Leading order relativistic hyperon-nucleon interactions in chiral effective field theory

  • We apply a recently proposed covariant power counting in nucleon-nucleon interactions to study strangeness S=-1 ΛN-∑N interactions in chiral effective field theory. At leading order, Lorentz invariance introduces 12 low energy constants, in contrast to the heavy baryon approach, where only five appear. The Kadyshevsky equation is adopted to resum the potential in order to account for the non-perturbative nature of hyperon-nucleon interactions. A fit to the 36 hyperon-nucleon scattering data points yields χ2≈ 16, which is comparable with the sophisticated phenomenological models and the next-to-leading order heavy baryon approach. However, one cannot achieve a simultaneous description of the nucleon-nucleon phase shifts and strangeness S=-1 hyperon-nucleon scattering data at leading order.
      PCAS:
  • 加载中
  • [1] M. Gell-Mann, Phys. Rev., 92:833 (1953)
    [2] T. Nakano and K. Nishijima, Prog. Theor. Phys., 10:581 (1953)
    [3] M. Danysz, and J. Pniewski, Philos. Mag. Ser. 5, 44:348 (1953)
    [4] M. Bedjidian et al (CERN-Lyon-Warsaw Collaboration), Phys. Lett. B, 83:252 (1979)
    [5] R. L. Jaffe, Phys. Rev. Lett., 38:195 (1977) Erratum:[Phys. Rev. Lett., 38:617 (1977)]
    [6] A. Nogga, H. Kamada, and W. Glckle, Phys. Rev. Lett., 88:172501 (2002)[nucl-th/0112060]
    [7] D. Gazda and A. Gal, Phys. Rev. Lett., 116:122501 (2016)[arXiv:1512.01049[nucl-th]]
    [8] S. R. Beane et al (NPLQCD Collaboration), Phys. Rev. Lett., 106:162001 (2011)[arXiv:1012.3812[hep-lat]]
    [9] T. Inoue et al (HAL QCD Collaboration), Phys. Rev. Lett., 106:162002 (2011)[arXiv:1012.5928[hep-lat]]
    [10] J. Haidenbauer and U. -G. Meiner, Phys. Lett. B, 706:100 (2011)[arXiv:1109.3590[hep-ph]]
    [11] Y. Yamaguchi and T. Hyodo, arXiv:1607.04053[hep-ph]
    [12] T. Gogami et al, Phys. Rev. C, 93(3):034314 (2016)[arXiv:1511.04801[nucl-ex]]
    [13] A. Esser et al (A1 Collaboration), Phys. Rev. Lett., 114(23):232501 (2015)[arXiv:1501.06823[nucl-ex]]
    [14] T. O. Yamamoto et al (J-PARC E13 Collaboration), Phys. Rev. Lett., 115:222501 (2015)[arXiv:1508.00376[nucl-ex]]
    [15] J. K. Ahn et al (E373 (KEK-PS) Collaboration), Phys. Rev. C, 88:014003 (2013)
    [16] K. Nakazawa et al, PTEP, 2015(3):033D02 (2015)
    [17] F. Hauenstein et al (COSY-TOF Collaboration), arXiv:1607.04783[nucl-ex]
    [18] E. Hiyama, S. Ohnishi, B. F. Gibson, and T. A. Rijken, Phys. Rev. C, 89:061302 (2014)[arXiv:1405.2365[nucl-th]]
    [19] X. R. Zhou, H.-J. Schulze, H. Sagawa, C. X. Wu, and E. G. Zhao, Phys. Rev. C, 76:034312 (2007)
    [20] E. Massot, J. Margueron, and G. Chanfray, Europhys. Lett., 97:39002 (2012)[arXiv:1201.2772[nucl-th]]
    [21] H.-J. Schulze and T. Rijken, Phys. Rev. C, 84:035801 (2011)
    [22] J. N. Hu, A. Li, H. Toki, and W. Zuo, Phys. Rev. C, 89:025802 (2014)[arXiv:1307.4154[nucl-th]]
