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Abstract: The matrix elements along the reduction chain Sp(12,R)  SU(1,1)  SO(6)  U(1)  SU (3)  SO(2)

 SO(3) of the proton-neutron symplectic model (PNSM) are considered. Closed analytical expressions are obtained
for the matrix elements of the basic building blocks of the PNSM and the Sp(12,R) symplectic generators, allowing
the computation of matrix elements of other physical operators as well. The computational technique developed in
the  present  study  generally  provides  us  with  the  required  algebraic  tool  for  performing  realistic  symplectic-based
shell-model calculations of nuclear collective excitations. Utilizing two simple examples, we illustrate the applica-
tion of the theory.
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I.  INTRODUCTION
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A fully  microscopic  proton-neutron  symplectic  mod-
el (PNSM) of nuclear collective motion with Sp(12,R) dy-
namical algebra was introduced few years ago by consid-
ering  the  symplectic  geometry  and  possible  collective
flows in  the  two-component  many-particle  nuclear  sys-
tem  [1].  Its  more  general  motion  group GL(6,R) 
Sp(12,R)  introduces  the  wider  class  of  allowed  classical
motions,  including  both  the  in-phase  and  out-of-phase
proton-neutron  collective  excitations;  by  utilizing  them,
the  PNSM  naturally  generalizes  the  one-component
Sp(6,R)  symplectic  model  [2, 3].  The collective states  in
the  PNSM were  initially  classified  by the  basis  states  of
the  six-dimensional  harmonic  oscillator  by  considering
the  following  dynamical  symmetry  reduction  chain:
Sp(12,R)  U(6)  SU (3)  SU (3)  SU(3)  SO(3).
Using this chain, the PNSM was applied for the simultan-
eous description of the microscopic structure of the low-
est ground, , and  bands in  [4],  [5], 
[6],  and  [7]. The  results  for  the  microscopic  struc-
ture  of  negative-parity  states  of  the  lowest  and

 bands in ,  and  were also repor-
ted  [5, 8, 9],  including  the  low-energy  interband
transition strengths between the states of the ground band
and  band [5, 9] for these three nuclei. A signific-
ant achievement  of  the  presented  approach  is  the  simul-

B(E2) B(E1)taneous description of low-lying  and  trans-
ition strengths without introducing an effective charge.

⊃ ⊗ ⊃ ⊗ pn ⊗
⊃

υ

⊗

The  PNSM Sp(12,R)  dynamical  algebra  has  many
subalgebra  chains,  which  can  be  divided  into  two types:
the shell-model and the collective-model chains. The first
type  of  reduction  chains  focuses  on  the  many-fermion
nature of the nuclear systems and relates them to the mi-
croscopic shell-model theory of nuclear structure, where-
as the second type of subalgebraic chains of Sp(12,R) re-
veals the dynamical content of the possible collective mo-
tions  in  atomic  nuclei.  The  shell-model  reduction  chains
also  define  different  shell-model  coupling  schemes  in
which different collective Hamiltonians can be diagonal-
ized. In the present paper, we consider the PNSM matrix
elements  with  respect  to  the  following  reduction  chain
Sp(12,R)  SU(1,1)  SO(6)  U(1)  SU (3)  SO(2)

 SO(3),  which  was  recently  shown  to  correspond  to  a
microscopic version [10] of the Bohr-Mottelson [11] col-
lective model.  A characteristic property of this dynamic-
al symmetry  limit  is  that  the  collective  dynamics  separ-
ates  into  radial  and  orbital  parts.  According  to  this,  the
Hilbert space of the nucleus in the PNSM can be repres-
ented as  a  direct  sum  of  many-particle  shell-model  sub-
spaces labeled by the SO(6) seniority quantum number ,
which carry an irreducible representation (irrep) of a dir-
ect product group SU(1,1)  SO(6).

⊗The general structure SU(1,1)  SO(d) appears in the
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d = 3,5
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central-force problems in d-dimensional Euclidean space
[12]. Then, the SO(d)-invariant Hamiltonians can be diag-
onalized with the SU(1,1) Lie algebra used as a spectrum
generating  algebra.  The  specific  cases  of  were
widely considered  in  the  literature.  For  example,  the  al-
gebraic  solutions  of  the  three-dimensional  central-force
problems were widely studied in  terms of  the algebra of
the direct product group SU(1,1)  SO(3) (see, e.g.,  [13,
14]).  This  algebraic  structure  accounts  for  the  Davidson
potential,  originally  introduced  to  describe  the  rotation-
vibrational excitations of diatomic molecules in three-di-
mensional space [15]. In nuclear physics, the five-dimen-
sional Davidson potential that has an SU(1,1)  SO(5) al-
gebraic structure was used by many authors [16-19] in re-
lation with the rotations and vibrations of  atomic nuclei.
Recently,  the  Algebraic  Collective  Model  (ACM),  also
based  on  the SU(1,1)  SO(5)  algebraic  structure,  was
formulated [20, 21]  as  an algebraic  version of  the  Bohr-
Mottelson  [11]  collective  model  which  has  the  valuable
property of diagonalizing [16] the -unstable Wilits-Jean-
type Hamiltonians [22].

⊗

l = 2

⊂ ⊃

The SU(1,1)  SO(5)  structure  was  also  used  in  the
boson quasi-spin formalism [23], related to the IBM [24],
treating boson particles in  orbital level (i.e., consid-
ering d bosons).  Thus,  this  algebraic  structure  considers
the  pairing  between  the d bosons in  IBM  and  diagonal-
izes an L = 0 pairing interaction which is an SO(5) invari-
ant.  Additionally,  using  the  duality  relationships  [25]  of
U(1)  SU(1,1) and SU(d)  SO(d) structures, two-level
paring boson Hamiltonians expressed in terms of the bo-
son  quasi-spin SU(1,1)  algebra  have  been  considered  in
[26].

166Er
⊗

The  five-dimensional  Davidson  potential  within  the
framework  of  the  (one-component) Sp(6,R)  symplectic
model was used to compute the detailed microscopic col-
lective shell-model wave functions of the ground band in

 in  [27].  The  six-dimensional  Davidson  potential,
based  on  the SU(1,1)  SO(6)  algebraic  structure,  was
initially introduced in Ref. [28] in the context of the phe-
nomenological  Interacting  Vector  Boson  Model  [29],
which is  a trivial  closed-shell  irrotational-flow collective
submodel of the PNSM of Bohr-Mottelson type.

