Electroweak vacuum stability and diphoton excess at 750 GeV

  • Recently, both ATLAS and CMS collaborations at the CERN Large Hadron Collider (LHC) announced their observations of an excess of diphoton events around the invariant mass of 750 GeV with a local significance of 3.6σ and 2.6σ, respectively. In this paper, we interpret the diphoton excess as the on-shell production of a real singlet scalar in the pp→S→γγ channel. To accommodate the observed production rate, we further introduce a vector-like fermion F, which carries both color and electric charges. The viable regions of model parameters are explored for this simple extension of the Standard Model (SM). Moreover, we revisit the problem of electroweak vacuum stability in the same scenario, and find that the requirement for the electroweak vacuum stability up to high energy scales imposes serious constraints on the Yukawa coupling of the vector-like fermion and the quartic couplings of the SM Higgs boson and the new singlet scalar. Consequently, a successful explanation for the diphoton excess and the absolute stability of electroweak vacuum cannot be achieved simultaneously in this economical setup.
      PCAS:
  • 加载中
  • [1] G. Aad et al [ATLAS Collaboration], Phys. Lett. B, 710: 49 (2012) [arXiv:1202.1408]
    [2] S. Chatrchyan et al [CMS Collaboration], Phys. Lett. B, 710: 26 (2012) [arXiv:1202.1488]
    [3] G. Aad et al [ATLAS Collaboration], Phys. Lett. B, 716: 1 (2012) [arXiv:1207.7214]
    [4] S. Chatrchyan et al [CMS Collaboration], Phys. Lett. B, 716: 30 (2012) [arXiv:1207.7235]
    [5] S. L. Glashow, Nucl. Phys., 22: 579 (1961); S. Weinberg, Phys. Rev. Lett., 19: 1264 (1967); A. Salam, in Elementary Particle Theory, edited by N. Svartholm ( Stockholm: Almqvist and Wiksells, 1968), p. 367; Weak and Electromagnetic Interactions, Conf. Proc. C, 680519: 367 (1968)
    [6] P. W. Higgs, Phys. Lett., 12: 132 (1964); F. Englert and R. Brout, Phys. Rev. Lett., 13: 321 (1964); P. W. Higgs, Phys. Rev. Lett., 13: 508 (1964); G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett., 13: 585 (1964); P. W. Higgs, Phys. Rev., 145: 1156 (1966); T. W. B. Kibble, Phys. Rev., 155: 1554 (1967)
    [7] G. 't Hooft, NATO Sci. Ser. B, 59: 135 (1980)
    [8] S. R. Coleman and E. J. Weinberg, Phys. Rev. D, 7: 1888 (1973)
    [9] H. P. Nilles, Phys. Rept., 110: 1 (1984); H. E. Haber and G. L. Kane, Phys. Rept., 117: 75 (1985); M. F. Sohnius, Phys. Rept., 128: 39 (1985)
    [10] N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Nucl. Phys. B, 158: 295 (1979); P. Q. Hung, Phys. Rev. Lett., 42: 873 (1979); M. Lindner, Z. Phys. C, 31: 295 (1986); M. Lindner, M. Sher and H. W. Zaglauer, Phys. Lett. B, 228: 139 (1989); P. B. Arnold, Phys. Rev. D, 40: 613 (1989); M. Sher, Phys. Rept., 179: 273 (1989); Phys. Lett. B, 317: 159 (1993) [hep-ph/9307342]; B. Schrempp and M. Wimmer, Prog. Part. Nucl. Phys., 37: 1 (1996) [hep-ph/9606386]
    [11] G. Altarelli and G. Isidori, Phys. Lett. B, 337: 141 (1994); J. A. Casas, J. R. Espinosa and M. Quiros, Phys. Lett. B, 342: 171 (1995) [hep-ph/9409458]; Phys. Lett. B, 382: 374 (1996) [hep-ph/9603227]; T. Hambye and K. Riesselmann, Phys. Rev. D, 55: 7255 (1997) [hep-ph/9610272]; G. Isidori, G. Ridolfi and A. Strumia, Nucl. Phys. B, 609: 387 (2001) [hep-ph/0104016]; G. Isidori, V. S. Rychkov, A. Strumia and N. Tetradis, Phys. Rev. D, 77: 025034 (2008) [arXiv:0712.0242]; J. Ellis, J. R. Espinosa, G. F. Giudice, A. Hoecker and A. Riotto, Phys. Lett. B, 679: 369 (2009) [arXiv:0906.0954]
