A general analysis of Wtb anomalous couplings

  • We investigate new physics effects on the Wtb effective couplings in a model-independent framework. The new physics effects can be parametrized by four independent couplings, f1L, f1R, f2L and f2R. We further introduce a set of parameters x0, xm, xp and x5 which exhibit a linear relation to the single top production cross sections. Using recent data for the t-channel single top production cross section σt, tW associated production cross section σtW, s-channel single top production cross section σs, and W-helicity fractions F0, FL and FR collected at the 8 TeV LHC and Tevatron, we perform a global fit to impose constraints on the top quark effective couplings. Our global fitting results show that the top quark effective couplings are strongly correlated. We show that (i) improving the measurements of σt and σtW is important in constraining the correlation of (f1R,f2R) and (f2L,f2R); (ii) f1L and f2R are anti-correlated, and are sensitive to all the four experiments; (iii) f1R and f2L are also anti-correlated, and are sensitive to the F0 and FL measurements; (iv) the correlation between f2L and f2R is sensitive to the precision of the σt, σtW and F0 measurements. The effective Wtb couplings are studied in three kinds of new physics models: the G(221)=SU(2)1SU(2)2U(1)X models, the vector-like quark models and the Littlest Higgs model with and without T-parity. We show that the Wtb couplings in the left-right model and the un-unified model are sensitive to the ratio of gauge couplings when the new heavy gauge boson's mass (MW') is less than several hundred GeV, but the constraint is loose if MW' >1 TeV. Furthermore, the Wtb couplings in vector-like quark models and the Littlest Higgs models are sensitive to the mixing angles of new heavy particles and SM particles.
      PCAS:
  • 加载中
  • [1] S. Chatrchyan et al (CMS Collaboration), Phys. Lett. B, 716: 30 (2012)
    [2] G. Aad et al (ATLAS Collaboration), Phys. Lett., B, 716: 1 (2012)
    [3] F. Abe et al (CDF Collaboration), Phys.Rev. Lett., 74: 2626 (1995)
    [4] S. Abachi et al (D0 Collaboration), Phys. Rev. Lett., 74: 2632 (1995)
    [5] K. Hsieh, K. Schmitz, J.-H. Yu, and C.-P. Yuan, Phys. Rev. D, 82: 035011 (2010)
    [6] Q.-H. Cao, Z. Li, J.-H. Yu, and C. Yuan, Phys. Rev. D, 86: 095010 (2012)
    [7] F. del Aguila, M. Perez-Victoria, and J. Santiago, JHEP, 09: 011 (2000)
    [8] J. A. Aguilar-Saavedra, JHEP, 11: 030 (2009)
    [9] G. Cacciapaglia, A. Deandrea, D. Harada, and Y. Okada, JHEP, 1011: 159 (2010)
    [10] J. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Victoria, Phys.Rev. D, 88: 094010 (2013)
    [11] A. Belyaev, C.-R. Chen, K. Tobe, and C.-P. Yuan, Phys. Rev. D, 74: 115020 (2006)
    [12] T. Han, H. E. Logan, B. McElrath, and L.-T. Wang, Phys. Rev. D, 67: 095004 (2003)
    [13] F. Penunuri and F. Larios, Phys.Rev. D, 79: 015013 (2009)
    [14] R. Contino, T. Kramer, M. Son, and R. Sundrum, JHEP, 0705: 074 (2007)
    [15] A. Dabelstein, W. Hollik, C. Junger, R. A. Jimenez, and J. Sola, Nucl. Phys. B, 454: 75 (1995)
    [16] J.-j. Cao, R. J. Oakes, F. Wang, and J. M. Yang, Phys. Rev. D, 68: 054019 (2003)
    [17] B. Grzadkowski and W. Hollik, Nucl. Phys. B, 384: 101 (1992)
    [18] A. Czarnecki, J. G. Korner, and J. H. Piclum, Phys. Rev. D, 81: 111503 (2010)
    [19] CMS Collaboration (2013), CMS-PAS-TOP-13-008
    [20] ATLAS Collaboration (2013), ATLAS-CONF-2013-033, ATLAS-COM-CONF-2013-004
    [21] N. Kidonakis, Phys. Rev. D, 83: 091503 (2011)
    [22] N. Kidonakis, Arxiv: 1205.3453
    [23] N. Kidonakis, Phys. Rev. D, 82: 054018 (2010)
