
 

Universal function of the diffractive process in color dipole picture
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Abstract: In this study, we obtain the universal function corresponding to the diffractive process and show that the
cross section  exhibits  geometrical  scaling.  It  is  observed  that  diffractive  theory  according  to  the  color  dipole  ap-
proach at small-x is a convenient framework that reveals the color transparency and saturation phenomena. We also
calculate the contribution of heavy quark production in the diffractive cross section at high energy that is determined
by the small size dipole configuration. The ratio of the diffractive cross section to the total cross section in electron-
proton collision is the other important quantity that is computed in this work.
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I.  INTRODUCTION

x < 0.01

The  color  dipole  formalism  in  QCD  prediction  for
high  energy  deep  inelastic  scattering  at  small-x has suc-
cessfully  promoted  a  large  amount  of  phenomenological
activity  in  recent  years.  The  saturation  effect  in 
dominates owing to the gluon dynamics that describe the
details  of  the  electron-proton  collision  data  collected  at
the HERA well [1-4].

Understanding  diffractive  deep  inelastic  scattering  is
a  beneficial  theoretical  feature  because  10  to  15  percent
of  all  events  observed  at  HERA  are  diffractive  [5-7].  A
large  amount  of  the  experimental  data  can  be  explained
by perturbative QCD, but  extrapolation to  diffractive re-
actions  must  be  performed  carefully  because  most  of
them are  sensitive  to  details  of  non-perturbative  dynam-
ics. Investigations on the diffraction process  were repor-
ted  in  the  pioneering  work  of  Glauber  [8]  and  that  of
Good and Walker based on a quantum mechanical effect
[9].

eP −→ eXP

Q2

γ⋆p −→ Xp

Indeed, at small-x, a diffractive process in DIS in the
electron-proton  collision  occurs  in  the  form  of

.  The  dynamics  behind  this  event  are  simply
justified if we review them in the rest frame of the proton.
In  this  case,  the  target  proton  remains  intact;  a  photon
with  virtuality  develops  a  partonic  fluctuation  and  is
forced to undergo a strong interaction with the proton as

, and thus, a large rapidity gap (LRG) appears
between  the  scattered  proton  and  particle  flow  formed
from the virtual photon in the final state.

x −→ 0

|qq⟩

From the perspective of the color dipole approach, we
can express the following: when , in the rest frame
of  the  target,  the  virtual  photon  splits  into  a  quark-anti-
quark pair  before  the  scattering tagged with  Fock eigen-
state .  This  eigenstate  is  expressed  by  the  quantum
mechanical wave function with probability

|ΨT (z,r)|2 =T ⟨qq|qq⟩T

=
Ncαem

2π2

∑
q

e2
q[(z2+ (1− z)2)ε2K2

1 (εr)

+m2
qK2

0 (εr)], (1)

for the transversely polarized photon, and

|ΨL(z,r)|2 =L⟨qq|qq⟩L

=
Ncαem

2π2

∑
q

e2
q4Q2z2(1− z)2K2

0 (εr), (2)

for the longitudinally polarized photon.

qq

Nc = 3 ε2 = z(1− z)Q2+ (mq)2

γ⋆p W2 x =
Q2+4m2

q

W2

εr < 1 K1,0(εr)

In the above-mentioned equations, the fraction of the
momentum carried by the quark, z, and the relative trans-
verse separation of the  pair, r, are appropriate degrees
of freedom. The contribution of each quark flavor is pro-
portional to its electromagnetic charge and inverse mass,

 and , and the center of mass

energy  squared  of  is  such  that .
Moreover,  for ,  is estimated  by  MacDon-
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ald Bessel functions [10].
These  equations  include  Gribov  inelastic  shadowing

corrections  to  all  multiple  interactions,  which  is  hardly
possible  within hadronic  presentation [11].  For  a  dipole-
proton interaction, we use the dedicated cross section for-
mulated  by  Bartels,  Golec-Bierant,  and  Kowalski  as  a
suitable  definition  that  involves  the  gluon  distribution
function [12]