    [23] T. Miyatsu, S. Yamamuro, and K. Nakazato, Astrophys. J., 777:4 (2013)[arXiv:1308.6121[astro-ph.HE]]
    [24] R. Mallick, Phys. Rev. C, 87:025804 (2013)[arXiv:1207.4872[astro-ph.HE]]
    [25] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J. Hessels, Nature, 467:1081 (2010)[arXiv:1010.5788[astroph.HE]]
    [26] J. Antoniadis et al, Science, 340:6131 (2013)[arXiv:1304.6875[astro-ph.HE]]
    [27] M. M. Nagels, T. A. Rijken, and J. J. de Swart, Phys. Rev. D, 15:2547 (1977)
    [28] P. M. M. Maessen, T. A. Rijken, and J. J. de Swart, Phys. Rev. C, 40:2226 (1989)
    [29] T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C, 59:21 (1999)[nucl-th/9807082]
    [30] T. A. Rijken and Y. Yamamoto, Phys. Rev. C, 73:044008 (2006)[nucl-th/0603042]
    [31] M. M. Nagels, T. A. Rijken, and Y. Yamamoto, arXiv:1501.06636[nucl-th]
    [32] B. Holzenkamp, K. Holinde, and J. Speth, Nucl. Phys. A, 500:485 (1989)
    [33] A. Reuber, K. Holinde, and J. Speth, Nucl. Phys. A, 570:543 (1994)
    [34] J. Haidenbauer and U. -G. Meiner, Phys. Rev. C, 72:044005 (2005)[nucl-th/0506019]
    [35] U. Straub, Z. Y. Zhang, K. Brauer, A. Faessler, S. B. Khadkikar, and G. Lubeck, Nucl. Phys. A, 483:686 (1988)
    [36] U. Straub, Z. Y. Zhang, K. Braeuer, A. Faessler, S. B. Khadkikar, and G. Luebeck, Nucl. Phys. A, 508:385C (1990)
    [37] Z. Y. Zhang, A. Faessler, U. Straub, and L. Y. Glozman, Nucl. Phys. A, 578:573 (1994)
    [38] Z. Y. Zhang, Y. W. Yu, P. N. Shen, L. R. Dai, A. Faessler, and U. Straub, Nucl. Phys. A, 625:59 (1997)
    [39] J. L. Ping, F. Wang, and J. T. Goldman, Nucl. Phys. A, 657:95 (1999)[nucl-th/9812068]
    [40] Y. Fujiwara, C. Nakamoto, and Y. Suzuki, Phys. Rev. Lett., 76:2242 (1996)
    [41] Y. Fujiwara, Y. Suzuki, and C. Nakamoto, Prog. Part. Nucl. Phys., 58:439 (2007)[nucl-th/0607013]
    [42] S. R. Beane et al (NPLQCD Collaboration), Nucl. Phys. A, 794:62 (2007)[hep-lat/0612026]
    [43] H. Nemura, N. Ishii, S. Aoki, and T. Hatsuda, Phys. Lett. B, 673:136 (2009)[arXiv:0806.1094[nucl-th]]
    [44] S. R. Beane et al (NPLQCD Collaboration), Phys. Rev. D, 81:054505 (2010)[arXiv:0912.4243[hep-lat]]
    [45] T. Inoue et al (HAL QCD Collaboration), Prog. Theor. Phys., 124:591 (2010)[arXiv:1007.3559[hep-lat]]
    [46] S. R. Beane et al (NPLQCD Collaboration), Phys. Rev. D, 85:054511 (2012)[arXiv:1109.2889[hep-lat]]
    [47] K. Sasaki et al (HAL QCD Collaboration), PTEP, 2015:113B01 (2015)[arXiv:1504.01717[hep-lat]]
    [48] T. Doi et al, arXiv:1512.01610[hep-lat]
    [49] T. Doi et al, arXiv:1512.04199[hep-lat]
    [50] P. F. Bedaque and U. van Kolck, Ann. Rev. Nucl. Part. Sci., 52:339 (2002)[nucl-th/0203055]
    [51] E. Epelbaum, H. W. Hammer, and U. -G. Meiner, Rev. Mod. Phys., 81:1773 (2009)[arXiv:0811.1338[nucl-th]]
    [52] R. Machleidt and D. R. Entem, Phys. Rept., 503:1 (2011)[arXiv:1105.2919[nucl-th]]
