Projectile fragment emission in the fragmentation of 56Fe on C, Al and CH2 targets at 471 A MeV

  • The emission angle and the transverse momentum distributions of projectile fragments produced in the fragmentation of 56Fe on CH2, C and Al targets at 471 A MeV are measured. It is found that for the same target, the average value and width of the angular distribution decrease with an increase of the projectile fragment charge; for the same projectile fragment, the average value of the distribution increases and the width of the distribution decreases with increasing the target charge number. The transverse momentum distribution of a projectile fragment can be explained by a single Gaussian distribution and the averaged transverse momentum per nucleon decreases with the increase of the charge of projectile fragment. The cumulated squared transverse momentum distribution of a projectile fragment can be explained well by a single Rayleigh distribution. The temperature parameter of the emission source of the projectile fragment, calculated from the cumulated squared transverse momentum distribution, decreases with the increase of the size of the projectile fragment.
      PCAS:
  • 加载中
  • [1] Badhwar G D, O'Neill P M. Nucl. Tracks Radiat. Meas., 1992, 20: 403-412[2] Giacomelli M, Skvarc J, Ilic R, Yasuda N, Sihver L. Radiat. Meas., 2003, 36: 329-334[3] Momota S, Notani M, Ito S et al. Nucl. Phys. A, 2002, 701: 150-155[4] Giacomelli M, Sihver L, Skvarc J, Yasuda N, Ilic R. Phys. Rev. C, 2004, 69: 064601[5] Trautmann W. Nucl. Phys. A, 2001, 685: 233-245[6] Wilson J W, CHUN S Y, Badavi F, Townsend L, Lamkin S L. NASA Technical Paper 3146. NASA, Langley Research Center, Hampton, Virginia. 1991[7] Sihver L, Schardt D, Kanai T. Jpn. J. Med. Phys., 1998, 18: 1-21[8] Fasso A, Ferrari A, Ranft J, Sala P R. CERN Yellow Report 2005-10, INFN/TC-05/11. 2005[9] Wilson J W, Tripathi R K, Cucinotta F A, Shinn J L, Badavi F F, CHUN S Y, Norbury J W, Zeitlin C J, Heilbronn L, Miller J. NASA Technical Paper 3533. NASA, Langley Research Center, Hampton, Virginia. 1995[10] Kraft G. Prog. Part. Nucl. Phys., 2000, 45: 473-544[11] WANG Ning, LI Zhu-Xia, WU Xi-Zhen. Phys. Rev. C, 2002, 65: 064608[12] WANG Ning, LI Zhu-Xia, WU Xi-Zhen et al. Phys. Rev. C, 2004, 69: 034608[13] Guetersloh S B, Zeitlin C, Heilbronn L, Miller J, Komiyama T, Fukumura A, Iwata Y, Murakami T, Bhattacharya M. Nucl. Instrum. Methods B, 2006, 252: 319-332[14] La Tessa C, Guetersloh S, Heilbronn L et al. Adv. Space Res., 2005, 35: 223-229[15] LIN Z W. Phys. Rev. C, 2007, 75: 034609[16] Zeitlin C, Miller J, Heilbronn L, Frankel K, Gong W, Schimmerling W. Radiat. Res., 1996, 145: 655-665[17] Zeitlin C, Heilbronn L, Miller J, Rademucher S E, Borak T, Carter T R, Frankel K A, Schimmerling W, Stronach C E. Phys. Rev. C, 1997, 56: 388-397[18] Zeitlin C, Heilbronn L, Miller J. Radiat. Res., 1998, 149: 560-569[19] Zeitlin C, Guetersloh S B, Heilbronn L H, Miller J. Nucl. Instrum. Methods B, 2006, 252: 308-318[20] Webber W R, Kish J C, Schrier D A. Phys. Rev. C, 1990, 41: 533-546[21] Napolitani P, Schmidt K H, Botvina A S, Rejmund F, Tassan-Got L, Villagrasa C. Phys. Rev. C, 2004, 70: 054607[22] Westfall G D, Wilson L W, Lindstrom P J, Crawford H J, Greiner D E, Heckman H H. Phys. Rev. C, 1979, 19: 1309-1323[23] Webber W R, Brautigam D A. The Astrophys. J. 1982, 260: 894-908[24] Ferrando P, Webber W R, Goret P, Kish J C, Schrier D A, Soutoul A, Testard O. Phys. Rev. C, 1988, 37: 1490-1501[25] Cecchini S, Chiarusi T, Giacomelli G et al. Nucl. Phys. A, 2008, 807: 206-213[26] WANG Li-Chun, ZHANG Dong-Hai, YAN Shi-Wei et al. Acta Phys. Polon. B, 2012, 43: 1769-1782[27] Ota S, Kodaira S, Yasuda N et al. Radiat. Meas., 2008, 43: S195-S198[28] Greiner D E, Lindstrom P J, Heckman H H, Cork B, Bieser F S. Phys. Rev. Lett., 1975, 35: 152-155[29] Viyogi Y P, Symons T J M, Doll P et al. Phys. Rev. Lett., 1979, 42: 33-36[30] Brady F P, Christie W B, Romero J L et al. Phys. Rev. Lett., 1988, 60: 1699-1702[31] Dreute J, Heinrich W, Rusch G, Wiegei B. Phys. Rev. C, 1991, 44: 1057-1064[32] Brady F P, Christie W P, Romero J L et al. Phys. Rev. C, 1994, 50, R525-R529[33] Rusch G, Heinrich W, Wiegel B et al. Phys. Rev. C, 1994, 49: 901-911[34] Huntrup G, Streibel T, Heinrich W. Phys. Rev. C, 2001, 65: 014605[35] Goldhaber A. Phys. Lett. B, 1974, 53: 306-308[36] MA Y G et al. Phys. Rev. C, 2002, 65: 051602[37] Bowman J D, Swiatecki W J, Tsang C F. Lawrence Berkeley Laboratory Report, 1973, LBL-2908[38] Westfall G D, Gosset J, Johansen P J, Poskanzer A M, Meyer W G, Gutbrod H H, Sandoval A, Stock R. Phys. Rev. Lett., 1976, 37: 1202-1205[39] Odeh T et al. Phys. Rev. Lett., 2000, 84: 4557-4560[40] Serfling V et al. Phys. Rev. Lett., 1998, 80: 3928-3931[41] Pochodzalla J et al. Phys. Rev. Lett., 1995, 75: 1040-1043[42] Trautmann W et al. Phys. Rev. C, 2007, 76: 064606[43] Fritz S et al. Phys. Lett. B, 1999, 461: 315-321[44] WANG J et al. Phys. Rev. C, 2005, 72: 024603[45] Gaitanos T, Wolter H H, Fuchs C. Phys. Lett. B, 2000, 478: 79-85[46] Hauger J A et al. Phys. Rev. C, 1998, 57: 764-783
  • 加载中