σqqP(x,r2) = σ0

{
1− exp

(
−π

2r2αs(µ2)xg(x,µ2)
3σ0

)}
, (3)

µ2 = µ2
0+

C
r2 µ2

0

σqqP

qqg

qqg

qq

with , where parameters C and  are determ-
ined  from  fitting  to  DIS  data.  The  dipole-hadron  cross
section  contains information about the strong inter-
action physics  and the  target.  In  fact,  we note  the  polar-
ized photon, in addition to the transverse and longitudin-
al quark-antiquark pairs, can be split into a transverse 
dipole dominating in the final state due to gluon produc-
tion. The  importance  of  this  contribution  has  been  stud-
ied in references [13, 14] for the nucleon and nucleus in a
different way from our method. As the  dipole is cre-
ated by assuming strong ordering in the transverse space
r, the  fraction  of  the  momentum  carried  by  the  gluon
compared with the corresponding value for the quark and
antiquark is much smaller, and we can ignore it. In other
words,  most  of  the  energy  is  carried  by  the  hadron,  and
the virtual photon has just enough energy to dissociate in-
to  a  pair  before  scattering.  Thus,  the  diffractive  deep
inelastic scattering cross section is formulated as

∫ 0

−∞
dteBDt

dσD
T,L

dt
|t=0 =

1
BD

dσD
T,L

dt
|t=0, (4)

BD

by  considering  a  factorization  dependence  on t with  the
diffractive slope  [15], where

dσD
T,L

dt
|t=0 =

1
16π

(
⟨σ2

qqP(x,r2)⟩T,L −⟨σqqP(x,r2)⟩2T,L
)
. (5)

The definition of the expectation value is

⟨σqqP(x,r2)⟩T,L =L,T ⟨qq|σqqP(x,r2)|qq⟩T,L,
=σ
γ⋆P
T,L (x,Q2),

=

∫ 1

0
dz

∫
d2r|ΨT,L(z,r)|2σqqP(x,r2).

(6)

⟨σqqP(x,r2)⟩T,L = O(αem)As ,  we  can  ignore  the  second
term of Eq. (5) in comparison to the first one, and hence,
we obtain

dσD
T,L

dt
|t=0 =

1
16π

(
⟨σ2

qqP(x,r2)⟩T,L
)
,

=
1

16π

∫ 1

0
dz

∫
d2r|ΨT,L(z,r)|2σ2

qqP(x,r2). (7)

σ2
qqP(x,r2)

This means the diffractive cross section is a quantum
mechanics summation over the effective dipole cross sec-
tion square, , for different Fock states [16]. The
content of this paper is organized as follows. In section II,
we  calculate  the  diffractive  cross  section  and  universal
function and investigate existence of geometrical scaling.
As the presence of the heavy pairs at  high energy is  im-
portant,  we  obtain  their  contribution  in  section  III.
Moreover, in this section, the ratio of the diffractive cross
section to the total cross section is determined by the ra-
tio  of  the  corresponding universal  functions.  Finally,  the
results are summarized in section IV.

II.  DIFFRACTIVE UNIVERSAL FUNCTION

R0(x)
Qs

Before  computing,  we  introduce  the x-dependence
saturation  radius, ,  related  to  the  saturation  scale,

, which is an energy-dependent scale and a critical ele-
ment in determining the saturation point

R2
0(x) =

1
Q2

0

(
x
x0

)λ
=

1
Q2

s
. (8)

Q0 x0 λPositive  and  constant  variables , ,  and  have
been  obtained  by  fitting  with  H1  and  ZEUS  data  by
Golec-Bierant and Wüthoff [17, 18].

r < R0(x)
According to Eq. (3), the selection of the gluon distri-

bution is important. For small-r, , the gluon dis-
tribution is modeled as

xg(x,µ2) =
3σ0

4π2αsR2
0(x)
, (9)

µ2 C
r2where  behaves as . Then, for small-r

σqqP(x,r2) = σ0
r2

R2
0(x)
. (10)

