Large angle radiation effect on jet measurement in pp collisions at s=7 TeV at the LHC
- Received Date: 2018-06-05
- Available Online: 2018-11-05
Abstract: Jet measurement is an ideal probe to explore the properties of the hot dense matter created in ultra-relativistic heavy-ion collisions. Recent results at the LHC show that large angle radiation is non-negligible, but the mechanisms and phenomenology of large angle radiation are still unclear and hotly debated. Considering the coexistence and competition of different physics mechanisms qualitatively, it is assumed that the radiation angle is enhanced randomly over a wide range based on the collinear approximation. Its effects on di-jet momentum imbalance, jet fragmentation function and jet shape are studied in pp collisions at 7 TeV. The results show that di-jet asymmetry is insensitive to large angle radiation, while jet shape and jet fragmentation functions are more sensitive and could explain experimental data well. We conclude that de-collimated radiation cannot be ignored for soft jets, and there is a contribution from large angle radiation (φ>0.7) of about 8%, which is significant for jet intrinsic structure measurement at pT,jet<80 GeV/c.