Detection efficiency evaluation for a large area neutron sensitive microchannel plate detector

  • In this paper, the detection efficiency of a large area neutron sensitive microchannel plate detector has been evaluated. A 6LiF/ZnS scintillator detector 65 mm in diameter and 0.32 mm in thickness, with product code, EJ426HD2, produced by Eljen Technology, was employed as the benchmark detector. The TOF spectra of these two detectors were simultaneously measured and the energy spectra were then deduced to calculate the detection efficiency curve of the nMCP detector. Tests show the detection efficiency@25.3 meV thermal neutrons is 34% for this nMCP detector.
      PCAS:
    • 28.20.Pr(Neutron imaging; neutron tomography)
  • [1] Cheul Muu Sim, Yi Kyung Kim, TaeJoo Kim et al, Nucl. Instrum. Methods A, 605:175(2009)
    [2] D. S. Hussey, D. L. Jacobson, M. Arif et al, Journal of Power Sources, 172:225-228(2007)
    [3] M. A. Hickner, N. P. Siegel, K. S. Chen et al, Journal of The Electrochemical Society, 155 (4):B427-B434(2008)
    [4] A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al, Nucl. Instrum. Methods A, 652:400(2011)
    [5] A. S. Tremsin, M. J. Mhlbauer, Burkhard Schillinger et al, IEEE Trans. Nucl. Sci., 57:2955-2962(2010)
    [6] A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al, IEEE Sensors Journal, 11 (12):3433-3436(2011)
    [7] A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al, IEEE Nuclear Science Symposium Conference Record, N30-5:1501-1505(2011)
    [8] N. Kardjilov, I. Manke, M. Strobl et al, Nature Phys., 4:399-403(2008)
    [9] G. W. Fraser, J. F. Pearson, Nucl. Instrum. Methods A, 293:569(1990)
    [10] O. H. W. Siegmund, J. Vallerga, A.S. Tremsin et al, Nucl. Instrum. Methods A, 576:178(2007)
    [11] A. S. Tremsin, J. V. Vallerga, J. B. McPhate et al, Nucl. Instrum. Methods A, 592:374(2008)
    [12] A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al, Nucl. Instrum. Methods A, 605:140(2009)
    [13] O. H. W. Siegmund, J. V. Vallerga, A. S. Tremsin et al, IEEE Trans. Nucl. Sci., NS-56 (N3):1203(2009)
    [14] A. S. Tremsin, Neutron News, 23 (4):35(2012)
    [15] J. Pan, Y. Yang, Y. Tian et al, J. of Instrum, 8:P01015(2013)
    [16] Nianhua Lu, Yiang Yang, Jingwen Lv et al, Physics Procedia, 26:309-316(2012)
    [17] Nianhua Lu, Yiang Yang, Jingwen Lv et al, Physics Procedia, 26:61-69(2012)
    [18] A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al, Nucl. Instrum. Methods A, 628:415(2011)
    [19] D. S. Hussey, D. L. Jacobson, M. Arif et al, Nucl. Instrum. Methods A, 542:9(2005)
    [20] A. Hilger, N. Kardjilov, M. Strobl et al, Physica B, 385-386:1213(2006)
    [21] Yiming Wang, Yigang Yang, Xuewu Wang et al, Nucl. Instrum. Methods A, 784:226(2015)
    [22] TIAN Yang, YANG Yi-Gang, Pan Jing-Sheng et al, Chinese Physics C, 38 (08):086003(2014)
    [23] TIAN Yang, YANG Yi-Gang, LI Yu-Lan et al, Chinese Physics C, 37 (05):056001(2013)
    [24] TIAN Yang, YANG Yi-Gang, LI Yu-Lan et al, Chinese Physics C, 36 (04):339-343(2012)