µ2 µ2
0

σqqP(x,r2) ≈ σ0

For large-r, the scale  is  close to  and,  according to
the  original  saturation  model,  the  saturation  value  of  the
dipole  cross  section  is  [19, 20].  We  can
summarize the contents as

σqq̄P(x,r2) =


σ0, r > R0

σ0
r2

R2
0

, r < R0
(11)
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σ0where we have obtained the saturation cross section, ,
in  agreement  with  data  reported  by  H1  and  ZEUS;  for
more details, see Ref. [21].

qq r2 ∼ 1
ε2 �

1
Q2z(1− z)

εr < 1 0 ⩽ z ⩽ 1

Now, we are ready to determine the diffractive cross

section.  As  the  pairs  with  size 

make the dominant contribution, we need to solve the in-
tegral of Eq. (7) for  with .

r ⩽ 1/Q

r < R0

There are  two  limit  states  that  are  interesting  to  in-
vestigate. One is the symmetric pairs with ; in this
case, the quark and antiquark carry equal contributions of
the photon transverse momentum. The size of this type of
color dipole is small in comparison to the saturation radi-
us, . By substituting relations (1), (2), and (11) into
Eq. (7), we can obtain the summation over the transverse
and longitudinal contributions:

dσD
tot

dt
|t=0 =

dσD
T

dt
|t=0+

dσD
L

dt
|t=0,

=
3αem

32π3σ
2
0

∑
q

e2
q

{∫ 1

0
dz(z2+ (1− z)2)

×
∫ 1

Q2

0
d2rε2

(
1
ε2r2

) r2

R2
0(x)

2

+

∫ 1

0
dz

∫ 1
Q2

0
d2rm2

q

 r2

R2
0(x)

2

+

∫ 1

0
dz4Q2z2(1− z)2

×
∫ 1

Q2

0
d2r

 r2

R2
0(x)

2 }
,

=
3αem

32π2σ
2
0

1
3Q4R4

0(x)

∑
q

e2
q

{
17
15
+

m2
q

Q2

}
. (12)

1
Q4

We see that the diffractive cross section is as small as

;  therefore,  the  main  contribution  comes  from  rarely
occurring  fluctuations  of  the  photon  that  correspond  to
the color transparency configuration.

τ

The idea of geometrical scaling has been based on ex-
pressing the total cross section as a function of the dimen-
sionless variable  as [15]

σ
γ⋆P
T,L (x,Q2) = σ0 f (τ). (13)

τ = R2
0(x)Q2

In  this  work,  we  select  the  scaling  variable  as
 and  generalize  this  idea  to  the  diffractive

cross section, expressing it in a similar way:

dσD
tot

dt
|t=0 = σ

2
0g(τ), (14)

Then, Eq. (12) is rewritten as

dσD
tot

dt
|t=0 =

3αem

32π2σ
2
0

1
3τ2

∑
q

e2
q

{
17
15
+

m2
q

Q2

}
, (15)

such that

g(τ) =
3αem

32π2

1
τ2

∑
q

e2
q

{
17
45
+

m2
q

3Q2

}
. (16)

To continue,  we obtain the total  diffractive cross section
where the dipole size is larger than the saturation radius:

dσD
tot

dt
|t=0 =

dσD
T

dt
|t=0+

dσD
L

dt
|t=0,

=
3αem

32π3σ
2
0

∑
q

e2
q

{∫ 1

0
dz(z2+ (1− z)2)

×
∫ R2

0

0
d2rε2

(
1
ε2r2

) r2

R2
0(x)

2

+

∫ 1

0
dz

∫ R2
0

0
d2rm2

q

 r2

R2
0(x)

2

+

∫ 1

0
dz(z2+ (1− z)2)

∫ 1
Q2

R2
0

d2rε2
(

1
ε2r2

)

+

∫ 1

0
dz

∫ 1
Q2

R2
0

d2rm2
q

+

∫ 1

0
dz4Q2z2(1− z)2

∫ R2
0

0
d2r

 r2

R2
0(x)