    [53] S. Weinberg, Phys. Lett. B, 251:288 (1990)
    [54] S. Weinberg, Nucl. Phys. B, 363:3 (1991)
    [55] X. W. Kang, J. Haidenbauer, and U. -G. Meiner, JHEP, 1402:113 (2014)[arXiv:1311.1658[hep-ph]]
    [56] H. Polinder, J. Haidenbauer, and U. -G. Meiner, Nucl. Phys. A, 779:244 (2006)[nucl-th/0605050]
    [57] J. Haidenbauer, U. -G. Meiner, A. Nogga, and H. Polinder, Lect. Notes Phys., 724:113 (2007)[nucl-th/0702015[NUCLTH]]
    [58] J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meiner, A. Nogga, and W. Weise, Nucl. Phys. A, 915:24 (2013)[arXiv:1304.5339[nucl-th]]
    [59] H. Polinder, J. Haidenbauer, and U.-G. Meiner, Phys. Lett. B, 653:29 (2007)[arXiv:0705.3753[nucl-th]]
    [60] J. Haidenbauer and U.-G. Meiner, Phys. Lett. B, 684:275 (2010)[arXiv:0907.1395[nucl-th]]
    [61] J. Haidenbauer, U.-G. Meiner, and S. Petschauer, Nucl. Phys. A, 954:273 (2016)[arXiv:1511.05859[nucl-th]]
    [62] G. P. Lepage, nucl-th/9706029
    [63] M. C. Birse, Phys. Rev. C, 74:014003 (2006)[nuclth/0507077]
    [64] A. Nogga, R. G. E. Timmermans, and U. van Kolck, Phys. Rev. C, 72:054006 (2005)[nucl-th/0506005]
    [65] E. Epelbaum and U.-G. Meiner, Few Body Syst., 54:2175 (2013)[nucl-th/0609037]
    [66] B. Long and U. van Kolck, Annals Phys., 323:1304 (2008)[arXiv:0707.4325[quant-ph]]
    [67] C.-J. Yang, C. Elster, and D. R. Phillips, Phys. Rev. C, 80:044002 (2009)[arXiv:0905.4943[nucl-th]]
    [68] M. P. Valderrama, Phys. Rev. C, 83:024003 (2011)[arXiv:0912.0699[nucl-th]]
    [69] B. Long and C. J. Yang, Phys. Rev. C, 85:034002 (2012)[arXiv:1111.3993[nucl-th]]
    [70] E. Epelbaum and J. Gegelia, Phys. Lett. B, 716:338 (2012)[arXiv:1207.2420[nucl-th]]
    [71] E. Epelbaum, A. M. Gasparyan, J. Gegelia, and H. Krebs, Eur. Phys. J. A, 51:71 (2015)[arXiv:1501.01191[nucl-th]]
    [72] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J. de Swart, Phys. Rev. C, 48:792 (1993)
    [73] K. -W. Li, X. -L. Ren, L. S. Geng, and B. Long, Phys. Rev. D, 94:014029 (2016)[arXiv:1603.07802[hep-ph]]
    [74] L. S. Geng, J. Martin Camalich, L. Alvarez-Ruso, and M. J. Vicente Vacas, Phys. Rev. Lett., 101:222002 (2008)[arXiv:0805.1419[hep-ph]]
    [75] L. S. Geng, J. Martin Camalich, and M. J. Vicente Vacas, Phys. Rev. D, 79:094022 (2009)[arXiv:0903.4869[hep-ph]]
    [76] L. S. Geng, X. -L. Ren, J. Martin-Camalich, and W. Weise, Phys. Rev. D, 84:074024 (2011)[arXiv:1108.2231[hep-ph]]
    [77] X. -L. Ren, L. S. Geng, J. Martin Camalich, J. Meng, and H. Toki, JHEP, 1212:073 (2012)[arXiv:1209.3641[nucl-th]]
    [78] X. -L. Ren, L. -S. Geng, and J. Meng, Phys. Rev. D, 91:051502 (2015)[arXiv:1404.4799[hep-ph]]
    [79] L. S. Geng, N. Kaiser, J. Martin-Camalich, and W. Weise, Phys. Rev. D, 82:054022 (2010)[arXiv:1008.0383[hep-ph]]
    [80] L. S. Geng, M. Altenbuchinger, and W. Weise, Phys. Lett. B, 696:390 (2011)[arXiv:1012.0666[hep-ph]]