    [25] A. S. Tresmin, J. B. McPhate, J. V. Vallerga et al, Nucl. Instrum. Methods A, 604:140(2009)
    [26] Anton S. Tremsin, W. Bruce Feller, R. Gregory Downing, Nucl. Instrum. Methods A, 539:278(2005)
    [27] A. S. Tremsin, W. Bruce Feller, R. Gregory Downing et al, IEEE Trans. Nucl. Sci., NS-52 (N5):1739(2005)
  • [1] Cheul Muu Sim, Yi Kyung Kim, TaeJoo Kim et al, Nucl. Instrum. Methods A, 605:175(2009)
    [2] D. S. Hussey, D. L. Jacobson, M. Arif et al, Journal of Power Sources, 172:225-228(2007)
    [3] M. A. Hickner, N. P. Siegel, K. S. Chen et al, Journal of The Electrochemical Society, 155 (4):B427-B434(2008)
    [4] A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al, Nucl. Instrum. Methods A, 652:400(2011)
    [5] A. S. Tremsin, M. J. Mhlbauer, Burkhard Schillinger et al, IEEE Trans. Nucl. Sci., 57:2955-2962(2010)
    [6] A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al, IEEE Sensors Journal, 11 (12):3433-3436(2011)
    [7] A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al, IEEE Nuclear Science Symposium Conference Record, N30-5:1501-1505(2011)
    [8] N. Kardjilov, I. Manke, M. Strobl et al, Nature Phys., 4:399-403(2008)
    [9] G. W. Fraser, J. F. Pearson, Nucl. Instrum. Methods A, 293:569(1990)
    [10] O. H. W. Siegmund, J. Vallerga, A.S. Tremsin et al, Nucl. Instrum. Methods A, 576:178(2007)
    [11] A. S. Tremsin, J. V. Vallerga, J. B. McPhate et al, Nucl. Instrum. Methods A, 592:374(2008)
    [12] A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al, Nucl. Instrum. Methods A, 605:140(2009)
    [13] O. H. W. Siegmund, J. V. Vallerga, A. S. Tremsin et al, IEEE Trans. Nucl. Sci., NS-56 (N3):1203(2009)
    [14] A. S. Tremsin, Neutron News, 23 (4):35(2012)
    [15] J. Pan, Y. Yang, Y. Tian et al, J. of Instrum, 8:P01015(2013)
    [16] Nianhua Lu, Yiang Yang, Jingwen Lv et al, Physics Procedia, 26:309-316(2012)
    [17] Nianhua Lu, Yiang Yang, Jingwen Lv et al, Physics Procedia, 26:61-69(2012)
    [18] A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al, Nucl. Instrum. Methods A, 628:415(2011)
    [19] D. S. Hussey, D. L. Jacobson, M. Arif et al, Nucl. Instrum. Methods A, 542:9(2005)
    [20] A. Hilger, N. Kardjilov, M. Strobl et al, Physica B, 385-386:1213(2006)
    [21] Yiming Wang, Yigang Yang, Xuewu Wang et al, Nucl. Instrum. Methods A, 784:226(2015)
    [22] TIAN Yang, YANG Yi-Gang, Pan Jing-Sheng et al, Chinese Physics C, 38 (08):086003(2014)
    [23] TIAN Yang, YANG Yi-Gang, LI Yu-Lan et al, Chinese Physics C, 37 (05):056001(2013)
    [24] TIAN Yang, YANG Yi-Gang, LI Yu-Lan et al, Chinese Physics C, 36 (04):339-343(2012)
    [25] A. S. Tresmin, J. B. McPhate, J. V. Vallerga et al, Nucl. Instrum. Methods A, 604:140(2009)
    [26] Anton S. Tremsin, W. Bruce Feller, R. Gregory Downing, Nucl. Instrum. Methods A, 539:278(2005)
    [27] A. S. Tremsin, W. Bruce Feller, R. Gregory Downing et al, IEEE Trans. Nucl. Sci., NS-52 (N5):1739(2005)
  • 加载中

