×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Gottfried sum rule from maximum entropy method quark distributions with DGLAP evolution and with DGLAP evolution with GLR-MQ-ZRS corrections

  • A new method to test the valence quark distribution of nucleons obtained from the maximum entropy method using the Gottfried sum rule by performing the DGLAP equations with GLR-MQ-ZRS corrections and the original leading-order/next-to-leading-order (LO/NLO) DGLAP equations is outlined. The test relies on knowledge of the unpolarized electron-proton structure function F2ep and the electron-neutron structure function F2en and the assumption that Bjorken scaling is satisfied. In this work, the original Gottfried summation value obtained by the integrals of the structure function at different Q2 is in accordance with the theoretical value of 1/3 under the premise of light-quark flavor symmetry of the nucleon sea, whether it results from dynamical evolution equations or from global quantum chromodynamics fits of PDFs. Finally, we present the summation value of the LO/NLO DGLAP global fits of PDFs under the premise of light-quark flavor asymmetry of the nucleon sea. According to analysis of the original Gottfried summation value with two evolution equations at different Q2, we find that the valence quark distributions of nucleons obtained by using the maximum entropy method are effective and reliable.
      PCAS:
  • 加载中
  • [1] J. Soffer, arXiv:hep-ph/0409333
    [2] S. L. Adler, Phys. Rev., 143:1144 (1966)
    [3] P. C. Bosetti et al, Nucl. Phys. B, 142:1 (1978); J. C. H. deGroot et al, Z. Phys. C Particles and Fields, 1:143 (1979); S. M. Heagy et al, Phys. Rev. D, 23:1045 (1981); M. Jonker et al, Phys. Lett. 109, B:133 (1981); P. C. Bosetti et al, Nucl. Phys. B, 203:362 (1982); Bergsma et al, Phys. Lett. B, 123:269 (1983); H. Abramowicz et al, Z. Phys. C-Particles and Fields, 17:283 (1983); H. Abrarnowicz et al, Z. Phys. C-Particles and Fields, 25:29 (1984); D. B. MacFarlane et al, Z. Phys. C-Particles and Fields, 26:1 (1984); WA25 Collaboration, D. Allasia et al, Z. Phys C-Particles and Fields, 28:321 (1985)
    [4] Stephen L. Adler, arXiv:0905.2923
    [5] K. Gottfried, Phys. Rev. Lett., 18 1174 (1967)
    [6] D. J. Broadhurst, A. L. Kataev and C. J.Maxwell, Phys. Lett. B, 590:76 (2004)
    [7] A. L. Kataev and G. Parente, Phys. Lett. B, 566:120 (2003)
    [8] A. Bodek et al, Phys. Rev. D, 20:1471 (1979); D. Bollini et al, Phys. Lett. B, 104:403 (1981); J.J. Aubert et al, Phys. Lett. B, 105:322 (1981); A.R. Clark et al, Phys. Rev. Lett., 51:1826 (1983); M. Arneodo et al (New Muon Collaboration), Phys. Rev. D, 50 1 (1994); A.L. Kataev, arXiv:hep-ph/0311091 (2003)
    [9] S.J. Wimpenny:In Proc. Int. Conf. on High Energy Physics, Brighton, 1983; J.J. Aubert et al, Phys. Lett. B, 123:123 (1983)
    [10] Y. L. Dokshitzer, Sov. Phys. JETP, 46:641 (1977); V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys., 15:438 (1972); G. Altarelli and G. Parisi, Nucl. Phys. B, 126:298 (1977)
    [11] X. Chen, J. Ruan, R. Wang, W. Zhu, and P. Zhang, Int. J. Mod. Phys. E, 23:1450057 (2014); R. Wang, X. Chen, and Q. Fu, Nucl. Phys. B, 920:1 (2017); Rong Wang and Xurong Chen, Chin. Phys. C, 41:053103 (2017), https://github.com/lukeronger/IMParton; Wei Zhu, Rong Wang, Jianhong Ruan, Xurong Chen, and Pengming Zhang, Eur. Phys. J. Plus, 131:6 (2016)
    [12] Alessandro Cafarella, Claudio Corian and Marco Guzzi, Comput. Phys. Comm., 179:665 (2008); A. D. Martin, et al, Eur. Phys. J. C, 23:73 (2002); A. D. Martin, et al, Phys. Lett. B, 531:216 (2002)
    [13] G. Parisi and R. Petronzio, Phys. Lett. B, 62:331 (1976); V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, JETP Lett., 24:341 (1976); M. Glck and E. Reya, Nucl. Phys. B, 130:76 (1977); X. Chen, J. Ruan, R. Wang, W. Zhu, and P. Zhang, Int. J. Mod. Phys. E, 23:1450057 (2014)
    [14] Jonathan Pumplin, Daniel Robert Stump, Joey Huston, Hung-Liang Lai, Pavel Nadolsky, and Wu-Ki Tung, J. High Energy Phys., 07:012 (2002)
    [15] Rong Wang, Xurong Chen, Phys. Rev. D, 91:054026 (2015)
    [16] Chengdong Han, Jiangshan Lan, Qiang Fu, and Xurong Chen, arXiv:1801.01387
    [17] E. Reya, Phys. Rep., 69:195 (1981)
    [18] M. Glck, E. Reya, and A. Vogt, Eur. Phys. J. C, 5:461 (1998)
    [19] C. G. Callan, D. J. Gross, Phys. Rev. Lett., 22:156 (1969)
    [20] S. Kumano, Phys. Rep., 303:183 (1998); G. T. Garvey, J. C. Peng, Prog. Part. Nucl. Phys., 47:203 (2001); M. Karliner, H. J. Lipkin, Phys. Lett. B, 533:60 (2002)
    [21] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep., 100:1 (1983); J. Bartels, J. Blmlein, and G.A. Schuler, Z. Phys C-Particles and Fields, 50:91 (1991)
    [22] A. H. Mueller and Jianwei Qiu, Nucl. Phys. B, 268:427 (1986)
    [23] Wei Zhu, Nucl. Phys. B, 551:245 (1999); Wei Zhu and Jianhong Ruan, Nucl. Phys. B, 559:378 (1999); Wei Zhu and Zhenqi Shen, High Energy Physics and Nuclear Physics 29:109 (2005)
    [24] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C, 63:189 (2009)
    [25] Pavel M. Nadolsky et al, Phys. Rev. D, 78:013004 (2008)
    [26] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan, Phys. Rev. D, 82:074024 (2010)
    [27] S. I. Alekhin, A. L. Kataev, S. A. Kulagin b, and M. V. Osipenko, Nucl. Phys. A, 755:345c (2005)
  • 加载中

