×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

System size dependence in backward relativistic hadron production in pA and AA collisions

  • In this comprehensive study the multiplicity characteristics of the backward emitted relativistic hadron (shower particle) through hadron-nucleus and nucleus-nucleus are overviewed in three dimensions. These dimensions are the projectile size, target size, and energy. To confirm the universality in this production system, wide ranges of system size and energy (Elab~ 2.1 A up to 200 A GeV) are used. The multiplicity characteristics of this hadron imply a limiting behavior with respect to the projectile size and energy. The target size is the main effective parameter in this production system. The exponential decay shapes is a characteristic feature of the backward shower particle multiplicity distributions. The decay constant changes with the target size to be nearly 2.02, 1.41, and 1.12 for the interactions with CNO, Em, and AgBr nuclei, respectively, irrespective of the projectile size and energy. While the backward production probability and average multiplicity are constants at different projectile sizes and energies, they can be correlated with the target size in power law relations.
      PCAS:
  • 加载中
  • [1] Baldin A M, Giordenescu N, Zubarev V N, Ivanova L K, Moroz N S, Povtorelko A A, Radomanov V B, Stavinskil. Sov. J. Nucl. Phys., 1975, 20: 629[2] Sverker Fredriksson. Phys. Rev. Lett., 1980, 45: 1371[3] Schroeder L S, Chessin S A, Geaga J V, Grossiord J Y, Harris J W, Hendrie D L, Treuhaft R, van Bibber K. Phys. Rev. Lett., 1979, 43: 1787[4] Geaga J V, Chessin S A, Grossiord J Y, Harris J W, Hendrie D L, Schroeder L S, Treuhaft R N, van Bibber K. Phys. Rev. Lett., 1980, 45: 1993[5] El-Nadi M, Ali-Mossa N, Abdelsalam A. IL Nuovo Cimento A, 1998, 110: 1255[6] El-Nadi M, Abdelsalam A, Ali-Mossa N, Abou-Moussa Z, Kamel S, Abdel-Waged Kh, Osman W, Badawy B. Eur. Phys. J. A, 1998, 3: 183[7] El-Nadi M, Abdelsalam A, Ali-Mossa N, Abou-Moussa Z, Abdel-Waged Kh, Osman W, Badawy B. IL Nuovo Cimento A, 1998, 111: 1243[8] Abdelsalam A, Shaat E A, Ali-Mossa N, Abou-Mousa Z, Osman O M, Rashed N, Osman W, Badawy B M, El-Falaky E. J. Phys. G: Nucl. Part. Phys., 2002, 28: 1375[9] Abdelsalam A, Badawy B M, El-Falaky E. Can. J. Phys., 2007, 85: 837[10] Abdelsalam A, El-Nagdy M S, Badawy B M. Can. J. Phys., 2011, 89: 261[11] Abdelsalam A, Badawy B M, Hafiz M E. Can. J. Phys., 2012, 90: 515[12] Abdelsalam A, Badawy B M, Hafiz M E. J. Phys. G: Nucl. Part. Phys., 2012, 39: 105104[13] Benecke J, CHOU T T, YANG C N, YEN E. Phys. Rev., 1969, 188: 2159[14] Powell C F, Fowler F H, Perkins D H. The Study of Elementary Particles by The Photographic Method. Pergamon Press. London, New York, Paris, Los Angles, 1958. 474[15] Barkas H. Nuclear Research Emulsion, Vol. I, Technique and Theory Academic Press Inc., 1963[16] Dipak Ghosh, Argha Deb, Srimonti Dutta. Phys. Scr., 2009, 79: 025102[17] Dipak Ghosh, Argha Deb, Srimonti Dutta. FIZIKA B, 2007, 16: 67[18] Dipak Ghosh, Argha Deb, Srimonti Dutta. Can. J. Phys., 2009, 87: 311[19] Dipak Ghosh, Argha Deb, Ruma Saha, Rupa Das. Can. J. Phys., 2010, 88: 651[20] El-Naghy A et al. J. Phys. G: Nucl. Part. Phys., 1988, 14: 1125[21] El-Nagdy M S, Abdelsalam A, Abou-Moussa Z, Badawy B M. Can. J. Phys., 2013, 91: 737[22] Barashenkov V S, Toneev V D. Interactions of High Energy Particles and Atomic Nuclei with Nuclei, Moskva, Adomizdat, 1972, 12: In Russian.[23] Florian J R et al. Report Submitted to the Meeting of Division of Particles and Fields, Berkeley, California. 1973[24] Abdelsalam A. JINR Report (Dubna), 1981, E1-81-623[25] Abdrahmanov E O et al. Z. Phys. C, 1980, 5: 1[26] EMU01 Collaboration; Lund University Report, Sweden, LUIP 8904, May 1989[27] Shmakov S Yu, Uzhinskii V V. Com. Phys. Comm., 1989, 54: 125[28] GAO Yan, LIU Fu-Hu, Abd Allah N N, Bekmirzaev R. Chinese Physics C, 2011, 35: 40[29] LI Jun-Sheng, ZHANG Dong-Hui, LIU Fu-Hu. Chinese Physics C, 2008, 32: 352[30] ZHANG Dong-Hai, ZHAO Hui-Hua, LIU Fang, HE Chun-Le, JIA Hui-Ming, LI Xue-Qin, LI Zhen-Ya, LI Jun-Sheng. Chinese Physics, 2006, 15: 1987
  • 加载中

Get Citation
B. M. Badawy. System size dependence in backward relativistic hadron production in pA and AA collisions[J]. Chinese Physics C, 2014, 38(11): 114001. doi: 10.1088/1674-1137/38/11/114001
B. M. Badawy. System size dependence in backward relativistic hadron production in pA and AA collisions[J]. Chinese Physics C, 2014, 38(11): 114001.  doi: 10.1088/1674-1137/38/11/114001 shu
Milestone
Received: 2013-12-04
Revised: 1900-01-01
Article Metric

Article Views(1555)
PDF Downloads(249)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

System size dependence in backward relativistic hadron production in pA and AA collisions

    Corresponding author: B. M. Badawy,
  • 1. Reactor Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt

Abstract: In this comprehensive study the multiplicity characteristics of the backward emitted relativistic hadron (shower particle) through hadron-nucleus and nucleus-nucleus are overviewed in three dimensions. These dimensions are the projectile size, target size, and energy. To confirm the universality in this production system, wide ranges of system size and energy (Elab~ 2.1 A up to 200 A GeV) are used. The multiplicity characteristics of this hadron imply a limiting behavior with respect to the projectile size and energy. The target size is the main effective parameter in this production system. The exponential decay shapes is a characteristic feature of the backward shower particle multiplicity distributions. The decay constant changes with the target size to be nearly 2.02, 1.41, and 1.12 for the interactions with CNO, Em, and AgBr nuclei, respectively, irrespective of the projectile size and energy. While the backward production probability and average multiplicity are constants at different projectile sizes and energies, they can be correlated with the target size in power law relations.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return