Cited by

1. Li, Q., Wang, L.-J., Tang, J.-Y. et al. 10B-doped MCP detector developed for neutron resonance imaging at Back-n white neutron source[J]. Nuclear Science and Techniques, 2024, 35(8): 142. doi: 10.1007/s41365-024-01512-3
2. Li, Q., Wang, L.-J., Qiu, X.-B. et al. Study of the response of 10B-doped MCP to wide-energy range neutrons from eV to MeV[J]. Nuclear Science and Techniques, 2024, 35(8): 140. doi: 10.1007/s41365-024-01516-z
3. Tan, J., Song, Y., Zhou, J. et al. Novel method to improve neutron–gamma discrimination for boron-doped nMCPs[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023. doi: 10.1016/j.nima.2022.167828
4. Zhao, S., Qiu, X., Jin, G. et al. Anti-deliquescence ultra-thin protective film of cesium iodide film on MCP | [微 通 道 板 碘 化 铯 膜 层 抗 潮 解 超 薄 保 护 膜 层][J]. Journal of Applied Optics, 2022, 43(6): 1196-1201. doi: 10.5768/JAO202243.0604021
5. Tan, J., Zhou, J., Yan, B. et al. PERFORMANCE EVALUATION OF BORON DOPED NMCP USED IN NEUTRON RADIOGRAPHY[J]. 2022. doi: 10.1115/ICONE29-92974
6. Wu, H., Hong, W., Zhang, Y. et al. Conceptual design of the grazing-incidence focusing small-angle neutron scattering (gif-SANS) instrument at CPHS[J]. Journal of Neutron Research, 2021, 23(2-3): 201-205. doi: 10.3233/JNR-210008
7. Zhang, Z.-J., Qiu, X.-B., Qiao, F.-J. et al. Effect of Al2O3/MgO composite layer on the properties of microchannel plate[J]. Surface Technology, 2021, 50(6): 199-205. doi: 10.16490/j.cnki.issn.1001-3660.2021.06.021
8. Chuirazzi, W.C., Craft, A.E. Measuring thickness-dependent relative light yield and detection efficiency of scintillator screens[J]. Journal of Imaging, 2020, 6(7): jimaging6070056. doi: 10.3390/JIMAGING6070056
9. Yan, X., Yang, Y., Li, Q. et al. Combined gamma-ray and energy-selective neutron radiography at CSNS[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020. doi: 10.1016/j.nima.2019.163200
10. Lulu, Wang, X., Yang, Y., Zhang, Z. Design of a Photoneutron Convertor for Energy Selective Neutron Imaging[J]. 2018. doi: 10.1109/NSSMIC.2017.8532929
11. Liu, Q., Zhao, Y., Yu, Y. et al. Detection Efficiency and Spatial Resolution Analysis of a n MCP Detector[J]. 2018. doi: 10.1109/NSSMIC.2017.8532771
12. Wang, X., Xing, Q., Zheng, S. et al. Status Report on Accelerator and Neutron Activities of CPHS at Tsinghua University[J]. Journal of Physics: Conference Series, 2018, 1021(1): 012006. doi: 10.1088/1742-6596/1021/1/012006
13. Liu, R., Yang, Y., Wang, X. et al. Analysis and optimization of spatial resolution for a neutron sensitive microchannel plate detector[J]. 2017. doi: 10.1109/NSSMIC.2016.8069780
Get Citation
Yi-ming Wang, Yang Tian, Yi-gang Yang, Ren Liu, Jing-sheng Pan, Xue-wu Wang and Zhi Zhang. Detection efficiency evaluation for a large area neutron sensitive microchannel plate detector[J]. Chinese Physics C, 2016, 40(9): 096004. doi: 10.1088/1674-1137/40/9/096004
Yi-ming Wang, Yang Tian, Yi-gang Yang, Ren Liu, Jing-sheng Pan, Xue-wu Wang and Zhi Zhang. Detection efficiency evaluation for a large area neutron sensitive microchannel plate detector[J]. Chinese Physics C, 2016, 40(9): 096004.  doi: 10.1088/1674-1137/40/9/096004 shu
Milestone
Received: 2015-12-07
Fund

    Supported by National Natural Science Foundation of China (11375095, 11175098)

Article Metric

Article Views(2105)
PDF Downloads(146)
Cited by(13)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Detection efficiency evaluation for a large area neutron sensitive microchannel plate detector

    Corresponding author: Yi-gang Yang,
Fund Project:  Supported by National Natural Science Foundation of China (11375095, 11175098)

Abstract: In this paper, the detection efficiency of a large area neutron sensitive microchannel plate detector has been evaluated. A 6LiF/ZnS scintillator detector 65 mm in diameter and 0.32 mm in thickness, with product code, EJ426HD2, produced by Eljen Technology, was employed as the benchmark detector. The TOF spectra of these two detectors were simultaneously measured and the energy spectra were then deduced to calculate the detection efficiency curve of the nMCP detector. Tests show the detection efficiency@25.3 meV thermal neutrons is 34% for this nMCP detector.

    HTML

Reference (27)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return