⊃
⊗ ⊃ ⊗ pn ⊗ ⊃

The purpose of the present work is to develop a com-
putational  technique  for  the  reduction  chain Sp(12,R) 
SU(1,1)  SO(6)  U(1)  SU (3)  SO(2) SO(3)  of
the  PNSM,  which  will  allow  performing  realistic  shell-
model calculations for determining the microscopic struc-
ture of heavy mass nuclei with various collective proper-
ties. This reduction chain provides an alternative basis for
the shell-model diagonalization of an arbitrary collective
Hamiltonian, which can be expressed as a polynomial in
the many-particle position and momentum coordinates of
the two-component proton-neutron nuclear systems, or is
given in  the  algebraic  form.  The nuclear  wave functions
on this basis are presented as a direct product of SU(1,1)

xis(α)
pis(α) ⊗

106Ru 158Gd

radial  wave  functions  with  the SO(6) spherical  harmon-
ics.  Then,  if  one knows the matrix elements of the basic
many-particle  Jacobi  position  and  momentum

 operators, the SU(1,1)  SO(6) algebraic structure
allows us to obtain the matrix elements of any function of
them (lying in the enveloping algebra of the Sp(12,R)  or
WSp(12,R)  dynamical  groups;  cf.  Ref.  [9])  in  the  closed
analytic form. In particular, the matrix elements of the ba-
sic  building  blocks  of  the  PNSM and the Sp(12,R) sym-
plectic generators  are  obtained  along  the  considered  re-
duction  chain.  Using  the  latter,  one  can  compute  other
more  complicated  matrix  elements  of  different  physical
operators. For example, the matrix elements of the SU(3)
mixing interactions  that  couple  various  shell-model  con-
figurations  within  and between different  oscillator  shells
are  also  given.  This  will  extend  the  applicability  of  the
PNSM  in  describing  the  collective  properties  in  various
nuclei. This is illustrated by considering a simple applica-
tion  of  this  theory  to  the  microscopic  description  of  the
rotational  states  of  the  lowest  positive-parity  bands  in

 and . 

II.  THE PROTON-NEUTRON SYMPLECTIC
MODEL

A certain shell-model reduction chain of the PNSM is
naturally  explored  if  the  following  raising  and  lowering
operators of harmonic oscillator quanta, i.e., 

b†iα,s =
√

mαω
2h̄

(
xis(α)− i

mαω
pis(α)

)
,

biα,s =

√
mαω
2h̄

(
xis(α)+

i
mαω

pis(α)
)

(1)

are  introduced.  Then,  a  basis  for  the Sp(12,R)  algebra  is
given by the all  bilinear combinations of these harmonic
oscillator operators [30]: 

Fi j(α,β) =
m∑

s=1

b†iα,sb
†
jβ,s, (2)

 

Gi j(α,β) =
m∑

s=1

biα,sb jβ,s, (3)

 

Ai j(α,β) =
1
2

m∑
s=1

(b†iα,sb jβ,s+b jβ,sb
†
iα,s), (4)

m = A−1
i, j = 1,2,3 α,β = p,n −
which  are O(m)-scalar  operators  with  and

; .  The operators  (4)  and (2) (3)  are
related to the proton-neutron valence-shell and giant res-
onance degrees of freedom, respectively.
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We also introduce the operators [9]: 

B†i (α) =
∑

s

b†iα,s (5)

Bi(α) =
(
B†i (α)

)†and , which together with the identity op-

{B†i (α),Bi(α), I}
erator close  the  six-dimensional  Heisenberg-Weyl  al-
gebra hw(6)  =  and  provides  the  basic
building blocks of the PNSM.

We classify the shell-model nuclear states by the fol-
lowing reduction chain [10]:

S p(12,R) ⊃ S U(1,1)⊗S O(6) ⊃ U(1)⊗S Upn(3)⊗S O(2) ⊃ S O(3),
⟨σ⟩ λυ υ p (λ,µ) ν q L

(6)

pn

pn ⊗ ⊂
pn (λ,µ)

υ

ν

where below the  different  subgroups,  the  quantum num-
bers that characterize their irreducible representations are
given.  We  also  note  that  the  two  groups SU (3)  and
SO(2)  are  mutually  complementary  within  the  space  of
fully  symmetric SO(6)  irreps  [31];  they  form  a  direct-
product  subgroup SU (3)  SO(2)  SO(6).  Hence,  the
SU (3)  irrep  labels  are in  one-to-one  correspond-
ence  with  the SO(6)  and SO(2)  quantum numbers  and

, given by the following expression [10]: 

(υ)6 =
⊕

ν=±υ,±(υ−2),...,0(±1)

(
λ =
υ+ ν

2
,µ =

υ− ν
2

)
⊗ (ν)2. (7)

The SU(1,1) Lie algebra, related to the radial dynam-
ics, is generated by the shell-model operators [10]: 

S (λυ)
+ =

1
2

∑
α

F0(α,α), (8)

 

S (λυ)
− =

1
2

∑
α

G0(α,α), (9)

 

S (λυ)
0 =

1
2

∑
α

A0(α,α), (10)

with the following commutation relations 

[S (λυ)
+ ,S

(λυ)
− ] = −2S (λυ)

0 , [S (λυ)
0 ,S

(λυ)
± ] = ±S (λυ)

± . (11)

S (λυ)
0The operator  itself  generates the U(1)  subgroup

of SU(1,1).

{|λυ, p⟩; p = 0,1,2, . . .}
The SU(1,1)  algebra  has  unitary  representations  with

orthonormal  basis  states  that  are
defined by the equations 

S (λυ)
+ |λυ, p⟩ =

√
(2λυ+ p)(p+1)|λυ, p+1⟩, (12)

 

S (λυ)
− |λυ, p⟩ =

√
(λυ−1+ p)p|λυ, p−1⟩, (13)

 

S (λυ)
0 |λυ, p⟩ =

1
2

(λυ+2p)|λυ, p⟩, (14)

λυ λυ > 1

2S 0 ≡ H0

(λυ+2p) h̄ω
⊂ ⊃

υ
p = (E−υ)/2

for any value of  ( ), which generally defines the
modified  oscillator SU(1,1)  irreps  [12].  From  Eqs.  (4),
(10)  and  (14),  it  is  evident  that  the  operator  is
the  shell-model  harmonic  oscillator  Hamiltonian  whose
eigenvalue is given by  in units of ;  the U(1)

 SU(1,1)  quantum  number p is  related  to  the U(6) 
SO(6)  irrep  labels E and  (cf.  Eqs.  (37)  and  (32))  via

.

ALM(α,β)
The group SO(6) can be expressed through the num-

ber-preserving  generators  (4)  of U(6)  in  the
standard  way by  taking  their  antisymmetric  combination
[10]: 

ΛLM(α,β) = ALM(α,β)− (−1)LALM(β,α). (15)

pn

The  generators  of  different SO(6)  subgroups  can  be
obtained  by  considering  different  tensor  operators  with
respect to SO(3) that can be constructed from (15). In this
way, the generators of the SU (3) group are defined by
the following set of operators: 

q̃2M =
√

3i[A2M(p,n)−A2M(n, p)], (16)
 

Y1M =
√

2[A1M(p, p)+A1M(n,n)], (17)

Λ0(α,β)

which  are  rank-2  and  rank-1  tensors,  respectively.  The
single  infinitesimal  operator  of SO(2)  is  proportional  to
the SO(3) scalar operator : 

M = Λ0(α,β) = i[A0(α,β)−A0(β,α)]. (18)

ΛLM(α,β) α , β
α = β Y1M(17)

A1M(p, p) A1M(n,n)

ΛLM(α,β) α , β

The operators given in Eqs. (16)-(18) are 9 in number,
which are obtained from  when  for L=0,2
and  for L=1.  The operators  are  actually  a
linear  combination  of  the  independent  rank-1  tensors

 and , which are 6 in number. The Lie
algebra  of SO(6)  is  15-dimensional,  so  the  remaining  3
generators  are  obtained  from  for  and
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A1M(p,n) A1M(n, p) Lp
1M =√

2A1M(p, p) Ln
1M =

√
2A1M(n,n)

= {̃q2M ,Y1M ,M,Lp
1M −Ln

1M ,A
1M(p,n)+A1M(n, p)}

Lp
1M −Ln

1M

L=1,  which  represent  the  components  of  rank-1  tensor
 + .  Using  the  relations 

 and ,  which  define  the
angularmomentum  operators  of  the  proton  and  neutron
many-particle  subsystems,  respectively,  the SO(6)  group
is  thus  generated  by  the  following  set  of  operators
S O ( 6 ) .
The  operators  correspond  to  the  infinitesimal
generators  of  the  isovector  out-of-phase  angular-mo-
mentum displacements  of  the  proton  subsystem with  re-
spect to the neutron one, i.e. the scissors mode excitation
operators.