    [81] M. Altenbuchinger, L. S. Geng, and W. Weise, Phys. Lett. B, 713:453 (2012)[arXiv:1109.0460[hep-ph]]
    [82] L. S. Geng, Front. Phys., (Beijing) 8:328 (2013)[arXiv:1301.6815[nucl-th]]
    [83] X. -L. Ren, K. -W. Li, L. S. Geng, B. -W. Long, P. Ring, and J. Meng, arXiv:1611.08475[nucl-th]
    [84] L. Girlanda, S. Pastore, R. Schiavilla, and M. Viviani, Phys. Rev. C, 81:034005 (2010)[arXiv:1001.3676[nucl-th]]
    [85] D. Djukanovic, J. Gegelia, S. Scherer, and M. R. Schindler, Few Body Syst., 41:141 (2007)[nucl-th/0609055]
    [86] S. Petschauer and N. Kaiser, Nucl. Phys. A, 916:1 (2013)[arXiv:1305.3427[nucl-th]]
    [87] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40(10):100001 (2016)
    [88] R. M. Woloshyn and A. D. Jackson, Nucl. Phys. B, 64:269 (1973)
    [89] E. Epelbaum, W. Glckle, and U.-G. Meiner, Nucl. Phys. A, 747:362 (2005)[nucl-th/0405048]
    [90] C. M. Vincent and S. C. Phatak, Phys. Rev. C, 10:391 (1974)
    [91] B. Sechi-Zorn, B. Kehoe, J. Twitty, and R. A. Burnstein, Phys. Rev., 175:1735 (1968)
    [92] G. Alexander, U. Karshon, A. Shapira, G. Yekutieli, R. Engelmann, H. Filthuth, and W. Lughofer, Phys. Rev., 173:1452 (1968)
    [93] F. Eisele, H. Filthuth, W. Foehlisch, V. Hepp, and G. Zech, Phys. Lett. B, 37:204 (1971)
    [94] R. Engelmann, H. Filthuth, V. Hepp, and E. Kluge, Phys. Lett., 21:587 (1966)
    [95] J. M. Hauptman, J. A. Kadyk, and G. H. Trilling, Nucl. Phys. B, 125:29 (1977)
    [96] J. A. Kadyk, G. Alexander, J. H. Chan, P. Gaposchkin, and G. H. Trilling, Nucl. Phys. B, 27:13 (1971)
    [97] V. Hepp and H. Schleich, Z. Phys., 214:71 (1968)
    [98] M. Juric et al, Nucl. Phys. B, 52:1 (1973)
    [99] D. H. Davis, AIP Conf. Proc., 224:38 (1991)
    [100] A. Nogga, Nucl. Phys. A, 914:140 (2013)
    [101] K. Tominaga, T. Ueda, M. Yamaguchi, N. Kijima, D. Okamoto, K. Miyagawa, and T. Yamada, Nucl. Phys. A, 642:483 (1998)
    [102] C. J. Batty, E. Friedman, and A. Gal, Phys. Lett. B, 335:273 (1994)
    [103] J. Mares, E. Friedman, A. Gal, and B. K. Jennings, Nucl. Phys. A, 594:311 (1995)[nucl-th/9505003]
    [104] S. Bart et al, Phys. Rev. Lett., 83:5238 (1999)
    [105] H. Noumi et al, Phys. Rev. Lett., 89:072301 (2002) Erratum:[Phys. Rev. Lett., 90:049902 (2003)]
    [106] P. K. Saha et al, Phys. Rev. C, 70:044613 (2004)[nuclex/0405031]
    [107] M. Kohno, Y. Fujiwara, Y. Watanabe, K. Ogata, and M. Kawai, Phys. Rev. C, 74:064613 (2006)[nucl-th/0611080]
    [108] J. Dabrowski and J. Rozynek, Phys. Rev. C, 78:037601 (2008)
    [109] J. Haidenbauer and U.-G. Meiner, Nucl. Phys. A, 936:29 (2015)[arXiv:1411.3114[nucl-th]]
    [110] J. K. Ahn et al (KEK-PS E289 Collaboration), Nucl. Phys. A, 761:41 (2005)
    [111] J. K. Ahn et al (KEK-PS E-251 Collaboration), Nucl. Phys. A, 648:263 (1999)
    [112] M. Kohno, Y. Fujiwara, T. Fujita, C. Nakamoto, and Y. Suzuki, Nucl. Phys. A, 674:229 (2000)[nucl-th/9912059]
  • 加载中