    [24] N. Kidonakis, Phys. Rev. D, 81: 054028 (2010)
    [25] N. Kidonakis, URL https://inspirehep.net/record/1487920/files/arXiv:1609.07404.pdf
    [26] G. L. Kane, G. Ladinsky, and C. Yuan, Phys. Rev. D, 45: 124 (1992)
    [27] E. Malkawi and C. Yuan, Phys. Rev. D, 50: 4462 (1994)
    [28] D. O. Carlson, E. Malkawi, and C. Yuan, Phys. Lett. B, 337: 145 (1994)
    [29] K. Whisnant, J.-M. Yang, B.-L. Young, and X. Zhang, Phys. Rev. D, 56: 467 (1997)
    [30] J. M. Yang and B.-L. Young, Phys.Rev. D, 56: 5907 (1997)
    [31] J.-J. Cao, J.-X. Wang, J. M. Yang, B.-L. Young, and X.-m. Zhang, Phys. Rev. D, 58: 094004 (1998)
    [32] K.-i. Hikasa, K. Whisnant, J. M. Yang, and B.-L. Young, Phys. Rev. D, 58: 114003 (1998)
    [33] F. Larios, M. Perez, and C. Yuan, Phys. Lett. B, 457: 334 (1999)
    [34] Z. Lin, T. Han, T. Huang, J. Wang, and X. Zhang, Phys. Rev. D, 65: 014008 (2002)
    [35] D. Espriu and J. Manzano, Phys. Rev. D, 65: 073005 (2002)
    [36] C.-R. Chen, F. Larios, and C.-P. Yuan, Phys. Lett. B, 631: 126 (2005)
    [37] P. Batra and T. M. Tait, Phys.Rev. D, 74: 054021 (2006)
    [38] Q.-H. Cao, J. Wudka, and C.-P. Yuan, Phys. Lett. B, 658: 50 (2007)
    [39] J. A. Aguilar-Saavedra, Nucl. Phys. B, 804: 160 (2008)
    [40] E. L. Berger, Q.-H. Cao, and I. Low, Phys. Rev. D, 80: 074020 (2009)
    [41] C. Zhang and S. Willenbrock, Phys. Rev. D, 83: 034006 (2011)
    [42] J. A. Aguilar-Saavedra and J. Bernabeu, Nucl. Phys. B, 840: 349 (2010)
    [43] S. D. Rindani and P. Sharma, JHEP, 1111: 082 (2011)
    [44] S. D. Rindani and P. Sharma, Phys. Lett. B, 712: 413 (2012)
    [45] F. Bach and T. Ohl, Phys. Rev. D, 86: 114026 (2012)
    [46] M. Fabbrichesi, M. Pinamonti, and A. Tonero (2014), Arxiv: 1406.5393.
    [47] C. Bernardo, N. Castro, M. C. N. Fiolhais, H. Gonalves, A. G. C. Guerra et al, Arxiv: 1408.7063
    [48] I. Sarmiento-Alvarado, A. O. Bouzas, and F. Larios, Arxiv: 1412.6679
    [49] F. Bach and T. Ohl, Phys. Rev. D, 90: 074022 (2014)
    [50] W. Buchmuller and D. Wyler, Nucl. Phys. B, 268: 621 (1986)
    [51] R. Peccei and X. Zhang, Nucl.Phys. B, 337: 269 (1990)
    [52] H. Georgi, Ann. Rev. Nucl. Part. Sci., 43: 209 (1993)
    [53] F. Larios and C. Yuan, Phys. Rev. D, 55: 7218 (1997)
    [54] T. M. Tait and C.-P. Yuan, Phys. Rev. D, 63: 014018 (2000)
    [55] J. Aguilar-Saavedra, Nucl. Phys. B, 812: 181 (2009)
    [56] J. Drobnak, S. Fajfer, and J. F. Kamenik, Phys. Rev. D, 82: 114008 (2010)
    [57] C. Degrande, F. Maltoni, J. Wang, and C. Zhang, Phys. Rev. D, 91: 034024 (2015)
    [58] C. Arzt, M. Einhorn, and J. Wudka, Nucl. Phys. B, 433: 41 (1995)
    [59] C.-S. Li, J.-M. Yang, and B.-Q. Hu, Phys. Rev. D, 48: 5425 (1993)
    [60] C. Arzt, Phys. Lett. B, 342: 189 (1995)
    [61] The ATLAS collaboration (2013), ATLAS-CONF-2013-032
    [62] J. Pumplin, D. Stump, J. Huston, H. Lai, P. M. Nadolsky, et al, JHEP, 0207; 012 (2002)
    [63] T. Stelzer, Z. Sullivan, and S. Willenbrock, Phys. Rev. D, 56: 5919 (1997)
    [64] S. Zhu, Phys. Lett. B, 524: 283 (2002)
    [65] B. Harris, E. Laenen, L. Phaf, Z. Sullivan, and S. Weinzierl, Phys. Rev. D, 66: 054024 (2002)
    [66] J. M. Campbell, R. K. Ellis, and F. Tramontano, Phys. Rev. D, 70: 094012 (2004)
    [67] Q.-H. Cao and C.-P. Yuan, Phys.Rev. D, 71: 054022 (2005)
    [68] Q.-H. Cao, R. Schwienhorst, and C.-P. Yuan, Phys.Rev. D, 71: 054023 (2005)
    [69] Q.-H. Cao, R. Schwienhorst, J. A. Benitez, R. Brock, and C.-P. Yuan, Phys. Rev. D, 72: 094027 (2005)
    [70] J. M. Campbell, R. Frederix, F. Maltoni, and F. Tramontano, Phys. Rev. Lett., 102: 182003 (2009)
    [71] S. Heim, Q.-H. Cao, R. Schwienhorst, and C.-P. Yuan, Phys. Rev. D, 81: 034005 (2010)