The  basis  functions  along  the  chain  (6)  can  thus  be
written in the form [10] 

Ψλυp;υνqLM(r,Ω5) = Rλυp (r)YυνqLM(Ω5), (19)

YυνqLM(Ω5)

υ

⊗

where  are the SO(6) Dragt's spherical harmon-
ics [32, 33]. However, the explicit form of the latter is not
required  for  our  purposes  because  the  calculation  of  the
SO(6)-reduced  matrix  elements  involving  the SO(6)
spherical harmonics can be carried out in a purely algeb-
raic  way.  Due  to  the  complementarity  relationship  [25,
31]  of  radial  and  orbital  dynamics  groups, SU(1,1)  and
SO(6), the states of seniority  of the PNSM span a unit-
ary representation of the direct  product  group SU(1,1) 
SO(6) and satisfy the equations 

S (λυ)
+ Rλυp (r)YυνqLM(Ω5) =

√
(λυ+ p)(p+1)Rλυp+1(r)YυνqLM(Ω5),

(20)
 

S (λυ)
− Rλυp (r)YυνqLM(Ω5) =

√
(λυ−1+ p)pRλυp−1(r)YυνqLM(Ω5),

(21)
 

S (λυ)
0 Rλυp (r)YυνqLM(Ω5) =

1
2

(λυ+2p)Rλυp (r)YυνqLM(Ω5), (22)

λυ = υ+6/2where for the harmonic oscillator series . The
full  many-particle  Hilbert  space  of  the  nucleus  thus  can
be represented as a direct sum 

H =
⊕
υ

HS U(1,1)
υ ⊗HS O(6)

υ (23)

υ

⊗

of Hilbert spaces labeled by a seniority quantum number
,  each  carrying  an  irrep  of  the  direct  product  group

SU(1,1)  SO(6). 

III.  THE BASIC MATRIX ELEMENTS

{xa ≡ xi(α) =
∑

s xis(α)}
R6

The Cartesian coordinates  act-
ing  in  the  Euclidean  space  can  be  expressed  in  the

form 

xa = rQa ≡ rQi(α), (24)

B†i (α)
Bi(α) =

(
B†i (α)

)†
[1]6

[1]∗6 = [1,1,1,1,1,0] ≡ [−1]6

(1)6 xi(α) =
1
√

2
[B†i (α)+Bi(α)]

Q ≡ Qi(α) υ = 1

xa

which is their expression in the SO(6) spherical polar co-
ordinates.  The  operators  (5)  and  their  conjugates

 transform  according  to  the U(6) funda-
mental  irreducible  representation  and  its  conjugate

,  respectively.  Under  the
SO(6)  subgroup,  both U(6)  representations  reduce  to  the

irrep .  Then,  from  and  the
factorization  of  the  position  coordinates  into  radial  and
polar  parts,  one  obtains  that  is  the  basic 
SO(6)  tensor.  Any  operator  that  can  be  represented  as  a
polynomial  in  will  then  have  matrix  elements  that
factor into radial and orbital parts. 

A.    The radial matrix elements

r2

The radial matrix elements of even powers of r can be
obtained  utilizing  only  the  properties  of  the SU(1,1) al-
gebra.  Taking  into  account  the  fact  that  is  simply  an
element of the latter 

r2 = S (λυ)
+ +S (λυ)

− +2S (λυ)
0 , (25)

r2

−
the matrix elements of  are immediately obtained from
Eqs. (20) (22) to be 

Fλυp;λυp′ (r
2) =⟨λυp|r2|λυp′⟩

=δp,p′ (λυ+2p)/2+δp,p−1
√

(λυ−1+ p)p

+δp,p+1
√

(λυ+ p)(p+1). (26)

r2The  higher  powers  of  can then  be  obtained  by  sum-
ming over intermediate states, e.g., 

Fλυp;λυp′ (r
4) =

∑
pc

Fλυp;λυpc
(r2)Fλυpc;λυp′ (r

2)

=δp,p′
(
(λυ+2p)2+(λυ+p)(p+1)+(λυ+ p−1)p

)
+δp,p+1

(
(2λυ+4p+2)

√
(λυ+ p)(p+1)

)
+δp,p−1

(
(2λυ+4p−2)

√
(λυ+ p−1)p

)
+δp,p+2

√
(λυ+ p+1)(λυ+ p)(p+2)(p+1)

+δp,p−2
√

(λυ+ p−2)(λυ+ p−1)p(p−1).
(27)

1/r2 rd/dr d2/dr2 1/r
d/dr

The  matrix  elements  of , , , r, ,
 are given in Ref. [12]. These radial matrix elements
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{xi(α) =∑
s xis(α), pi(α) =

∑
s pis(α)}

are sufficient for deriving the matrix elements of any ro-
tationally invariant  polynomial  in  the  many-particle  col-
lective  position  and  momentum  observables 

 of the PNSM. 

B.    The SO(6)-reduced matrix elements

T υ2

ν2q2L2 M2

The SO(6)-reduced  matrix  elements  of  an  arbitrary
tensor  are  defined  by  the  generalized  Wigner-
Eckart theorem 

⟨υ3ν3q3L3||T υ2

ν2q2L2 M2
||υ1ν1q1L1⟩

=
⟨
υ1

ν1q1L1

υ2

ν2q2L2

∣∣∣∣υ3

ν3q3L3

⟩
⟨υ3|||T υ2

ν2q2L2 M2
|||υ1⟩, (28)

⟨
υ1

ν1q1L1

υ2

ν2q2L2

∣∣∣∣υ3

ν3q3L3

⟩

(λ,µ)↔ (υ,ν)

where  are  the SO(6)  Clebsch-Gordan
coefficients.  The  latter,  according  to  the  Racah's  lemma
[34],  can  be  factorized  in  terms  of  the  isoscalar  factors
that appear  in  each step  of  the  reduction  chain  (6).  Tak-
ing  the  correspondence  given  by  Eq.  (7),
the SO(6) Clebsch-Gordan coefficients can be written in a
more convenient way as ⟨

υ1

ν1q1L1

υ2

ν2q2L2

∣∣∣∣ υ3

ν3q3L3

⟩
=

⟨
υ1

(λ1,µ1)
υ2

(λ2,µ2)

∣∣∣∣ υ3

(λ3,µ3)

⟩
×⟨(λ1,µ1)q1L1; (λ2,µ2)q2L2||(λ3,µ3)q3L3⟩, (29)

⟨
υ1

(λ1,µ1)
υ2

(λ2,µ2)

∣∣∣∣ υ3

(λ3,µ3)

⟩
⟨(λ1,µ1)q1L1; (λ2,µ2)q2L2||

(λ3,µ3)q3L3⟩ ⊃ ⊃

≈
T (υ)