    [12] Z. Z. Xing, H. Zhang and S. Zhou, Phys. Rev. D, 86: 013013 (2012) [arXiv:1112.3112]
    [13] M. Holthausen, K. S. Lim and M. Lindner, JHEP, 1202: 037 (2012) [arXiv:1112.2415]; J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto and A. Strumia, Phys. Lett. B, 709: 222 (2012) [arXiv:1112.3022]
    [14] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori and A. Strumia, JHEP, 1208: 098 (2012) [arXiv:1205.6497]; F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl and M. Shaposhnikov, JHEP, 1210: 140 (2012) [arXiv:1205.2893]; S. Alekhin, A. Djouadi and S. Moch, Phys. Lett. B, 716: 214 (2012) [arXiv:1207.0980]; I. Masina, Phys. Rev. D, 87(5): 053001 (2013) [arXiv:1209.0393]; K. G. Chetyrkin and M. F. Zoller, JHEP, 1304: 091 (2013) [arXiv:1303.2890]; D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia, JHEP, 1312: 089 (2013) [arXiv:1307.3536]; V. Branchina and E. Messina, Phys. Rev. Lett., 111: 241801 (2013) [arXiv:1307.5193]
    [15] Z. Z. Xing, Int. J. Mod. Phys. A, 29: 1430067 (2014) [arXiv:1411.2713]
    [16] Z. Z. Xing and S. Zhou, Neutrinos in Particle Physics, Astronomy and Cosmology, Berlin Heidelberg: Springer-Verlag, (2011); S. Zhou, arXiv:1511.07255
    [17] The ATLAS Collaboration, CERN note ATLAS-CONF-2015-081
    [18] The CMS Collaboration, CERN onte CMS-PAS-EXO-15-004
    [19] K. Harigaya and Y. Nomura, Phys. Lett. B, 754: 151 (2016) [arXiv:1512.04850]; Y. Mambrini, G. Arcadi and A. Djouadi, arXiv:1512.04913; M. Backovic, A. Mariotti and D. Redigolo, arXiv:1512.04917; A. Angelescu, A. Djouadi and G. Moreau, arXiv:1512.04921; Y. Nakai, R. Sato and K. Tobioka, arXiv:1512.04924; S. Knapen, T. Melia, M. Papucci and K. Zurek, arXiv:1512.04928; D. Buttazzo, A. Greljo and D. Marzocca, arXiv:1512.04929; A. Pilaftsis, Phys. Rev. D, 93: 015017 (2016) [arXiv:1512.04931]; S. Di Chiara, L. Marzola and M. Raidal, arXiv:1512.04939; T. Higaki, K. S. Jeong, N. Kitajima and F. Takahashi, arXiv:1512.05295; S. D. McDermott, P. Meade and H. Ramani, arXiv:1512.05326; M. Low, A. Tesi and L. T. Wang, arXiv:1512.05328; B. Bellazzini, R. Franceschini, F. Sala and J. Serra, arXiv:1512.05330; R. S. Gupta, S. Jger, Y. Kats, G. Perez and E. Stamou, arXiv:1512.05332; C. Petersson and R. Torre, arXiv:1512.05333; E. Molinaro, F. Sannino and N. Vignaroli, arXiv:1512.05334; B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, arXiv:1512.05439; Q. H. Cao, Y. Liu, K. P. Xie, B. Yan and D. M. Zhang, arXiv:1512.05542; S. Matsuzaki and K. Yamawaki, arXiv:1512.05564; A. Kobakhidze, F. Wang, L. Wu, J. M. Yang and M. Zhang, arXiv:1512.05585; R. Martinez, F. Ochoa and C. F. Sierra, arXiv:1512.05617; P. Cox, A. D. Medina, T. S. Ray and A. Spray, arXiv:1512.05618; D. Becirevic, E. Bertuzzo, O. Sumensari and R. Z. Funchal, arXiv:1512.05623; J. M. No, V. Sanz and J. Setford, arXiv:1512.05700; S. V. Demidov and D. S. Gorbunov, arXiv:1512.05723; W. Chao, R. Huo and J. H. Yu, arXiv:1512.05738; S. Fichet, G. von Gersdorff and C. Royon, arXiv:1512.05751; D. Curtin and C. B. Verhaaren, arXiv:1512.05753; L. Bian, N. Chen, D. Liu and J. Shu, arXiv:1512.05759; J. Chakrabortty, A. Choudhury, P. Ghosh, S. Mondal and T. Srivastava, arXiv:1512.05767; A. Ahmed, B. M. Dillon, B. Grzadkowski, J. F. Gunion and