    [72] R. Schwienhorst, C.-P. Yuan, C. Mueller, and Q.-H. Cao, Phys.Rev. D, 83: 034019 (2011)
    [73] J. Wang, C. S. Li, and H. X. Zhu, Phys. Rev. D, 87: 034030 (2013)
    [74] N. Kidonakis, Phys. Part. Nucl., 45: 714 (2014)
    [75] T. A. Aaltonen et al (CDF Collaboration, D0 Collaboration), Phys. Rev. Lett., 112: 231803 (2014)
    [76] T. A. collaboration (2015), ATLAS-CONF-2015-047
    [77] V. Khachatryan et al (CMS Collaboration), JHEP, 1406: 090 (2014)
    [78] ATLAS collaboration (2014), ATLAS-CONF-2014-007, ATLAS-COM-CONF-2014-008
    [79] C. Collaboration (CMS) (2016), CMS-PAS-TOP-16-003
    [80] M. Aaboud et al (ATLAS) (2016), 1609.03920
    [81] CMS Collaboration (2014), CMS-PAS-TOP-14-009
    [82] T. A. collaboration (ATLAS) (2016)
    [83] F. James and M. Roos, Comput. Phys. Commun., 10: 343 (1975)
    [84] B. Grzadkowski and M. Misiak, Phys. Rev. D, 78: 077501 (2008)
    [85] W. Bernreuther, P. Gonzalez, and M. Wiebusch, Eur. Phys. J. C, 60: 197 (2009)
    [86] K. Olive et al (Particle Data Group), Chin. Phys. C, 38: 090001 (2014)
    [87] K. G. Chetyrkin, M. Misiak, and M. Munz, Phys. Lett. B, 400: 206 (1997)
    [88] G. Burdman, M. Gonzalez-Garcia, and S. Novaes, Phys. Rev. D, 61: 114016 (2000)
    [89] J. Drobnak, S. Fajfer, and J. F. Kamenik, Nucl. Phys. B, 855: 82 (2012)
    [90] J. Drobnak, S. Fajfer, and J. F. Kamenik, Phys. Lett. B, 701: 234 (2011)
    [91] R. Mohapatra and J. C. Pati, Phys. Rev. D, 11: 2558 (1975)
    [92] R. N. Mohapatra and J. C. Pati, Phys. Rev. D, 11: 566 (1975)
    [93] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D, 23: 165 (1981)
    [94] H. Georgi, E. E. Jenkins, and E. H. Simmons, Phys. Rev. Lett., 62: 2789 (1989)
    [95] H. Georgi, E. E. Jenkins, and E. H. Simmons, Nucl. Phys. B, 331: 541 (1990)
    [96] X. Li and E. Ma, Phys. Rev. Lett., 47: 1788 (1981)
    [97] E. Malkawi, T. M. Tait, and C. Yuan, Phys. Lett. B, 385: 304 (1996)
    [98] H.-J. He, T. M. Tait, and C. Yuan, Phys. Rev. D, 62: 011702 (2000)
    [99] R. S. Chivukula, H.-J. He, J. Howard, and E. H. Simmons, Phys. Rev. D, 69: 015009 (2004)
    [100] C. Du, H.-J. He, Y.-P. Kuang, B. Zhang, N. D. Christensen et al, Phys. Rev. D, 86: 095011 (2012)
    [101] T. Abe, N. Chen, and H.-J. He, JHEP, 1301: 082 (2013)
    [102] X.-F. Wang, C. Du, and H.-J. He, Phys. Lett. B, 723: 314 (2013)
    [103] E. L. Berger, Q.-H. Cao, J.-H. Yu, and C.-P. Yuan, Phys. Rev. D, 84: 095026 (2011)
    [104] J. Abdallah et al (DELPHI Collaboration), Eur. Phys. J. C, 60: 1 (2009)
    [105] K. Agashe, R. Contino, L. Da Rold, and A. Pomarol, Phys. Lett. B, 641: 62 (2006)
    [106] M. E. Peskin and T. Takeuchi, Phys. Rev. D, 46: 381 (1992)
    [107] L. Lavoura and J. P. Silva, Phys. Rev. D, 47: 2046 (1993)
    [108] C. Anastasiou, E. Furlan, and J. Santiago, Phys. Rev. D, 79: 075003 (2009)
    [109] H. Cai, JHEP, 1302: 104 (2013)
    [110] M. Baak et al (Gfitter Group), Eur. Phys. J. C, 74: 3046 (2014)
    [111] V. Khachatryan et al (CMS), Arxiv: 1503.01952.
    [112] The ATLAS collaboration (2015), ATLAS-CONF-2015-012, ATLAS-COM-CONF-2015-012
    [113] M.-L. Xiao and J.-H. Yu, Phys. Rev. D, 90: 014007 (2014)
    [114] N. Arkani-Hamed, A. Cohen, E. Katz, and A. Nelson, JHEP, 0207: 034 (2002)
    [115] J. Reuter, M. Tonini, and M. de Vries, Arxiv: 1307.5010.
    [116] H.-C. Cheng and I. Low, JHEP, 0309: 051 (2003)
    [117] H.-C. Cheng and I. Low, JHEP, 0408: 061 (2004)
    [118] I. Low, JHEP, 0410: 067 (2004)
    [119] J. Reuter, M. Tonini, and M. de Vries, JHEP, 1402: 053 (2014)
    [120] J. Hubisz, P. Meade, A. Noble, and M. Perelstein, JHEP, 0601: 135 (2006)
  • 加载中