T [υ,υ,0,0]

⊃
⊃

⊃ ⊗ ⊃
⊗ ⊃

⊃

where  and 
 are  the SO(6)  SU(3)  and SU(3)  SO(3)

isoscalar  factors,  respectively.  Computer  codes  [35, 36]
exist  for  the  calculation  of  the  latter.  From another  side,
by  using  the  isomorphism SO(6)  SU(4)  and  the  fact
that  the SO(6)  tensors  correspond  to  the SU(4)
tensors  of  the  type ,  the  calculation of  the SO(6)

 SU(3) isoscalar factors is  equivalent to the calculation
of the SU(4)  SU(3) isoscalar factors, for which a com-
puter code is also available [37] (Actually, the code giv-
en  in  [37]  calculates  the  full SU(4)  SU(3)  U(1) 
SU(2)  U(1)  U(1)  Clebsch-Gordan  coefficients.  The
structure of the code, however, allows easily to adapt the
latter  for  the  calculation  of  the SU(4)  SU(3)  isoscalar
factors  by  using  the  factorization  property  of  the SU(4)
Clebsch-Gordan coefficients and modifying the line 143).
Therefore,  matrix  elements  of  any  operators  of  interest
can  be  calculated  from  their SO(6)-reduced matrix  ele-
ments.

Q
The SO(6)-reduced  matrix  elements  of  the  basic

SO(6) tensor  are given by [12] 

⟨υ′|Q|υ⟩ =
√
υ+1

2υ+6
δυ′,υ+1+

√
υ+3

2υ+2
δυ′,υ−1. (30)

The SO(6)-reduced  matrix  elements  of  other,  more
complicated tensors can be calculated utilizing these ele-
mentary  matrix  elements.  For  example,  the SO(6)-re-

[Q×Q]υ=2

Qi j(α,β)→ T υ=2
νq2m =

r2Yυ=2
νq2m ≡ r2[Q×Q]υ=2

νq2m

duced  matrix  elements ,  which  are  relevant  to
the mass quadrupole  tensor  operators 

, are given by the standard recoup-
ling technique: 

⟨υ′|[Q×Q]υ=2
νq2m|υ⟩ =

∑
c

U(υ;1;υ′;1||υc;2)⟨υ′|Q|υc⟩⟨υc|Q|υ⟩.

(31)

U(υ;1;υ′;1||υc;2)

U
(
[υ,υ]4; [1,1]4; [υ′,υ′]4; [1,1]4||[υc,υc]; [2,2]4

)

≈

The SO(6)  recoupling  coefficients 
are  equivalent  to  the  two-rowed SU(4) Racah  coeffi-
cients .  The
two-rowed or two-column U(d) Racah recoupling coeffi-
cients, as well as other U(d) invariant quantities, are equi-
valent to those of the U(2) group, as shown, for example,
by  Li  and  Paldus  in  Ref.  [38].  For  convenience,  we
present  some  of  the  relevant  PNSM SO(6)  SU(4) re-
coupling coefficients in Table 1.

In practice, for the calculation of the matrix elements
of  various  algebraic  interactions,  it  turns  out  to  be  more
convenient  to  use  the SO(6)-reduced  matrix  elements  of
the  symplectic  generators,  which  in  turn  are  obtained

Table 1.    Some SO(6) Racah recoupling coefficients.

U(υ;1;υ+2;1||υ+1;2) = 1

U(υ;1;υ;1||υ+1;2) = −(−1)υ
[
υ(υ+2)

2(2+υ(υ+3))

]1/2

U(υ;1;υ;1||υ−1;2) = −(−1)υ
[
υ(υ+2)
2υ(υ+1)

]1/2

U(υ;2;υ+4;2||υ+2;4) = 1

U(υ;2;υ;2||υ;4) =
[

2(υ−1)(υ+3)
3υ(υ+2)

]1/2

U(υ;2;υ+2;2||υ;2) =
[

υ(υ+1)
2(2+3υ(υ+3))

]1/2

U(υ;2;υ+2;2||υ+2;2) = −
[

(υ+3)(υ+4)
2(υ2 +5υ+6)

]1/2

U(υ;2;υ;2||υ+2;4) =
[

(υ+3)υ(υ−1)
6(υ3 +6υ2 +11υ+6)

]1/2

U(υ;2;υ;2||υ+2;2) =
[

(υ+3)υ
2(υ2 +3υ+2)

]1/2

U(υ;2;υ;2||υ+2;0) = (−1)υ
[
υ+3

3(υ+1)

]1/2

U(υ;2;υ;2||υ−2;4) =
[

(υ−1)(υ2 +5υ+6)
6υ(υ2 −1)

]1/2

U(υ;2;υ;2||υ−2;2) = −
[

(υ−1)(υ+2)
2υ(υ+1)

]1/2

U(υ;2;υ;2||υ−2;0) =
[
υ−1

3(υ+1)

]1/2

U(υ;2;υ;2||υ;4) =
[

2(υ−1)(υ+3)
3υ(υ+2)

]1/2

U(υ;2;υ−2;2||υ−2;2) = (−1)−υ
[
υ−2
2υ

]1/2
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B†i (α) Bi(α)from the basic creation  and annihilation  oper-
ators, respectively. The SO(6)-reduced matrix elements of
these operators can be obtained by considering the equi-
valent chain 

U(6) ⊃ S O(6),
E υ

(32)

whose branching rules for the case of fully symmetric ir-
reps are given by [39] 

[E]6 =
⊕

υ=E,E−2,...,0(1)

(υ,0,0)6 =

⟨ E
2
⟩⊕

i=0

(E−2i)6. (33)

The SO(6)-reduced matrix  elements  are  therefore  ob-
tained by  applying  the  Wigner-Eckart  theorem  with  re-
spect to this chain 

⟨E′υ′|||B†i (α)|||Eυ⟩ = ⟨E′|||B†i (α)|||E⟩
⟨

[E]
υ

[1]
1

∣∣∣∣[E′]υ′ ⟩
. (34)

⊃

d = 6

Using  the  elementary  (one-particle) U(d)  SO(d) iso-
scalar factors,  given in Ref.  [40],  one readily obtains for

: 

⟨E+1,υ+1|||B†i (α)|||Eυ⟩ =

√
(υ+1)(E+υ+6)

(2υ+6)
, (35)

 

⟨E+1,υ−1|||B†i (α)|||Eυ⟩ =

√
(E−υ+2)(υ+3)

(2υ+2)
. (36)

⟨σ⟩ = 0

⟨σ⟩ , 0
|Eυη̃⟩

However, this result is valid only for the scalar  ir-
reducible  representation  of Sp(12,R),  which  corresponds
to the doubly closed-shell nuclei; hence, it is not physic-
ally interesting. For non-scalar irreps , the ket vec-
tors  need to be replaced by the U(6)-coupled basis
states 

|σnρEυη̃⟩ = [P(n)(F)× |σ⟩]ρEυ
η̃

(37)

along the chain 

S p(12,R) ⊃ U(6) ⊃ S O(6),
σ nρ E υ

(38)

η̃ υ

B†i (α) Bi(α)

where  labels  the  basis  of  an SO(6)  irrep ,  classified
further  by  the  other  subgroups  along  the  chain  (6).  The
basic  creation  and  annihilation  operators
couple the even and odd irreps of Sp(12,R) and belong to
the larger collective algebra wsp(12,R) = [hw(6)]sp(12,R)