Get Citation
Kai-Wen Li, Xiu-Lei Ren, Li-Sheng Geng and Bing-Wei Long. Leading order relativistic hyperon-nucleon interactions in chiral effective field theory[J]. Chinese Physics C, 2018, 42(1): 014105. doi: 10.1088/1674-1137/42/1/014105
Kai-Wen Li, Xiu-Lei Ren, Li-Sheng Geng and Bing-Wei Long. Leading order relativistic hyperon-nucleon interactions in chiral effective field theory[J]. Chinese Physics C, 2018, 42(1): 014105.  doi: 10.1088/1674-1137/42/1/014105 shu
Milestone
Received: 2017-07-15
Revised: 2017-10-25
Fund

    Supported by the National Natural Science Foundation of China (11375024, 11522539, 11375120), the China Postdoctoral Science Foundation (2016M600845, 2017T100008) and the Fundamental Research Funds for the Central Universities

Article Metric

Article Views(1415)
PDF Downloads(39)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Leading order relativistic hyperon-nucleon interactions in chiral effective field theory

    Corresponding author: Li-Sheng Geng,
  • 1.  School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191, China
  • 2.  School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 3. School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191, China
  • 4. Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China
  • 5.  Center for Theoretical Physics, Department of Physics, Sichuan University, 29 Wang-Jiang Road, Chengdu, Sichuan 610064, China
Fund Project:  Supported by the National Natural Science Foundation of China (11375024, 11522539, 11375120), the China Postdoctoral Science Foundation (2016M600845, 2017T100008) and the Fundamental Research Funds for the Central Universities

Abstract: We apply a recently proposed covariant power counting in nucleon-nucleon interactions to study strangeness S=-1 ΛN-∑N interactions in chiral effective field theory. At leading order, Lorentz invariance introduces 12 low energy constants, in contrast to the heavy baryon approach, where only five appear. The Kadyshevsky equation is adopted to resum the potential in order to account for the non-perturbative nature of hyperon-nucleon interactions. A fit to the 36 hyperon-nucleon scattering data points yields χ2≈ 16, which is comparable with the sophisticated phenomenological models and the next-to-leading order heavy baryon approach. However, one cannot achieve a simultaneous description of the nucleon-nucleon phase shifts and strangeness S=-1 hyperon-nucleon scattering data at leading order.

    HTML

Reference (112)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return