Design of an efficient monochromatic electron source for inverse photoemission spectroscopy
- Received Date: 2014-01-15
- Accepted Date: 2014-05-05
- Available Online: 2014-11-05
Abstract: A design for an efficient monochromatic electron source for Inverse Photoemission Spectroscopy (IPES) apparatus is described. The electron source consists of a BaO cathode, a focus electrostatic lens, a hemispherical deflection monochromator (HDM), and a transfer electrostatic lens. The HDM adopts a "slit-in and slit-out" structure and the degradation of first-order focusing is corrected by two electrodes between the two hemispheres, which has been investigated by both analytical methods and electron-ray tracing simulations using the SIMION program. Through the focus lens, the HDM, and the standard five-element transfer lens, an optimal energy resolution is estimated to be about 53 MeV with a beam flux of 27 μA. Pass energy (P.E.) of 10 eV and 5 eV are discussed, respectively.