Get Citation
Qing-Hong Cao, Bin Yan, Jiang-Hao Yu and Chen Zhang. A general analysis of Wtb anomalous couplings[J]. Chinese Physics C, 2017, 41(6): 063101. doi: 10.1088/1674-1137/41/6/063101
Qing-Hong Cao, Bin Yan, Jiang-Hao Yu and Chen Zhang. A general analysis of Wtb anomalous couplings[J]. Chinese Physics C, 2017, 41(6): 063101.  doi: 10.1088/1674-1137/41/6/063101 shu
Milestone
Received: 2017-01-23
Fund

    Supported by National Science Foundation of China (11275009, 11675002, 11635001), National Science Foundation (PHY-1315983, PHY-1316033) and DOE (DE- SC0011095)}

Article Metric

Article Views(1293)
PDF Downloads(46)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

A general analysis of Wtb anomalous couplings

    Corresponding author: Qing-Hong Cao,
    Corresponding author: Bin Yan,
    Corresponding author: Jiang-Hao Yu,
    Corresponding author: Chen Zhang,
  • 1. Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
  • 3. Center for High Energy Physics, Peking University, Beijing 100871, China
  • 4.  Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 5.  Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts-Amherst, Amherst, MA 01003, U.S.A.
Fund Project:  Supported by National Science Foundation of China (11275009, 11675002, 11635001), National Science Foundation (PHY-1315983, PHY-1316033) and DOE (DE- SC0011095)}

Abstract: We investigate new physics effects on the Wtb effective couplings in a model-independent framework. The new physics effects can be parametrized by four independent couplings, f1L, f1R, f2L and f2R. We further introduce a set of parameters x0, xm, xp and x5 which exhibit a linear relation to the single top production cross sections. Using recent data for the t-channel single top production cross section σt, tW associated production cross section σtW, s-channel single top production cross section σs, and W-helicity fractions F0, FL and FR collected at the 8 TeV LHC and Tevatron, we perform a global fit to impose constraints on the top quark effective couplings. Our global fitting results show that the top quark effective couplings are strongly correlated. We show that (i) improving the measurements of σt and σtW is important in constraining the correlation of (f1R,f2R) and (f2L,f2R); (ii) f1L and f2R are anti-correlated, and are sensitive to all the four experiments; (iii) f1R and f2L are also anti-correlated, and are sensitive to the F0 and FL measurements; (iv) the correlation between f2L and f2R is sensitive to the precision of the σt, σtW and F0 measurements. The effective Wtb couplings are studied in three kinds of new physics models: the G(221)=SU(2)1SU(2)2U(1)X models, the vector-like quark models and the Littlest Higgs model with and without T-parity. We show that the Wtb couplings in the left-right model and the un-unified model are sensitive to the ratio of gauge couplings when the new heavy gauge boson's mass (MW') is less than several hundred GeV, but the constraint is loose if MW' >1 TeV. Furthermore, the Wtb couplings in vector-like quark models and the Littlest Higgs models are sensitive to the mixing angles of new heavy particles and SM particles.

    HTML

Reference (120)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return