2

+

∫ 1

0
dz4Q2z2(1− z)2

∫ 1
Q2

R2
0

d2r
}
,

=
3αem

32π2σ
2
0

∑
q

e2
q

{
1
3

(
7
5
− log(R2

0Q2)2

−
4R2

0Q2

15

)
+

m2
q

Q2

1− 2R2
0Q2

3

}. (17)

g(τ) in this case, by ignoring the logarithmic sentence, is
expressed by

g(τ) =
3αem

32π2

∑
q

e2
q

 7
15
− 4τ

45
+

m2
q

Q2

(
1− 2τ

3

) . (18)

τ −→ 0When , this function becomes

g(τ) =
3αem

32π2

∑
q

e2
q

{
7

15
+

m2
q

Q2

}
. (19)
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Therefore,

g(τ) � O(αem). (20)

g(τ)
αem

τ

mq = 140 MeV
τ = 1

r > R0 r < R0 0 < τ < 1
τ ⩾ 1

We have plotted the ratio  for Eqs. (16) and (18)

in  terms  of  the  variable  in Fig.  1 at  different x values
for light  flavors  with .  According  to  these
diagrams,  divides the plane into saturation and scal-
ing areas, all of which are independent of x. We can also
see that the slope in each diagram in the scaling region is
steeper  in  comparison  to  the  corresponding  universal
function of the total  cross section; for more information,
see  Ref.  [21].  We  can  briefly  express  that,  if r changes
from  to ,  the unitarity effect in  re-
gion links to a weak interaction in ;  in contrast,  the
universal function in Fig. 1 behaves as follows:

g(τ)
αem
∼ 1 −→ g(τ)

αem
∼ 1
τ2
. (21)

εr < 1

z <
1

r2Q2

µ2 ≃ 4m2
q

The other limit state occurs when one of the compon-
ents of the pair carries a large part of the transverse mo-
mentum. The color dipole created in this case is called the
asymmetric pair. We note the condition  in Eq. (7)

is fulfilled only if , and there must also be a cut-

off such as  on the energy. Where the asymmet-
ric  dipole  size  is  smaller  than  the  saturation  radius,  we
have

dσD
tot

dt
|t=0 =

dσD
T

dt
|t=0+

dσD
L

dt
|t=0,

=
3αem

32π3σ
2
0

∑
q

e2
q

{∫ 1/Q2

1/µ2

d2rε2
(

1
ε2r2

)

×
∫ 1

r2Q2

0
dz(z2+ (1− z)2)

 r2

R2
0(x)

2

+

∫ 1/Q2

1/µ2

d2r
∫ 1

r2Q2

0
dz4Q2z2(1− z)2

 r2

R2
0(x)

2 }
,

+

∫ 1/Q2

1/µ2

d2rm2
q

∫ 1
r2Q2

0
dz

 r2

R2
0(x)

2

=
3αem

32π2σ
2
0

∑
q

e2
q

Q4R4
0(x)

{
29
15
+

1
3

log
(
µ2

Q2

)

− 4µ2

3Q2 +
2µ4

5Q4 +
m2

q

2Q2

(
1− Q4

µ4

)}
.

(22)
According  to  the  high  power  of  the  virtuality,  this

function falls much faster than the corresponding case in

small pairs and the interaction is almost unexpected. The
universal function in this case is given by

g(τ) =
3αem

32π2

1
τ2

∑
q

e2
q

{
29
15
+

1
3

log
(
µ2

Q2

)

− 4µ2

3Q2 +
2µ4

5Q4 +
m2

q

2Q2

(
1− Q4

µ4

)}
. (23)

Finally, we investigate the asymmetric pair with large
size in comparison to the saturation radius:

dσD
tot

dt
|t=0 =

dσD
T

dt
|t=0+

dσD
L

dt
|t=0,

=
3αem

32π3σ
2
0

∑
q

e2
q

{∫ R2
0

1/µ2

d2rε2
(

1
ε2r2

)

×
∫ 1

r2Q2

0
dz(z2+ (1− z)2)

 r2

R2
0(x)

2

+

∫ R2
0

1/µ2

d2rm2
q

∫ 1
r2Q2

0
dz

 r2

R2
0(x)

