Photonic dark matter portal and quantum physics

  • We study a model of dark matter in which the hidden sector interacts with standard model particles via a hidden photonic portal. We investigate the effects of this new interaction on the hydrogen atom, including the Stark, Zeeman and hyperfine effects. Using the accuracy of the measurement of energy, we obtain an upper bound for the coupling constant of the model as f ≤ 10-12. We also calculate the contribution from the hidden photonic portal to the anomalous magnetic moment of the muon as au ≤ 2.2× 10-23 (for the dark particle mass scale 100 MeV), which provides an important probe of physics beyond the standard model.
      PCAS:
  • 加载中
  • [1] Z. Shou-Hua, Chin. Phys. Lett., 24 (2): 381 (2007)
    [2] S. C. Yoon, F. Iocco, S. Akiyama, Astrophys. J, 688: L1 (2008)
    [3] Y. Hosotani, P. Ko, M. Tanaka, Phys. Lett. B, 680: 179 (2009)
    [4] Andrzej M. Szelc, Acta Phys. Polon. B, 41: 1417 (2010)
    [5] J. Goodman et al, Nucl. Phys. B, 844: 55 (2011)
    [6] Q. Hong-Yi, W. Wen-Yu, X. Zhao-Hua, Chin. Phys. Lett., 28: 111202 (2011)
    [7] Q. Hong-Yi, W. Wen-Yu, X. Zhao-Hua (CMS Collaboration), JHEP, 09: 094 (2012)
    [8] L. Xu, Y. Chang, Phys. Rev. D, 88: 127301 (2013)
    [9] A. Crivellin, F. D'Eramo, M. Procura, Phys. Rev. Lett., 112: 191304 (2014)
    [10] L. Carpenter et al, Phys. Rev. D, 89: 075017 (2014)
    [11] K. Freese, arXiv:1501.02394, invited review for Reports on Progress in Physics
    [12] J. March-Russell, S. M. West, D. Cumberbatch, and D. Hooper, JHEP, 7: 058 (2008)
    [13] C. Englert, T. Plehn, D. Zerwas, and P. M. Zerwas, Phys. Lett. B, 703: 298 (2011)
    [14] L. Lopez-Honorez, T. Schwetza, J. Zupan, Phys. Lett. B, 716: 179 (2012)
    [15] W. Krlikowski, arXiv: 1008. 4756
    [16] W. Krlikowski, Acta Phys. Polon. B, 39: 1881 (2008)
    [17] W. Krlikowski, Acta. Phys. Polon. B, 40: 111 (2009)
    [18] W. Krlikowski, Acta . Phys. Polon. B, 40: 2767 (2009)
    [19] W. Krlikowski, Acta. Phys. Polon. B, 42: 1261 (2011)
    [20] Y. Nomura, J. Thaler, Phys. Rev. D, 79: 075008 (2009)
    [21] J. Cherry, A. Friedland, I. M. Shoemaker, arXiv: 1411.1071
    [22] Jiang-Hao Yu, Phys. Rev. D, 90: 095010 (2014)
    [23] M. Hamzavi et al, Chin. Phys. Lett., 21: 80302 (2012)
    [24] L. Essen et al, Nature, 229 (1971)
    [25] D. McKeen, Annals Phys., 326: 1501 (2011)
    [26] J. P. Miller, E. de Rafael, and B. Lee Roberts, Rept. Prog. Phys., 70: 795 (2007)
    [27] W. Krlikowski, arXiv: 0903.5163
    [28] K. Olive et al, Review of Particle Physics, Chin. Phys. C, 38: 090001 (2014)
    [29] P. deNiverville, D. McKeen, A. Ritz, Phys. Rev. D, 86: 035022 (2012)
    [30] P. deNiverville, M. Pospelov, A. Ritz, Phys. Rev. D, 84, 075020 (2011)
    [31] B. Batell, R. Essig, Z. Surujon, Phys. Rev. Lett. 113: 171802 (2014)
    [32] B. Batell, M. Pospelov, and A. Ritz, Phys. Rev. D, 80: 095024 (2009)
    [33] R. Essig et al, JHEP, 11: 167 (2013)
    [34] K. N. Abazajian, Physics, 7: 128 (2014)
    [35] A. Merle, A. Schneider, Report number: MPP-2014-348, arXiv:1409.6311
    [36] Babette Dbrich, arXiv:1501.03274, Report number: DESY 15-003, contribution to the 24th European Cosmic Ray Symposium.
    [37] P. Masjuan, Nuclear Physics B, Proceedings Supplement 00: 1 (2014)
    [38] G. Eichman et al, arXiv: 1411.7876
    [39] S. Henry (University of Oxford), News From Fermilab, https: //indico.in2p3.fr/event/10304/contribution/20/material/ slides/. December 9, 2014
    [40] M. R. Francis, Symmetry, A joint Fermilab/SLAC publication, January 2015
    [41] E. Bulbul et al, Astrophys, J, 789: 13 (2014)
    [42] A. Boyarsky et al, Phys. Rev. Lett., 113: 251301 (2014)
    [43] Javier Redondo, MPP-2014-33, arXiv:1501.07292
    [44] A. Mirizzi, J. Redondo, and G. Sigl, JCAP, 0903: 026 (2009)
    [45] A. P. Lobanov, H. -S. Zechlin, and D. Horns, Phys. Rev. D, 87: 6065004 (2013)
    [46] J. Redondo, A. Ringwald, Contemp. Phys., 52: 211 (2011)
    [47] H. Vogel, J. Redondo, JCAP, 1402: 029 (2014)
    [48] J. Redondo, M. Postma, JCAP, 0902: 005 (2009)
  • 加载中

Get Citation
S. A. Alavi and F. S. Kazemian. Photonic dark matter portal and quantum physics[J]. Chinese Physics C, 2016, 40(2): 025101. doi: 10.1088/1674-1137/40/2/025101
S. A. Alavi and F. S. Kazemian. Photonic dark matter portal and quantum physics[J]. Chinese Physics C, 2016, 40(2): 025101.  doi: 10.1088/1674-1137/40/2/025101 shu
Milestone
Received: 2015-01-22
Revised: 2015-06-01
Article Metric

Article Views(1286)
PDF Downloads(207)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Photonic dark matter portal and quantum physics

    Corresponding author: S. A. Alavi,
  • 1. Department of Physics, Hakim Sabzevari University, P. O. Box 397, Sabzevar, Iran

Abstract: We study a model of dark matter in which the hidden sector interacts with standard model particles via a hidden photonic portal. We investigate the effects of this new interaction on the hydrogen atom, including the Stark, Zeeman and hyperfine effects. Using the accuracy of the measurement of energy, we obtain an upper bound for the coupling constant of the model as f ≤ 10-12. We also calculate the contribution from the hidden photonic portal to the anomalous magnetic moment of the muon as au ≤ 2.2× 10-23 (for the dark particle mass scale 100 MeV), which provides an important probe of physics beyond the standard model.

    HTML

Reference (48)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return