Y. Jiang, arXiv:1512.05771; P. Agrawal, J. Fan, B. Heidenreich, M. Reece and M. Strassler, arXiv:1512.05775; C. Csaki, J. Hubisz and J. Terning, arXiv:1512.05776; A. Falkowski, O. Slone and T. Volansky, arXiv:1512.05777; D. Aloni, K. Blum, A. Dery, A. Efrati and Y. Nir, arXiv:1512.05778; Y. Bai, J. Berger and R. Lu, arXiv:1512.05779; E. Gabrielli, K. Kannike, B. Mele, M. Raidal, C. Spethmann and H. Veerme, arXiv:1512.05961; R. Benbrik, C. H. Chen and T. Nomura, arXiv:1512.06028; J. S. Kim, J. Reuter, K. Rolbiecki and R. R. de Austri, arXiv:1512.06083; A. Alves, A. G. Dias and K. Sinha, arXiv:1512.06091; E. Megias, O. Pujolas and M. Quiros, arXiv:1512.06106; L. M. Carpenter, R. Colburn and J. Goodman, arXiv:1512.06107; J. Bernon and C. Smith, arXiv:1512.06113; W. Chao, arXiv:1512.06297; M. T. Arun and P. Saha, arXiv:1512.06335; C. Han, H. M. Lee, M. Park and V. Sanz, arXiv:1512.06376; S. Chang, arXiv:1512.06426; I. Chakraborty and A. Kundu, arXiv:1512.06508; R. Ding, L. Huang, T. Li and B. Zhu, arXiv:1512.06560; H. Han, S. Wang and S. Zheng, arXiv:1512.06562; X. F. Han and L. Wang, arXiv:1512.06587; M. X. Luo, K. Wang, T. Xu, L. Zhang and G. Zhu, arXiv:1512.06670; J. Chang, K. Cheung and C. T. Lu, arXiv:1512.06671; D. Bardhan, D. Bhatia, A. Chakraborty, U. Maitra, S. Raychaudhuri and T. Samui, arXiv:1512.06674; T. F. Feng, X. Q. Li, H. B. Zhang and S. M. Zhao, arXiv:1512.06696; O. Antipin, M. Mojaza and F. Sannino, arXiv:1512.06708; F. Wang, L. Wu, J. M. Yang and M. Zhang, arXiv:1512.06715; J. Cao, C. Han, L. Shang, W. Su, J. M. Yang and Y. Zhang, arXiv:1512.06728; F. P. Huang, C. S. Li, Z. L. Liu and Y. Wang, arXiv:1512.06732; W. Liao and H. Q. Zheng, arXiv:1512.06741; J. J. Heckman, arXiv:1512.06773; M. Dhuria and G. Goswami, arXiv:1512.06782; X. J. Bi, Q. F. Xiang, P. F. Yin and Z. H. Yu, arXiv:1512.06787; J. S. Kim, K. Rolbiecki and R. R. de Austri, arXiv:1512.06797; L. Berthier, J. M. Cline, W. Shepherd and M. Trott, arXiv:1512.06799; W. S. Cho, D. Kim, K. Kong, S. H. Lim, K. T. Matchev, J. C. Park and M. Park, arXiv:1512.06824; J. M. Cline and Z. Liu, arXiv:1512.06827; M. Bauer and M. Neubert, arXiv:1512.06828; M. Chala, M. Duerr, F. Kahlhoefer and K. Schmidt-Hoberg, arXiv:1512.06833; D. Barducci, A. Goudelis, S. Kulkarni and D. Sengupta, arXiv:1512.06842; S. M. Boucenna, S. Morisi and A. Vicente, arXiv:1512.06878; C. W. Murphy, arXiv:1512.06976; P. Athron, D. Harries, R. Nevzorov and A. G. Williams, arXiv:1512.07040; A. E. C. Hernndez and I. Nisandzic, arXiv:1512.07165; U. K. Dey, S. Mohanty and G. Tomar, arXiv:1512.07212; G. M. Pelaggi, A. Strumia and E. Vigiani, arXiv:1512.07225; J. de Blas, J. Santiago and R. Vega-Morales, arXiv:1512.07229; A. Belyaev, G. Cacciapaglia, H. Cai, T. Flacke, A. Parolini and H. Serdio, arXiv:1512.07242; P. S. B. Dev and D. Teresi, arXiv:1512.07243; W. C. Huang, Y. L. S. Tsai and T. C. Yuan, arXiv:1512.07268; S. Moretti and K. Yagyu, arXiv:1512.07462; K. M. Patel and P. Sharma, arXiv:1512.07468; M. Badziak, arXiv:1512.07497; S. Chakraborty, A. Chakraborty and S. Raychaudhuri, arXiv:1512.07527; Q. H. Cao, S. L. Chen and P. H. Gu, arXiv:1512.07541; W. Altmannshofer, J. Galloway, S. Gori, A. L. Kagan, A. Martin and J. Zupan, arXiv:1512.07616; M. Cvetič, J. Halverson and P. Langacker, arXiv:1512.07622; J. Gu and Z. Liu, arXiv:1512.07624
    [20] S. Di Chiara, V. Keus and O. Lebedev, Phys. Lett. B, 744: 59 (2015) [arXiv:1412.7036]
