×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Pseudorapidity dependence of short-range correlations from a multi-phase transport model

  • Using a multi-phase transport model (AMPT) that includes both initial partonic and hadronic interactions, we study neighboring bin multiplicity correlations as a function of pseudorapidity in Au+Au collisions at √SNN = 7.7-62.4 GeV. It is observed that for √SNN < 19.6 GeV Au+Au collisions, the short-range correlations of final particles have a trough at central pseudorapidity, while for √SNN > 19.6 GeV AuAu collisions, the short-range correlations of final particles have a peak at central pseudorapidity. Our findings indicate that the pseudorapidity dependence of short-range correlations should contain some new physical information, and are not a simple result of the pseudorapidity distribution of final particles. The AMPT results with and without hadronic scattering are compared. It is found that hadron scattering can only increase the short-range correlations to some level, but is not responsible for the different correlation shapes for different energies. Further study shows that the different pseudorapidity dependence of short-range correlations are mainly due to partonic evolution and the following hadronization scheme.
      PCAS:
  • 加载中
  • [1] J. Adams et al (STAR Collab.), Nucl. Phys. A, 757: 102 (2005)
    [2] K. Adcox et al (PHENIX Collab.), Nucl. Phys. A, 757: 184 (2005)
    [3] J. Adams et al (STAR Collab.), Phys. Rev. Lett., 2004, 92: 052302; S. S. Adler et al (PHENIX Collab. ), Phys. Rev. Lett., 91: 182301 (2003)
    [4] S. S. Adler et al (PHENIX Collaboration), Phys. Rev. Lett., 91: 172301( 2003)
    [5] V. P. Konchakovski et al, Phys. Rev. C, 79: 034910 (2009)
    [6] R. Akers et al, Phys. Lett. B, 320: 417 (1994)
    [7] W. Kittel and E. A. De. Wolf, Soft Multihadron Dynamics (Singapore: World Scientific, 2005), p. 652
    [8] B. Abelev et al (STAR Collaboration), Phys. Rev. Lett., 103: 172301 (2009)
    [9] Frank Froemel and Horst Lenske, and Ulirch Mosel, Nucl. Phys. A, 723: 544-556 (2003)
    [10] Frank Froemel and Stefan Leupold, Phys. Rev. C, 76: 035207 (2007)
    [11] P. L. Jain, K. Sengupta, and G. Singh, Phys. Rev. D, 34: 2886-2889 (1986)
    [12] KLM Collab. (M. L. Cherry), Acta. Phys. Pol. B, 29: 2129 (1998)
    [13] Zi-Wei Lin, C. M. Ko, and Subrata Pal, Phys. Rev. Lett., 89: 152301 (2002); Zi-Wei Lin, Che Ming Ko, Bao-An Li et al, Phys. Rev. C, 72: 064901 (2005)
    [14] X. N. Wang, Phys. Rev. D, 43: 104 (1991); X. N. Wang and M. Gyulassy, Phys. Rev. D, 44: 3501 (1991); X. N. Wang and M. Gyulassy, Phys. Rev. D, 45: 844 (1992); M. Gyulassy and X. N. Wang, Comput. Phys. Commun., 83: 307 (1994)
    [15] B. Zhang, Comput. Phys. Commun., 109: 193 (1998)
    [16] B. Andersson, G. Gustafson, and B. Soderberg, Z. Phys. C, 20: 317 (1983)
    [17] T. Sjostrand, Comput. Phys. Commun., 82: 74 (1994)
    [18] L. W. Chen and C. M. Ko, Phys. Lett. B, 634: 205 (2006)
    [19] B. A. Li and C. M. Ko, Phys. Rev. C, 52: 2037 (1995); B. A. Li, A. T. Sustich, B. Zhang et al, Int. J. Phys. E, 10: 267 (2001)
    [20] L. Ma, G. L Ma, Y. and G. Ma, Phys. Rev. C, 89: 044907 (2014); Adam Bzdak and Guo-Liang Ma, Phys. Rev. Lett., 113: 252301 (2014)
    [21] Yuanfang Wu, Lianshou Liu, Yingdan Wang et al, Phys. Rev. E, 71: 017103 (2005)
    [22] N. Xu (STAR Collaboration), Nucl. Phys. A, 931: 1-12 (2014)
    [23] C. B. Yang, J. Phys. G, 32: L11 (2006)
  • 加载中

Get Citation
Mei-Juan Wang, Gang Chen, Guo-Liang Ma and Yuan-Fang Wu. Pseudorapidity dependence of short-range correlations from a multi-phase transport model[J]. Chinese Physics C, 2016, 40(3): 034105. doi: 10.1088/1674-1137/40/3/034105
Mei-Juan Wang, Gang Chen, Guo-Liang Ma and Yuan-Fang Wu. Pseudorapidity dependence of short-range correlations from a multi-phase transport model[J]. Chinese Physics C, 2016, 40(3): 034105.  doi: 10.1088/1674-1137/40/3/034105 shu
Milestone
Received: 2015-07-25
Revised: 2015-10-18
Fund

    Supported by GBL31512, Major State Basic Research Devolopment Program of China (2014CB845402), NSFC (11475149, 11175232, 11375251, 11421505, 11221504)

Article Metric

Article Views(1634)
PDF Downloads(46)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Pseudorapidity dependence of short-range correlations from a multi-phase transport model

    Corresponding author: Mei-Juan Wang,
  • 1.  Physics Department, China University of Geoscience, Wuhan 430074, China
  • 2.  Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3.  Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
Fund Project:  Supported by GBL31512, Major State Basic Research Devolopment Program of China (2014CB845402), NSFC (11475149, 11175232, 11375251, 11421505, 11221504)

Abstract: Using a multi-phase transport model (AMPT) that includes both initial partonic and hadronic interactions, we study neighboring bin multiplicity correlations as a function of pseudorapidity in Au+Au collisions at √SNN = 7.7-62.4 GeV. It is observed that for √SNN < 19.6 GeV Au+Au collisions, the short-range correlations of final particles have a trough at central pseudorapidity, while for √SNN > 19.6 GeV AuAu collisions, the short-range correlations of final particles have a peak at central pseudorapidity. Our findings indicate that the pseudorapidity dependence of short-range correlations should contain some new physical information, and are not a simple result of the pseudorapidity distribution of final particles. The AMPT results with and without hadronic scattering are compared. It is found that hadron scattering can only increase the short-range correlations to some level, but is not responsible for the different correlation shapes for different energies. Further study shows that the different pseudorapidity dependence of short-range correlations are mainly due to partonic evolution and the following hadronization scheme.

    HTML

Reference (23)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return