{B†i (α),Bi(α), I}

B†i (α) Bi(α)
wsp(12,R)

[9], which is  the semidirect  sum of Heisenberg-Weyl al-
gebra hw(6)  =  and  symplectic  algebra
sp(12,R).  Then, in order to calculate the matrix elements
of  and , one must consider the representation
theory of the  which basis states can be repres-
ented as 

|⟨⟨σ⟩⟩l⟨ω⟩nρEυη̃⟩ =
[
P(n)(F)×

[
Q(l)(B†i (α)

)× |σ⟩](ω)]ρEυ
η̃

(39)
that are classified according to the reduction chain 

wsp(12,R) ⊃ sp(12,R) ⊃ u(6) ⊃ so(6) .
⟨⟨σ⟩⟩ l ⟨ω⟩ nρ E υ

(40)

For more details,  we refer the reader to Ref. [9].  For the
present purposes,  it  is  sufficient  to  restrict  the  construc-
tion of the basis states to the form 

|σnρEυη̃⟩ =
[
Q(n)(B†i (α)

)× |σ⟩]ρEυ
η̃
. (41)

B†i (α)
wsp(12,R)

Then,  using  a  standard  recoupling  technique,  the SO(6)-
reduced  matrix  elements  of  the  raising  generators 
of  along the basis (41) can be written as 

⟨σ′n′ρ′E′υ′|||| B†i (α) ||||σnρEυ⟩

=⟨σn′ρ′E′υ′|||B†i (α)|||σnρEυ⟩
⟨

[E]
υ

[1]
1

∣∣∣∣[E′]υ′ ⟩
=U

(
[σ]6; [n]6; [E′]6; [1]6

∣∣∣∣∣∣∣∣[E]6; [n′]6
)

×⟨n′|||| B†i (α) ||||n⟩
⟨

[E]
υ

[1]
1

∣∣∣∣[E′]υ′ ⟩
, (42)

B†i (α)

where the corresponding U(6) Racah coefficient is  equal
to 1.  Using  the  latter,  we  obtain  the  following  expres-
sions  for  the SO(6)-reduced matrix  elements  of  the  cre-
ation operators :
 

⟨σ′n+1,ρ′,E+1,υ+1|||B†i (α)|||σnρEυ⟩

=

√
(n+1)(σ+n+υ+6)(υ+1)

(σ+n+1)(2υ+6)
, (43)

 

⟨σ′n+1,ρ′,E+1,υ−1|||B†i (α)|||σnρEυ⟩

=

√
(n+1)(σ+n−υ+2)(υ+3)

(σ+n+1)(2υ+2)
. (44)

E = σ+n

n = 2p

where we have also used the relation .  We also
observe  that  the  quantum  number n is  related  to  the p
quantum  number  via ; there  exists  a  correspond-
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|n⟩
|λυ, p⟩
|n⟩

{|λυ, p⟩; p = 0,1,2, . . .}

ence between the harmonic oscillator basis states  and
the SU(1,1) basis . To observe this, one can relabel
the  basis  states  of  the  harmonic  oscillator  by  the
SU(1,1)  quantum  numbers .  Then,
one readily obtains the following correspondence 

|n⟩ = |λυ =
6
2
, p =

n
2
⟩, (45)

for even n, and 

|n⟩ = |λυ =
8
2
, p =

n−1
2
⟩, (46)

|λυ, p⟩ = |n⟩ n = λυ+2p−6/2 −
− n = 0,1,2, . . .

for  odd n values,  respectively.  Conversely,  taking
 with  and using Eqs. (2) (4)

and  (8) (10),  one  obtains  for  the  standard
oscillator expressions 

S (λυ)
+ |n⟩ =

1
2

√
(n+1)(n+2)|n+2⟩, (47)

 

S (λυ)
− |n⟩ =

1
2

√
n(n−1)|n−2⟩, (48)

 

S (λυ)
0 |n⟩ =

1
2

(
n+

6
2

)
|n⟩, (49)

λυ = 6/2 λυ = 8/2
−

which  are  special  cases  (  and )  of  the
general expressions (12) (14).

The corresponding SO(6)-reduced matrix elements of
the annihilation operators are obtained by the relation
 

⟨σ′n′ρ′E′υ′|||Bi(α)|||σnρEυ⟩
 

=

√
dim(υ)
dim(υ′)

⟨σnρEυ|||B†i (α)|||σ′n′ρ′E′υ′⟩, (50)

dim(υ) = (υ+3)(υ+2)2(υ+1)/12
υ

where  is  the  dimension
of the SO(6) irrep . The result is
 

⟨σ′n−1,ρ′,E−1,υ−1|||Bi(α)|||σnρEυ⟩

=

√
n(σ+n+υ+4)(υ+2)(υ+3)

(σ+n)(υ+1)(2υ+4)
, (51)

 

⟨σ′n−1,ρ′,E−1,υ+1|||Bi(α)|||σnρEυ⟩

=

√
n(σ+n−υ)(υ+1)(υ+2)

(σ+n)(υ+3)(2υ+4)
. (52)

−
Using a standard recoupling technique,  with the help

of  Eqs.  (43) (52)  and  the  values  of  the SO(6)  Racah
coefficients  given  in Table  1,  one  readily  obtains  the
SO(6)-reduced matrix elements of the symplectic generat-
ors (2), (3), and (4):

⟨σn+2,ρ′,E+2,υ+2|||Fi j(α,β)|||σnρEυ⟩ =
[
(n+1)(n+2)(σ+n+υ+6)(σ+n+υ+8)

(σ+n+1)(σ+n+2)
(υ+1)(υ+2)

(2υ+6)(2υ+8)

]1/2

, (53)
 

⟨σn−2,ρ′,E−2,υ−2|||Gi j(α,β)|||σnρEυ⟩ =
[
n(n−1)(σ+n+υ+2)(σ+n+υ+4)

(σ+n)(σ+n−1)
(υ+2)2(υ+3)
υ(2υ+2)(2υ+4)

]1/2

, (54)

 

⟨σnρEυ+2|||Ai j(α,β)|||σnρEυ⟩ =1
2

[
n(υ+2)
(σ+n)

√
(σ+n+υ+6)(σ+n−υ)(υ+1)

(υ+3)(2υ+4)(2υ+8)

+
(n+1)

(σ+n+1)(2υ+6)

√
(σ+n+υ+6)(σ+n−υ)(υ+1)(υ+2)(υ+3)

(υ+4)

]
, (55)

 

⟨σnρEυ−2|||Ai j(α,β)|||σnρEυ⟩ =1
2

[
n(υ+2)
(σ+n)

√
(σ+n+υ+4)(σ+n−υ+2)(υ+3)

(υ+1)2υ(2υ+4)

+
(n+1)

(σ+n+1)(2υ+2)

√
(σ+n−υ+2)(σ+n+υ+4)(υ+1)(υ+2)(υ+3)

υ

]
, (56)

 

⊗Matrix elements in the SU(1,1)  SO(6) limit of the proton-neutron symplectic model Chin. Phys. C 45, 114101 (2021)

114101-7



⟨σnρEυ|||Ai j(α,β)|||σnρEυ⟩ =− 1
2

[
n(σ+n+υ+4)(υ+2)
(σ+n)(2υ+4)(υ+1)

