-
Abstract:
A low background thermal neutron flux detection system has been designed to measure the ambient thermal neutron flux of the second phase of the China Jinping Underground Laboratory (CJPL-II), right after completion of the rock bolting work. A 3He proportional counter tube combined with an identical 4He proportional counter tube was employed as the thermal neutron detector, which has been optimised in energy resolution, wall effect and radioactivity of construction materials for low background performance. The readout electronics were specially designed for long-term stable operation and easy maintenance in an underground laboratory under construction. The system was installed in Lab Hall No. 3 of CJPL-II and accumulated data for about 80 days. The ambient thermal neutron flux was determined under the assumption that the neutron field is fully thermalized, uniform and isotropic at the measurement position.
-
-
References
[1]
|
H. S. Chen, Eur. Phys. J. Plus, 127: 105 (2012) |
[2]
|
Q. Yue, W. Zhao, K. J. Kang et al, Phys. Rev. D, 90: 091701(R) (2014) |
[3]
|
J. L. Liu, P. W. Xie, X. D. Ji et al, Physical Review Letters, 117: 121303 (2016) |
[4]
|
J. M. Li, X. D. Ji, W. Haxton et al, Physics Procedia, 61: 576-585 (2015) |
[5]
|
S. R. Hashemi-Nezhad, L. S. Peak, Nuclear Instruments and Methods in Physics Research A, 357: 524-534 (1995) |
[6]
|
R. Lemrani, M. Robinson, V. A. Kudryavtsev et al, Nuclear Instruments and Methods in Physics Research A, 560: 454-459 (2006) |
[7]
|
Z. M. Zeng, H. Gong, Q. Yue et al, Nuclear Instruments and Methods in Physics Research A, 804: 108-112 (2015) |
[8]
|
A. Best, M. Junker, K. Kratz et al, Nuclear Instruments and Methods in Physics Research A, 812: 1-6 (2016) |
[9]
|
D. Mazed, S. Mameri, R. Ciolini, Radiation Measurements, 47: 577-587 (2012) |
[10]
|
S. Agostinelli, J. Allison, K. Amako et al, Nuclear Instruments and Methods in Physics Research A, 506: 250-303 (2003) |
[11]
|
T. Uchida and M. Tanaka, Development of TCP/IP processing hardware, 2006 IEEE Nuclear Science Symposium Conference Record, San Diego, CA, 2006, p. 1411-1414. |
[12]
|
T. J. Langford, C. D. Bass, E. J. Beise et al, Nuclear Instruments and Methods in Physics Research A, 717: 51-57 (2013) |
-
[1] |
Xin Wu
, Qi Chen
, Ye Xing
, Zhi-Peng Xing
, Ruilin Zhu
. SU(3) flavor symmetry analysis of hyperon non-leptonic two body decays. Chinese Physics C,
2025, 49(12): 123101.
doi: 10.1088/1674-1137/adf1f1
|
[2] |
Ronghao Hu
, Qike Gu
, Kejian Shi
, Zezhong Wei
, Meng Lv
, Shiyang Zou
, Yongkun Ding
. Polarized neutron beams from polarized deuterium-tritium fusion with applications to magnetic field imaging in high-energy-density plasmas. Chinese Physics C,
2025, 49(12): 124102.
doi: 10.1088/1674-1137/adec4f
|
[3] |
Zhen-Ming Xu
, Bin Wu
, Tao Yang
, Wen-Li Yang
. A new measure of thermal micro-behavior for the AdS black hole. Chinese Physics C,
2021, 45(1): 015106.
doi: 10.1088/1674-1137/abc23e
|
[4] |
ZHANG Cong
, HE Yuan
, ZHAO Hong-Wei
, ZHANG Sheng-Hu
. Multipacting simulation and analysis of a taper quarter wave cavity by using Analyst-PT3P. Chinese Physics C,
2012, 36(4): 362-366.
doi: 10.1088/1674-1137/36/4/012
|
[5] |
GUO Yan-Qing
, SONG Jie
. Quantitative conditions for the formation of p-wave neutron halos. Chinese Physics C,
2011, 35(2): 158-162.
doi: 10.1088/1674-1137/35/2/010
|
[6] |
YU Zi
, LIU Guang-Zhou
, ZHU Ming-Feng
, DING Wen-Bo
, ZHAO En-Guang
. Thermal protoneutron stars with hyperons. Chinese Physics C,
2009, 33(S1): 70-72.
doi: 10.1088/1674-1137/33/S1/023
|
[7] |
LIU Chang-Long
, LU Yi-Ying
, YIN LI
. Effects of Additional Vacancy-Like Defects Produced by Ion Impealations on Boron Thermal Diffusion in Silicon. Chinese Physics C,
2005, 29(11): 1107-1111. |
-
Access
-
-