^+) $ spectrum in Fig. 4(d). The spin-parity of the$ D^*_{s2}(2573)^- $ meson is fixed to be$ 2^+ $ , following the studies in Sec. 4.4, and the$ D^*_{s2}(2573)^- $ meson is assumed to decay to$ \overline{D}{}^{0} K^- $ predominantly via$ D $ -wave [2]. Hence, we take the D-wave Breit-Wigner function$ BW = \displaystyle\frac{1}{(RQ^2 - m^2)^2 + m^2 \Gamma^2} \cdot p^5 \cdot q^5 $ convolved with the resolution function (shown in Fig. 4(f)),$ BW \otimes {{\cal{ R}}} $ , to describe the signal, and a constant to represent backgrounds. Here,$ p(q) $ is the momentum of$ K^- $ ($ D_s^+ $ ) in the rest frame of the$ K^- \overline{D}{}^{0} $ ($ e^+e^- $ ) system. Figure 4 (e) shows the efficiency distribution with the assignment$ J^P = 2^+ $ , which is consistent with a flat line. All parameters are left free in the fit.The fit yields
$ 61.9 \pm 9.1(\rm{stat}) $ signal events. The mass and width of the$ D^*_{s2}(2573)^- $ are measured to be$ (2570.7\pm 2.0({\rm stat}) \pm 1.7({\rm syst}))\;{ {\rm MeV}}/c^2 $ , and$ (17.2 \pm$ $ 3.6(\rm{stat}) \pm 1.1(\rm{syst}))\;{ \rm{MeV}} $ , respectively, where the systematic uncertainties are summarized in Table 2. The branching fraction weighted Born cross section is given to be$ \sigma^{B}(e^+e^-\to D^+_s D^*_{s2}(2573)^- + c.c.)\cdot{\cal{B}}( D^*_{s2}(2573)^- \to \overline{D}{}^{0} K^-) =$ $ (19.7 \pm 2.9 \pm 2.0) $ pb. The relevant systematic uncertainties are discussed later and summarized in Table 3.mass /(MeV/c2) width/MeV source ${ D_{s1}(2536)^- }$ ${ D^*_{s2}(2573)^- }$ ${ D_{s1}(2536)^- }$ ${ D^*_{s2}(2573)^- }$ mass shift 3.0 1.3 ${ \cdots }$ ${ \cdots }$ detector resolution ${ \cdots }$ ${ \cdots }$ 0.5 0.1 center-of-mass energy 0.7 1.0 0.2 0.3 signal model ${ \cdots }$ ${ \cdots }$ background shape 0.2 0.4 0.2 0.3 fit range ${ \cdots }$ ${ \cdots }$ 0.2 1.0 total 3.1 1.7 0.6 1.1 Table 2. Summary of systematic uncertainties on the
${ D_{s1}(2536)^- }$ and${ D^*_{s2}(2573)^-} $ resonance parameters measured at${ \sqrt{s}=4.600 }$ GeV. “${ \cdots} $ ” means the uncertainty is negligible. -
At
$ \sqrt{s}= 4.600 $ GeV, the exclusive process$ e^+e^-\to D^+_s D^*_{s2}(2573)^- \to D^+_s \overline{D}{}^{0} K^- $ is observed right above the production threshold. For the$ D^*_{s2}(2573)^- $ meson, the$ J^P $ assignments with high spins would be strongly suppressed in this process. Hence, we assume that the$ D^*_{s2}(2573)^- $ meson can only have two possible$ J^{P} $ assignments,$ 1^{-} $ or$ 2^{+} $ . Under these two hypotheses, the differential decay rates as a function of the helicity angle$ \theta' $ of the$ K^- $ in the rest frame of the$ D^*_{s2}(2573)^- $ ,$ \rm dN / \rm d\cos\theta' $ , follow two very distinctive formulae of$ (1-\cos^2\theta') $ for$ 1^- $ and$ \cos^2\theta'(1-\cos^2\theta') $ for$ 2^+ $ . We can determine the true spin-parity from tests of the two hypotheses based on data.In each
$ |\cos\theta'| $ interval of width 0.2, the number of background events is estimated from the$ RQ(D_s^+) $ sideband region (2.44, 2.50) GeV$/c^2 $ according to the global fit shown in Fig. 4 (d) and subtracted from the signal candidates in the signal region, (2.54, 2.60) GeV$/c^2 $ . Then we obtain the efficiency-corrected angular distribution of$ \rm d\sigma / \rm d|\cos\theta'| $ , as depicted in Fig. 5 for the$ D^*_{s2}(2573)^- $ signals. The efficiency distributions in Figs. 5 (a) and (c)are obtained from the signal MC simulation samples, which assume the spin-parity of the$ D^*_{s2}(2573)^- $ as$ 1^- $ and$ 2^+ $ , respectively.Figure 5. (color online) At 4.600 GeV, the efficiency-corrected
${ |\cos\theta'| }$ distribution for the background-subtracted${ D^*_{s2}(2573)^- }$ signals are shown in plots (b) and (d). Plots (a) and (c) are the corresponding efficiency distributions under the${ J^P }$ assumptions of${ 1^- }$ and${ 2^+ }$ , respectively. The shapes to be tested are shown in (b) and (d) for the two hypotheses, normalized to the area of data distribution.The shapes of the two spin-parity hypotheses are constructed as
$ a_{1}(1-\cos^2\theta') $ and$ a_{2}\cos^2\theta'(1-\cos^2\theta') $ for$ 1^- $ and$ 2^+ $ , respectively. Here,$ a_{1} $ and$ a_{2} $ normalize the shapes to the area of the efficiency corrected angular distributions. To test the two different assumptions, we calculate$ \chi^2 = \displaystyle\Sigma\left(\displaystyle\frac{y_i - \mu_i}{\sigma_i}\right)^2 $ , where$ i $ is the index of the interval in the angular distributions,$ y_i $ is the estimated signal yield in interval$ i $ ,$ \sigma_i $ is the corresponding statistical uncertainty, and$ \mu_i $ is the expected number of signal events. The values of$ \chi^2 $ for the$ J^P = 1^- $ and$ 2^+ $ assumptions are evaluated as$ 278.67 $ and$ 7.85 $ , respectively. Hence, combined with the result from LHCb [11], our results strongly favor the$ J^P = 2^+ $ assignment and rule out the$ J^P = 1^- $ assignment for the$ D^*_{s2}(2573)^- $ .
Observation of
${{e^+e^- \rightarrow D_s^+} \overline{ D}^{\bf (*)0} {K^-}}$
and study of the P-wave
${{D_s}}$
mesons
- Received Date: 2018-12-21
- Available Online: 2019-03-01
Abstract: Studies of