√
υ(υ+3)

2
+

n(σ+n−υ)(υ+2)
(σ+n)(2υ+4)

√
υ(υ+1)(υ+4)

2(2+υ(υ+3))(υ+3)
,

 

+
(n+1)(σ+n−υ+2)
(σ+n+1)(2υ+2)

√
υ(υ+3)

2
+

(n+1)(σ+n+υ+6)
(σ+n+1)(2υ+6)

√
υ(υ+1)(υ+3)(υ+4)

2(2+υ(υ+3))

]
. (57)

⟨σ⟩
ρ = ρ′ = 1

The coherent state theory of symplectic algebras [41-46]
implies that the matrix elements of the raising and lower-
ing symplectic operators (i.e., Eqs. (53) and (54)) are re-
quired to be multiplied by the K-matrix. However, in the
limit  of  large  representations  of Sp(12,R)  or  in  the
multiplicity free case ( ),  which are the cases of
practical importance, the K-matrix reduces to simple nor-
malization coefficients (a diagonal K-matrix): 

√
∆Ω(σn′E′;nE) =

√
Ω(σn′E′)−Ω(σnE),

where 

Ω(σnE)=
1
4

∑6

a=1
[2E2

a−n2
a+14(Ea−na)−2a(2Ea−na)] [43].

Therefore, the final expressions for all matrix elements in
which the raising and lowering symplectic generators F's
and G's enter must be multiplied by the proper normaliza-
tion factors.

From the  matrix  elements  of  the  symplectic  generat-
ors, one can obtain the SO(6)-reduced matrix elements of
different  algebraic  interactions.  For  example,  we present
the results for the SO(6)-reduced matrix elements of the
 

A2(α,β) ·F2(α,β) ≃ [A2(α,β)×F2(α,β)]υ=2
ν=±2q=1l=0m=0

F2(α,β) ·F2(α,β) ≃ [F2(α,β)×F2(α,β)]4
±4100 and

G2(α,β) ·F2(α,β) ≃ [G2(α,β)×F2(α,β)]4
±4100

tensor operators:

⟨σn+2,ρ′,E+2,υ+2|||A2(α,β) ·F2(α,β)|||σnρEυ⟩

=

√
5(n+1)(n+2)(σ+n+υ+6)(σ+n+υ+8)(υ+1)(υ+2)(υ+3)(υ+4)

(σ+n+1)(σ+n+2)2(υ2+5υ+6)(2υ+6)(2υ+8)

×
(

(n+2)(σ+n+υ+8)(υ+4)
(σ+n+2)(2υ+8)(υ+3)

√
(υ+2)(υ+5)

2
+

(n+2)(σ+n−υ)(υ+4)
(σ+n+2)(2υ+8)

√
(υ+2)(υ+3)(υ+6)

2(2+ (υ+2)(υ+5))(υ+5)

+
(n+3)(σ+n−υ+2)
(σ+n+3)(2υ+6)

√
(υ+2)(υ+5)

2
+

(n+3)(σ+n+υ+10)
(σ+n+3)(2υ+10)

√
(υ+2)(υ+3)(υ+5)(υ+6)

2(2+ (υ+2)(υ+5))

)
, (58)

 

⟨σn+4,ρ′,E+4,υ+4|||F2(α,β) ·F2(α,β)|||σnρEυ⟩

=

√
5(n+1)(n+2)(n+3)(n+4)(σ+n+υ+6)(σ+n+υ+8)(σ+n+υ+10)(σ+n+υ+12)

(σ+n+1)(σ+n+2)(σ+n+3)(σ+n+4)(2υ+6)(2υ+8)(2υ+10)(2υ+12)

×
√

(υ+1)(υ+2)(υ+3)(υ+4), (59)
 

⟨σnρEυ|||G2(α,β) ·F2(α,β)|||σnρEυ⟩

=
(n+1)(n+2)(σ+n+υ+6)(σ+n+υ+8)(υ+4)

(σ+n+1)(σ+n+2)(2υ+6)(2υ+8)

√
5(υ−1)υ(υ+1)(υ+3)(υ+5)

6(υ3+6υ2+11υ+6)

+
(n+1)(n+2)(σ+n−υ+2)(σ+n−υ+4)

(σ+n+1)(σ+n+2)(2υ)(2υ+2)

√
5(υ−1)υ(υ+2)(υ+3)(υ2+5υ+6)

6(υ+1)
. (60)
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C.    The full matrix elements

⊃
⊃

The  full SO(3)-reduced  matrix  elements  of  physical
observables  of  interest  are  obtained  by  multiplying  the
SO(6)-reduced matrix  elements  with  the  proper SO(6) 
SU(3) and SU(3)  SO(3) isoscalar factors. For example,
for the SO(3)-reduced matrix elements of the raising sym-
plectic generators we have 

⟨σn+2,ρ′,E+2,υ+2, ν+2,q′L′||F2m(α,β)||σnρEυνqL⟩

=⟨σn+2,ρ′,E+2,υ+2|||F2m(α,β)|||σnρEυ⟩

×
⟨
υ

(λ,µ)
2

(2,0)

∣∣∣∣ υ+2
(λ+2,µ)

⟩
×⟨(λ,µ)qL; (2,0)2||(λ+2,µ)q′L′⟩,

(61)

F2m(α,β)where the SO(6)-reduced matrix elements of  are
given  by  Eq.  (53).  Similarly,  one  can  obtain  the  matrix
elements of other physical operators of interest. 

IV.  APPLICATION
 

A.    Energy spectrum
In  practical  calculation,  another  realization  of  the

SO(6)  algebra  becomes  more  convenient.  It  is  obtained
using the transformation 

a†j =
1
√

2

(
− iB†j (p)+B†j (n)

)
,

b†j =
1
√

2

(
iB†j (p)+B†j (n)

)
(62)

and their conjugate counterparts 

a j =
1
√

2

(
iB j(p)+B j(n)

)
,

b j =
1
√

2

(
− iB j(p)+B j(n)

)
. (63)

Then,  one  obtains  an  alternative  realization  of SO(6)
[32, 33, 47, 48]: 

q̃2M =
√

3[A2M(a,a)−A2M(b,b)], (64)
 

Y1M =
√

2[A1M(a,a)+A1M(b,b)], (65)
 

M = a† ·a−b† ·b = Na−Nb, (66)

a†j b†jIn this realization, the creation operators  and  carry

(1,0) (0,1)
B†j (p) B†j (n)

(1,0)
F2m(a,a) F2m(b,b)

F2m(a,b) (2,0) (0,2) (1,1)
Alm(a,b) Alm(b,a) − (2,0)

(0,2)

|E = 2,υ = 2, ν = 2,qLM⟩ ≃ FLM(a,a)|0⟩ |E = 2,υ = 2, ν = 0,
qLM⟩ ≃ FLM(a,b)|0⟩ |E = 2,υ = 2, ν = −2,qLM⟩ ≃
FLM(b,b)|0⟩ |0⟩ = |E = 0,υ = 0, ν = 0,q = 1,L = 0,
M = 0⟩

the SU(3)  irreps  and ,  respectively.  We  recall
that both  and  were transformed as two inde-
pendent  SU(3)  tensor  operators.  Correspondingly,
the  symplectic  operators , ,  and

 transform  as , ,  and  SU(3)
tensors,  whereas  and   as  and

 SU(3)  tensors,  respectively.  Then  the  construction
of  the  basis  (shown  in Table  1 of  Ref.  [10])  along  the
chain  (6)  becomes  straightforward.  For  instance:

, 
, 

,  where 
.