    [21] J. McDonald, Phys. Rev. D, 50: 3637 (1994) [hep-ph/0702143]; B. Patt and F. Wilczek, hep-ph/0605188
    [22] G. Aad et al (ATLAS Collaboration), Phys. Rev. D, 92(3): 032004 (2015) [arXiv:1504.05511]
    [23] CMS Collaboration, CERN note CMS-PAS-HIG-14-006
    [24] R. Franceschini et al, arXiv:1512.04933
    [25] S. Knapen, T. Melia, M. Papucci and K. Zurek, arXiv:1512.04928 [hep-ph]
    [26] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, Front. Phys., 80: 1 (2000)
    [27] S. Heinemeyer et al [LHC Higgs Cross Section Working Group Collaboration], arXiv:1307.1347
    [28] M. Bowen, Y. Cui and J. D. Wells, JHEP, 0703: 036 (2007) [hep-ph/0701035]
    [29] F. Bojarski, G. Chalons, D. Lopez-Val and T. Robens, arXiv:1511.08120
    [30] A. Falkowski, C. Gross and O. Lebedev, JHEP, 1505: 057 (2015) [arXiv:1502.01361]
    [31] G. Aad et al [ATLAS Collaboration], Phys. Rev. D, 91(11): 112011 (2015) [arXiv:1503.05425 [hep-ex]]; G. Aad et al [ATLAS Collaboration], JHEP, 1508: 105 (2015) [arXiv:1505.04306 [hep-ex]]; V. Khachatryan et al [CMS Collaboration], JHEP, 1506: 080 (2015) [arXiv:1503.01952 [hep-ex]]; V. Khachatryan et al [CMS Collaboration], arXiv:1507.07129 [hep-ex]
    [32] M. Son and A. Urbano, arXiv:1512.08307; Y. Hamada, T. Noumi, S. Sun and G. Shiu, arXiv:1512.08984
    [33] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, H. M. Lee and A. Strumia, JHEP, 1206: 031 (2012) [arXiv:1203.0237]
    [34] M. Kadastik, K. Kannike and M. Raidal, Phys. Rev. D, 80: 085020 (2009) [arXiv:0907.1894]
    [35] R. N. Lerner and J. McDonald, Phys. Rev. D, 80: 123507 (2009) [arXiv:0909.0520]
    [36] M. Gonderinger, Y. Li, H. Patel and M. J. Ramsey-Musolf, JHEP, 1001: 053 (2010) [arXiv:0910.3167]
    [37] M. Gonderinger, H. Lim and M. J. Ramsey-Musolf, Phys. Rev. D, 86: 043511 (2012) [arXiv:1202.1316]
    [38] M. L. Xiao and J. H. Yu, Phys. Rev. D, 90(1): 014007 (2014) [arXiv:1404.0681]
    [39] M. E. Machacek and M. T. Vaughn, Nucl. Phys. B, 222: 83 (1983); Nucl. Phys. B, 236: 221 (1984); Nucl. Phys. B, 249: 70 (1985)
    [40] Q. H. Cao, Y. Q. Gong, X. Wang, B. Yan and L. L. Yang, arXiv:1601.06374; S. F. Ge, H. J. He, J. Ren and Z. Z. Xianyu, arXiv:1602.01801
    [41] A. V. Bednyakov, B. A. Kniehl, A. F. Pikelner and O. L. Veretin, Phys. Rev. Lett., 115(20): 201802 (2015) [arXiv:1507.08833]
    [42] W. Chao, R. Huo and J. H. Yu, arXiv:1512.05738
    [43] O. Lebedev, Eur. Phys. J. C, 72: 2058 (2012) [arXiv:1203.0156]; P. S. Bhupal Dev, D. K. Ghosh, N. Okada and I. Saha, JHEP, 1303: 150 (2013) [arXiv:1301.3453]; E. J. Chun, H. M. Lee and P. Sharma, JHEP, 1211: 106 (2012) [arXiv:1209.1303]; C. S. Chen and Y. Tang, JHEP, 1204: 019 (2012) [arXiv:1202.5717]; J. Jaeckel, M. Jankowiak and M. Spannowsky, Phys. Dark Univ., 2: 111 (2013) [arXiv:1212.3620]; L. Basso, O. Fischer and J. J. van Der Bij, Phys. Lett. B, 730: 326 (2014) [arXiv:1309.6086]
    [44] M. Delmastro, Diphoton searches in ATLAS, in 51st Rencontres de Moriond EW 2016. See the slides at https://indico.in2p3.fr/event/12279/session/12/contribution/ 163/material/slides/1.pdf; The ATLAS Collaboration, CERN note ATLAS-CONF-2016-018
    [45] P. Musella, Search for high mass diphoton resonances at CMS, in 51st Rencontres de Moriond EW 2016, https://indico.in2p3.fr/event/12279/session/12/contribution/218/material/slides/0.pdf; The CMS Collaboration, CERN note CMS-PAS-EXO-16-018
  • 加载中

