Nucleon effective mass in symmetric nuclearmatter from the extended Brueckner-Hartree-Fock approach
- Received Date: 2011-09-13
- Accepted Date: 1900-01-01
- Available Online: 2012-06-05
Abstract: We have calculated the nucleon effective mass in symmetric nuclear matter within the framework of the Brueckner-Bethe-Goldstone (BBG) theory, which has been extended to include both the contributions from the ground-state correlation effect and the three-body force (TBF) rearrangement effect. The effective mass is predicted by including the ground-state correlation effect and the TBF rearrangement effect, and we discuss the momentum dependence and the density dependence of the effective mass. It is shown that the effect of ground state correlations plays an important role at low densities, while the TBF-induced rearrangement effect becomes predominant at high densities.