The starting point of the present application is the fol-
lowing dynamical symmetry Hamiltonian [10]: 

H = 2S (λ)
0 +AΛ2+BC2[S Upn(3)]

+aC2[S O(3)]+b(C2[S O(3)])2, (67)

2S (λ)
0in which the first term , as mentioned before, repres-

ents  the  harmonic  oscillator  mean  field  that  defines  the
shell  structure.  The  eigenvalues  of  this  Hamiltonian  are
the energies 

E(n,υ,λ,µ,L) =nh̄ω+Aυ(υ+4)

+
2
3

B(λ2+µ2+λµ+3λ+3µ)

+aL(L+1)+b[L(L+1)]2. (68)

106Ru
158Gd E4+1 /E2+1 ≃ 2.65
3.26

106Ru γ

− γ

To  illustrate  the  present  theory,  we  apply  it  to  two
nuclei  with  various  collective  properties,  namely 
and  with  the  characteristic  ratios 
and  [49],  respectively.  These  two  isotopes  were
chosen  as  examples  of  nuclei  with  different  collective
structures.  The  purpose  of  the  present  work  is  not  to
provide  a  detailed  and  accurate  description  of  their  low-
lying collective spectra that are observed experimentally;
instead, we  aim  to  illustrate  the  application  of  the  de-
veloped  computational  technique.  They  are  chosen  as
nuclei having different collective properties and not spe-
cifically  as  possible  candidates  for SO(6)  symmetry  (the
case  of ,  whose  energy  ratio  is  close  to  the -un-
stable  Wilets-Jean  [22] model  value  2.50).  As  demon-
strated in Ref. [10], the present version of the PNSM rep-
resents a microscopic shell-model counterpart of the Bo-
hr-Mottelson [11] collective model,  having three classic-
al  submodel  limits  the -unstable  Wilets-Jean  model
[22],  the  rigid-rotor  model  of  Ui  [50],  and  the  harmonic
vibrator  model.  Therefore,  it  was  suggested  that  these
three limiting types of nuclear collective behavior can be
described  simultaneously  within  the  framework  of  the
present  shell-model  coupling  scheme  of  the  PNSM.
However,  this  is  beyond  the  scope  of  the  present  paper.
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Detailed application of the present approach to each type
of  nuclear  structure  behavior,  corresponding  to  a  certain
submodel  of  the  BM  [11]  model,  will  be  separately
provided in future publications.

106Ru
f p

(10,4)

(18,0)
(10,4)

ds
(0,0)

pn
106Ru

(18,0)⊗ (0,0)→ (18,0)

σ =
[σ1, . . . ,σ6]6

(18,0)

106Ru

⟨σ⟩ = ⟨33+
105

2
,15+

105
2
,15+

105
2
,

15+
105
2
,15+

105
2
,15+

105
2
⟩

σ = [33,15,15,15,15,15]6 ≡ [18]6

(18,0) S U(3)

υ0 = 18 pn
υ0 = 18 (18,0), (17,1), (16,2)

. . . , (10,8), (9,9), (8,10) . . . , (2,16), (1,17), (0,18)
158Gd

⟨σ⟩ = ⟨63+
157
2
,27+

157
2
,27+

157
2
,27+

157
2
,27+

157
2
,27+

157
2
⟩

σ = [63,27,27,

Because in heavy mass regions, the spin-orbit interac-
tion  is  strong,  we  use  the  pseudo-SU(3)  scheme  [51-53]
to  determine  the  relevant  irreducible  representations  of
Sp(12,R). To obtain the leading SU(3) irrep for these nuc-
lei,  i.e.  the  one  which  is  maximally  deformed  and  has
maximal value of the SU(3) second-order Casimir operat-
or, at the observed quadrupole deformation, one first fills
the pseudo-oscillator Nilsson levels of the valence shells
with  protons  and  neutrons  pairwise,  from  bottom  up  in
energy.  For  instance,  in  the  case  of ,  we  have  8
valence  normal-parity  neutrons  in  the  pseudo-  shell,
which  produce  the  irreducible  representation  for
the  neutron  subsystem.  Using  the  Nilsson  model  ideas
[54, 55],  however,  the  appropriate  prolate-deformed
SU(3)  irrep  would  be  that  is  obtained  from  the

 one. For  the  proton  subsystem,  the  valence  pro-
tons  completely  fill  the  pseudo-  shell;  consequently,
they  produce  the  scalar  irrep  of SU(3).  Computer
codes  are  available  [56, 57] for  determining  the  corres-
ponding  Pauli  allowed SU(3)  irreducible  representations
in a given major shell for a given number of valence nuc-
leons.  For  the  highest-weight SU(3)  states  considered
here, one can also manually obtain the relevant leading ir-
reps.  In  the  second  step,  one  needs  to  couple  the  proton
and  neutron SU(3)  subirreps  to  obtain  the  relevant
SU (3) irreducible  representation  of  the  combined  pro-
ton-neutron  nuclear  system.  For ,  this  is  trivially
done  because .  The  relevant
Sp(12,R) irreducible  representation  is  fixed  by  the  re-
quirement  that  the  lowest-weight U(6)  irrep 

 of  the  symplectic  bandhead  should  contain
the SU(3)  leading  irrep .  Thus,  the  Nilsson  model
ideas  [54, 55]  and  shell-model  considerations  based  on
the  pseudo-SU(3)  scheme  for  provide the  irredu-
cible  representation 

 of Sp(12,R), which  corres-
ponds  to  the  lowest-weight U(6) irreducible  representa-
tion . The latter,  accord-
ing to Eqs. (7) and (33), contains the lowest-energy SU(3)
irrep  of the ground state (when there is  no 
mixing) that is embedded in the SO(6) irreducible repres-
entation .  The  set  of SU (3)  irreps  within  the
SO(6)  irrep  is  given  by ,

, . Similarly,
for ,  we  obtain  [10]  the  irreducible  representation

 of Sp(12,R),  which  corresponds  to  the  lowest-
weight U(6)  irreducible  representation 

27,27,27]6 ≡ [36]6
158Gd (36,0)

υ0 = 36
pn

υ0 = 36
. . . , . . . ,

⊗
β γ

158Gd pn (34,2)
γ 106Ru pn

(16,2)

. Likewise,  the  shell  model  considera-
tions for  give the lowest-energy SU(3) irrep ,
which according to Eqs. (7) and (33), is contained in the
SO(6)  irreducible  representation .  The  full  set  of
SU (3)  multiplets  that  is  contained  in  the SO(6)  irrep

, according to Eq. (7), is as follows: (36,0), (35,1),
(34,2),  (19,17),  (18,18),  (17,19),  (2,34),  (1,35),
(0,36).  Thus,  in  the  pure SU(1,1)  SO(6)  dynamical
symmetry  limit  of  the  PNSM,  the  first  excited  and 
bands in  belong to the SU (3) irrep . Simil-
arly,  the  band  in  belongs  to  the SU (3)  irrep

.