Get Citation
Jue Zhang and Shun Zhou. Electroweak vacuum stability and diphoton excess at 750 GeV[J]. Chinese Physics C, 2016, 40(8): 081001. doi: 10.1088/1674-1137/40/8/081001
Jue Zhang and Shun Zhou. Electroweak vacuum stability and diphoton excess at 750 GeV[J]. Chinese Physics C, 2016, 40(8): 081001.  doi: 10.1088/1674-1137/40/8/081001 shu
Milestone
Received: 2016-02-24
Revised: 2016-04-17
Fund

    Supported by Innovation Program of the Institute of High Energy Physics (Y4515570U1), National Youth Thousand Talents Program, and CAS Center for Excellence in Particle Physics (CCEPP)

Article Metric

Article Views(1459)
PDF Downloads(63)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Electroweak vacuum stability and diphoton excess at 750 GeV

    Corresponding author: Jue Zhang,
    Corresponding author: Shun Zhou,
  • 1.  Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3. Center for High Energy Physics, Peking University, Beijing 100871, China
Fund Project:  Supported by Innovation Program of the Institute of High Energy Physics (Y4515570U1), National Youth Thousand Talents Program, and CAS Center for Excellence in Particle Physics (CCEPP)

Abstract: Recently, both ATLAS and CMS collaborations at the CERN Large Hadron Collider (LHC) announced their observations of an excess of diphoton events around the invariant mass of 750 GeV with a local significance of 3.6σ and 2.6σ, respectively. In this paper, we interpret the diphoton excess as the on-shell production of a real singlet scalar in the pp→S→γγ channel. To accommodate the observed production rate, we further introduce a vector-like fermion F, which carries both color and electric charges. The viable regions of model parameters are explored for this simple extension of the Standard Model (SM). Moreover, we revisit the problem of electroweak vacuum stability in the same scenario, and find that the requirement for the electroweak vacuum stability up to high energy scales imposes serious constraints on the Yukawa coupling of the vector-like fermion and the quartic couplings of the SM Higgs boson and the new singlet scalar. Consequently, a successful explanation for the diphoton excess and the absolute stability of electroweak vacuum cannot be achieved simultaneously in this economical setup.

    HTML

Reference (45)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return