Get Citation
LI Yan-Jing, ZHANG Dong-Hai, YAN Shi-Wei, WANG Li-Chun, CHENG Jin-Xia and LI Jun-Sheng. Projectile fragment emission in the fragmentation of 56Fe on C, Al and CH2 targets at 471 A MeV[J]. Chinese Physics C, 2014, 38(1): 014001. doi: 10.1088/1674-1137/38/1/014001
LI Yan-Jing, ZHANG Dong-Hai, YAN Shi-Wei, WANG Li-Chun, CHENG Jin-Xia and LI Jun-Sheng. Projectile fragment emission in the fragmentation of 56Fe on C, Al and CH2 targets at 471 A MeV[J]. Chinese Physics C, 2014, 38(1): 014001.  doi: 10.1088/1674-1137/38/1/014001 shu
Milestone
Received: 2013-01-28
Revised: 1900-01-01
Article Metric

Article Views(2180)
PDF Downloads(242)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Projectile fragment emission in the fragmentation of 56Fe on C, Al and CH2 targets at 471 A MeV

    Corresponding author: ZHANG Dong-Hai,

Abstract: The emission angle and the transverse momentum distributions of projectile fragments produced in the fragmentation of 56Fe on CH2, C and Al targets at 471 A MeV are measured. It is found that for the same target, the average value and width of the angular distribution decrease with an increase of the projectile fragment charge; for the same projectile fragment, the average value of the distribution increases and the width of the distribution decreases with increasing the target charge number. The transverse momentum distribution of a projectile fragment can be explained by a single Gaussian distribution and the averaged transverse momentum per nucleon decreases with the increase of the charge of projectile fragment. The cumulated squared transverse momentum distribution of a projectile fragment can be explained well by a single Rayleigh distribution. The temperature parameter of the emission source of the projectile fragment, calculated from the cumulated squared transverse momentum distribution, decreases with the increase of the size of the projectile fragment.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return