Get Citation
Chengdong Han, Qiang Fu and Xurong Chen. Gottfried sum rule from maximum entropy method quark distributions with DGLAP evolution and with DGLAP evolution with GLR-MQ-ZRS corrections[J]. Chinese Physics C, 2018, 42(10): 103103. doi: 10.1088/1674-1137/42/10/103103
Chengdong Han, Qiang Fu and Xurong Chen. Gottfried sum rule from maximum entropy method quark distributions with DGLAP evolution and with DGLAP evolution with GLR-MQ-ZRS corrections[J]. Chinese Physics C, 2018, 42(10): 103103.  doi: 10.1088/1674-1137/42/10/103103 shu
Milestone
Received: 2018-04-22
Revised: 2018-07-02
Fund

    Supported by National Basic Research Program of China (973 Program) (2014CB845406).

Article Metric

Article Views(1662)
PDF Downloads(25)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Gottfried sum rule from maximum entropy method quark distributions with DGLAP evolution and with DGLAP evolution with GLR-MQ-ZRS corrections

  • 1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. Lanzhou University, Lanzhou 730000, China
  • 4.  Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Fund Project:  Supported by National Basic Research Program of China (973 Program) (2014CB845406).

Abstract: A new method to test the valence quark distribution of nucleons obtained from the maximum entropy method using the Gottfried sum rule by performing the DGLAP equations with GLR-MQ-ZRS corrections and the original leading-order/next-to-leading-order (LO/NLO) DGLAP equations is outlined. The test relies on knowledge of the unpolarized electron-proton structure function F2ep and the electron-neutron structure function F2en and the assumption that Bjorken scaling is satisfied. In this work, the original Gottfried summation value obtained by the integrals of the structure function at different Q2 is in accordance with the theoretical value of 1/3 under the premise of light-quark flavor symmetry of the nucleon sea, whether it results from dynamical evolution equations or from global quantum chromodynamics fits of PDFs. Finally, we present the summation value of the LO/NLO DGLAP global fits of PDFs under the premise of light-quark flavor asymmetry of the nucleon sea. According to analysis of the original Gottfried summation value with two evolution equations at different Q2, we find that the valence quark distributions of nucleons obtained by using the maximum entropy method are effective and reliable.

    HTML

Reference (27)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return