Surveying the role of excitation energy in probing nuclear dissipation
- Received Date: 2008-10-13
- Accepted Date: 2008-11-04
- Available Online: 2009-07-05
Abstract:
A dynamical Langevin model is employed to calculate the excess of the evaporation residue cross sections of the 194Pb nucleus over that
predicted by the standard statistical model as a function of nuclear dissipation strength. It is shown that large excitation energy can increase the effects of nuclear dissipation on the excess of the evaporation residues and the sensitivity of this excess to the dissipation strength, and that more higher excitation energies have little contribution to further raising this sensitivity. These results suggest that on the experimental side, producing those compound systems with moderate excitation energy is sufficient for a good determination of the pre-saddle nuclear dissipation strength by measuring the evaporation residue cross
section, and that forming an extremely highly excited system does not considerably improve the sensitivity of evaporation residues to the dissipation strength.