2

+

∫ 1/Q2

R2
0

d2rε2
(

1
ε2r2

)∫ 1
r2Q2

0
dz(z2+ (1− z)2)

+

∫ 1/Q2

R2
0

d2rm2
q

∫ 1
r2Q2

0
dz

+

∫ R2
0

1/µ2

d2r
∫ 1

r2Q2

0
dz4Q2z2(1− z)2

 r2

R2
0(x)

2

+

∫ 1/Q2

R2
0

d2r
∫ 1

r2Q2

0
dz4Q2z2(1− z)2

}
,

=
3αem

32π2σ
2
0

∑
q

e2
q

{
−83
90
+

2
R2

0Q2

+
1

R4
0Q4

(
1
6
+

1
3

log(µ2R2
0)− 4µ2

3Q2 +
2µ4

5Q4

)

+
8

9R6
0Q6
− 1

5R8
0Q8
+

m2
q

2Q2 1+ log
 1

Q2R2
0

},
(24)

so the universal function by ignoring the logarithmic sen-
tence is

g(τ) =
3αem

32π2

∑
q

e2
q

{
−83
90
+

2
τ
+

1
τ2

(
1
6
− 4µ2

3Q2

+
2µ4

5Q4

)
+

8
9τ3
− 1

5τ4
+

m2
q

2Q2

}
. (25)
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g(τ)
αem

0 < τ < 1

The  ratio  for  the  universal  functions  (23)  and

(25)  in  terms  of  the  scaling  variable  has  been  plotted  in
Fig. 2 with different x values for light quarks. According
to  these  diagrams,  we  can  conclude  that  the  diffractive
contribution of asymmetric pairs dominates in the satura-
tion  limit,  so  for ,  the  system  is  connected  to  a
heavily absorbed diffractive event.

III.  CONTRIBUTION OF HEAVY QUARKS IN
THE DIFFRACTIVE PROCESS

mc =
g(τ)
αem

At high  energy,  heavy  flavors  are  useful,  in  agree-
ment  with  the  experimental  data.  A  common  method  of
study  of  heavy  production  is  based  on  the  ratio  method,
which is  associated with geometrical  scaling [22].  In the
previous section,  we  obtained  the  diffractive  cross  sec-
tion quantitatively  and showed by plotting Figs.  1 and 2
that  geometrical  scaling  is  established  for  light  quarks.
Now, we assume the summation over flavors expands to
include the charm quark with  1.5 GeV and plot the

corresponding fraction  in Fig. 3. According to these

diagrams,  we  see  there  is  no  dependence  on x,  and  all
curves almost  fall  onto one;  in other  words,  the geomet-
rical scaling is confirmed. The main cause of the increase
in value of this function is that the charm quark, because
of its high mass, is saturated at a higher order.

mb = 4.75 GeV
Figure  4,  considering  the  bottom  quark  with

 and active  flavors,  shows  that  these  dia-
grams  behave  similarly  to  those  in Figs.  1 and 3; there-
fore, the geometrical scaling is fulfilled.

We note that, as heavy production appears in the fea-
ture  of  a  symmetric  dipole,  universal  functions  (16)  and
(18) are used in plotting the diagrams.

According  to  the  H1  and  ZEUS  reports,  the  charm
component of  the  structure  function  includes  a  signific-
ant fraction of the proton structure function [23, 24]. We
calculate the contribution of  this  flavor in the diffractive
cross section

dσD
c

dt
|t=0

dσD

dt
|t=0

=
gc(τ)
g(τ)

=

δqc

(
g(τ)

)
g(τ)

, (26)

δqc

cc
where the  function chooses the charm quark from all
active  flavors.  The  pair dominates  in  small  size  di-

 

g(τ)
αem

10−6 −10−2 τ

Fig.  1.    (color  online)  Ratio  for  symmetric  pairs  with
different x values  belonging  to  the  range  to  the 
variable for light flavors.

 

g(τ)
αem

10−6 −10−2

τ

Fig.  2.    (color  online)  Ratio  for  asymmetric  pairs  with
different x values  belonging  to  the  range  with re-
spect to the  variable for light flavors.

 

g(τ)
αem

10−6 −10−2 τ

Fig.  3.    (color  online)  Ratio  of  considering  light  and
charm flavors of symmetric dipoles with different x values be-
longing to the range  with respect to the  variable.

 

g(τ)
αem

10−6 −10−2 τ

Fig. 4.    (color online) Ratio of  considering light, charm,
and bottom flavors of symmetric dipoles with different x val-
ues belonging to the range  to the  variable.
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r < R0poles with ; therefore,

dσD
c

dt
|t=0

dσD

dt
|t=0

=
gc(τ)
g(τ)

=

e2
c

(
17
45
+

m2
c

3Q2

)
e2

c

(
17
45
+

m2
c

3Q2

)
+ (e2

u+ e2
d + e2

s)
(

17
45
+

(0.140)2

3Q2

) . (27)

0.037 ⩽ rc ⩽ 0.13 fm

Q2

The average  value  of  charm  production  in  the  dif-
fractive  process,  assuming , is  ap-
proximately  40  percent  according  to Fig.  5.  This  figure
shows that the corresponding fraction is independent of x
and , and all curves fall onto one.

bb̄
We can calculate this fraction to estimate the bottom

production  as

dσD
b

dt
|t=0

dσD

dt
|t=0

=
gb(τ)
g(τ)

=

δqb

(
g(τ)

)
g(τ)

, (28)

δqb  selects  the  bottom  quark  from  five  active  flavors.
Therefore, the  possibility  of  finding  the  bottom  produc-
tion becomes

dσD
b

dt
|t=0

dσD

dt
|t=0

=
gb(τ)
g(τ)

=

e2
b

17
45
+

m2
b

3Q2


e2

b

17
45
+

m2
b

3Q2

+ e2
c

(
17
45
+

m2
c

3Q2

)
+

2
3

(
17
45
+

(0.140)2

3Q2

) , (29)

10
0.014 ⩽ rb ⩽ 0.043 fm m2

q

Q2

 e2
q

Q2

which  is  approximately  percent  in  the  range
 as  seen from Fig.  6. In  recent  rela-

tions, the important element is , which along with 

includes inherent characteristics of the dipole. In addition,
all curves in Fig. 6 fall ontoone, indicating that there is no
dependence on x or .

r < R0

To  continue,  we  can  take  a  step  forward  and  obtain
the ratio of the diffractive cross section to the total cross
section  [21].  For  symmetric  dipoles  with , we  ob-
tain

R(τ) =

dσD
tot

dt
|t=0

σ
γ⋆P
tot (x,Q2)

=
σ2

0g(τ)
σ0 f (τ)

=
σ0

16πτ


∑

q e2
q

17
45
+

m2
q

3Q2


∑

q e2
q

11
15
+

m2
q

2Q2



 , (30)

r > R0and where , we have

R(τ) =

dσD
tot

dt
|t=0

σ
γ⋆P
tot (x,Q2)

=
σ2

0g(τ)
σ0 f (τ)

=
σ0

16π


∑

q e2
q

 7
15
− 4τ

45
+

m2
q

Q2

(
1− 2τ

3

)
∑

q e2
q

4
5
− 4τ

60
+

m2
q

Q2

(
1− τ

2

)

 . (31)

τ 0 < τ < 1
τ > 1

1
τ

These ratios only relate to the size, mass, and charge
of color dipoles. We have plotted them in Fig. 7 in terms
of the scaling variable  for light flavors. In , we
see  a  flat  function  that,  for ,  reduces  proportionally

to , expressing that, in the diffractive event, the satura-

 

Q2 = 100, 200 and 300 GeV2
Fig. 5.    (color online) Contribution of the charm quark in the
diffractive cross section for .

 

Q2 = 100, 200 and 300 GeV2
Fig.  6.    (color  online)  Contribution  of  the  bottom  quark  in
the diffractive cross section for .
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Q2

tion  dominates,  and  the  interaction  in  the  scaling  region
occurs  rarely.  It  is  necessary  to  mention  that  there  is  no
dependence on x and  [25-27]. We expect this behavi-
or  to  remains  when  adding  the  contribution  of  heavy
quarks.

Q2 R(τ)
σ0

γ⋆p
mq =

W > 100 GeV

Our other suggestion for showing the ratio of the dif-
fractive cross  section  to  the  total  cross  section  is  inde-

pendent of x and , so we plot  in terms of the cen-
ter of mass energy of , W, as in [12]. This quantity in
Fig.  8 has  been  plotted  for  light  quarks  with  140
MeV  for  different x values.  We  see  a  flat  function  for

 that indicates the invariance of this ratio.

IV.  SUMMARY

The color dipole picture is an effective field theory in
describing  the  small-x limit  of  QCD  without  nonlinear

sentences  in  the  evolution  equation  and  connects  to  the
unitarity effect  due  to  gluon  recombination.  In  this  ana-
lysis,  we  discuss  diffractive  deep  inelastic  scattering  by
the color dipole picture. We believe our model represents
the  basic  dynamics  because  it  allows  us  to  study  a  wide
range  of  data  in  a  satisfactory  way.  By  following  the
method  proposed  by  Good  and  Walker,  we  can  assume
diffractive  eigenstates  as  colorless  quark-antiquark  pairs
that  remain  unchanged  during  scattering.  The  diffractive
process is characterized by a final state in which an LRG
is  not  filled  with  particles.  The  LRG  in  the  limit  of  the
unitarity  saturation  may  be  terminated  by  the  absorptive
correction.

σ2
0

1

We come to the conclusion that, in both the symmet-
ric and asymmetric dipoles, the diffraction is sensitive to
the saturation effect because the diffractive cross section
is  proportional  to . Fig.  1 shows  there  is  a  smooth
transfer  from  color  transparency  to  saturation  when  the
scaling  variable  is  approximately . Moreover,  at  suffi-
cient energy, by adding the contribution of heavy flavors,
this transition in Figs. 3 and 4 is observed, and the small-
x saturation is proven. According to Fig.  2,  we conclude
that  extrapolation  to  the  diffraction  process  proves  the
saturation  effect  well  for  large-size  dipoles  and  shows
that the interaction in the scaling region occurs rarely.

x < 0.01The  probability  of  the  charm  production  in 
that directly  originates  from  virtual  photons  in  the  dif-
fractive process  is  approximately  40  percent.  This  im-
pressive  contribution  expresses  the  importance  of  the
charm cross section in colliders at high energy. The cor-
responding  fraction  for  the  bottom  production  decreases
to 10 percent because of the small size and large mass of
this flavor. From Figs. 5 and 6, we conclude that geomet-
rical scaling  is  confirmed  in  the  diffractive  process  in-
cluding heavy  flavors,  and  both  of  the  obtained  mag-
nitudes depend  on  the  mass,  size,  and  charge  of  the  in-
volved active quarks.

The  ratio  of  the  diffractive  cross  section  to  the  total
cross section depicted in Fig.  7 is  the other quantity that
depends on the inherent characteristics of the dipoles and
remains  unchanged  relative  to  the x variable. Fig.  8 of-
fers further validation of this ratio invariance.

The significant conclusion of this work is that the dif-
fractive event in the color dipole model probes QCD in a
different  way;  for  instance,  the  unitarity  is  an  important
component associated with the saturation effect that leads
to a good description of the data.

In conclusion, the idea of geometrical scaling for the
diffractive  cross  section  is  established.  The  universal
functions  obtained  are  not  bounded  functions  and  only
depend on the inherent properties of dipoles.

 

1
σ0

dσD
tot

dt
|t=0

σ
γ⋆P
tot

=
R(τ)
σ0

10−6 −10−2

τ

Fig.  7.    (color  online)  Ratio  with differ-

ent x values belonging to the range  with respect to
the  variable for light flavors.

 

1
σ0

dσD
tot

dt
|t=0

σ
γ⋆P
tot

=
R
σ0

γ∗p

Fig. 8.    (color online) Ratio  with different

x values with respect to the center of mass energy of  for
light flavors.
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