γ 106Ru
β γ 158Gd

A = 0 B = −0.0324 a = 0.032 b = −0.00005
106Ru A = 0 B = −0.026 a = 0.0134 b =

−0.0000093 158Gd
106Ru

Using Eq. (68), we compare the excitation energies of
the ground and  bands in  and those of the ground,

,  and  bands  in ,  with  the  experiment  shown  in
Fig.  1.  The  adopted  values  of  the  model  parameters  in
MeV are , , , and 
for  and , , ,  and 

 for .  For  comparison,  in  the  case  of
, the results of the general collective model (GCM)

with a collective potential including terms up to sixth or-
der (with 8 free parameters) are given as well  [58].  This
figure  shows  a  good  agreement  with  the  experimental
data for the excitation energies of the bands under consid-

 

γ 106Ru β γ
158Gd

106Ru

Fig. 1.    (color online) Comparison of the excitation energies
of  the  ground  and  bands  in  and  ground, ,  and 
bands  in  via  experiments  according  to  Eq.  (68).  For
comparison, in the case of , the results of the general col-
lective  model  (GCM)  with  a  collective  potential  including
terms up to the sixth order are given as well [58].
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eration for the two nuclei. 

B.    Transition probabilities
The  transition  probabilities  are  given,  by  definition,

by the SO(3)-reduced matrix elements of the correspond-
ing  transition  operator.  Here  we  restrict  ourselves  to  the

B(E2)
T E2 = (eZ/(A−1))̃q2m

E2 q̃2m

q̃2m
pn

B(E2)

 transition  strengths  between  the  states  of  the
ground  band  only.  We  use  as  the

 transition  operator,  where  is  given  by  Eq.  (64).
Because  is a generator of the SU (3) group, we ob-
tain the well-known result  for  the  transition prob-
abilities

B(E2; Li→ L f ) =
2L f +1
2Li+1

∣∣∣⟨ f ||T E2||i⟩
∣∣∣2 = 2L f +1

2Li+1

( eZ
A−1

)2(
k
√

3⟨(λ,µ)qLi; (1,1)2||(λ,µ)q′L f ⟩

×
√

2⟨C2[S Upn(3)]⟩
)2

, (69)

⟨C2[S Upn(3)]⟩ = 2
3 (λ2+µ2+λµ+3λ+3µ)

pn

q̃2m = kq̃2m
pseudo

k ≈ 1.20 k ≈ 1.25

e = 1

where  is the  ei-
genvalue  of  the SU (3)  second-order  Casimir  operator.
Additionally, because the relevant irreps in the PNSM for
heavy  nuclei  are  determined  by  using  the  pseudo-SU(3)
scheme [51-53], a constant factor k enters the expression,
which  relates  the  real  quadrupole  operator  with  its
pseudo-SU(3)  counterpart,  i.e., .  For  rare-
earth and Ru regions,  and , respectively.
In  present  calculations,  no  effective  charge  is  used  (i.e.,

).

B(E2)
158Gd

106Ru

B(E2;2+1 → 0+1 ) = 66
pn

B(E2)

Using Eq. (69),  in Fig.  2,  we compare the calculated
intraband  transition  probabilities  between  the
states  of  the ground band in  with experiment  [49]
(dashed  green  line).  We  observe  that  theoretical  values
overestimate the experimental data. For , the experi-
mental  value  is  known  only  for  the  transition

 W.u.  [49].  The  theoretical  value  we
obtained in the pure SU (3) dynamical symmetry limit is
95.76 W.u.  The results  obtained for  the  transition
probabilities in the two nuclei suggest that in order to re-
duce the theoretical values, a horizontal mixing of differ-

υ0

ent SU(3) multiplets within the corresponding SO(6) irre-
ducible representation  is required. 

C.    Mixed SU(3) calculations

B(E2)
To  obtain  better  agreement  with  the  experiment  on

 transition  probabilities,  we  use  the  following
simple Hamiltonian 

Hmix = h
(
G2(a,a) ·F2(b,b)+G2(b,b) ·F2(a,a)

)
(70)

υ0

G2(a,a)·

F2(b,b) =
2
√

5
3

[G2(a,a)×F2(b,b)]4
−4100

that mixes different SU(3) multiplets within the maximal
seniority SO(6) representation  contained in the corres-
ponding  symplectic  bandhead.  Then,  for  example,  the
SO(3)-reduced  matrix  elements  of  the  tensor 

 are given by
 

⟨σρEnυν′q′L||G2(a,a) ·F2(b,b)||σnρEυνqL⟩
=⟨σnρEυ|||[G2(a,a)×F2(b,b)]4

−4100|||σnρEυ⟩

× 2
√

5
3

⟨
υ

(λ,µ)
4

(0,4)

∣∣∣∣ υ
(λ−2,µ+2)

⟩
×⟨(λ,µ)qL; (0,4)0||(λ−2,µ+2)q′L⟩, (71)

G2(b,b) ·F2(a,a) =
2
√

5
3

[G2(b,b)×
F2(a,a)]4

4100
≈ ⊃ ⊃

where  the  entering SO(6)-reduced  matrix  elements  are
given by Eq. (60). The SO(3)-reduced matrix elements of

the  tensor  operator 
 are  similarly  expressed.  We  recall  that  the

corresponding SO(6)  SU(4)  SU(3)  and SU(3) 
SO(3) isoscalar  factors  are  computed numerically  by us-
ing the existing codes [37] and [35, 36], respectively.

υ0

pn (λ,µ) (µ,λ)

(λ,µ) λ ⩾ µ

We  diagonalize  the  full  Hamiltonian  consisting  of
Eqs. (67) and (70) in the collective subspace spanned by
the SO(6) irreducible representation . Additionally, be-
cause there is a prolate-oblate degeneracy related with the
conjugate SU (3)  multiplets  and  contained
within  the  corresponding SO(6) irreducible  representa-
tions  (cf. Table  1 of  Ref.  [10]),  we  consider  only  the
SU(3)  multiplets  with  in  the  diagonalization.

 

B(E2)

158Gd

Fig.  2.    (color  online)  Calculated  intraband  values  in
Weisskopf  units  between  the  states  of  the  ground  band  in

 obtained in the pure SU(3) limit (dashed green line) and
mixed representation calculations (continuous blue curve). No
effective charge is used.
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B(E2)
158Gd

106Ru
B(E2;2+1 → 0+1 ) = 66

The  diagonalization  results  for  the  low-lying  excitation
spectra in both nuclei  are shown in Fig.  3;  the intraband

 transition  strengths  between  the  states  of  the
ground band in  are  shown in Fig.  2 with the  con-
tinuous blue curve. We observe that the agreement on the
transition probabilities, compared to the pure SU(3) limit,
is  improved.  For ,  the  experimental  value

 W.u.  [49]  is  also  reproduced  in  the
diagonalization without using an effective charge.

γ 106Ru
β γ 158Gd

158Gd

In Figs. 4 and 5 we present the SU(3) decomposition
of the wave functions of the ground and  bands in ,
and the ground, , and  bands in  for different an-
gular  momentum  values.  These  figures  show  that  the
SU(3) symmetry is severely broken; however, the mixing
of  different SU(3) multiplets  is  performed  in  an  approx-
imately  coherent  way  in  which  the  squared  amplitudes
are almost L-independent. This is accurate for the low an-
gular  momenta  for  which  the  Coriolis  and  centrifugal
forces are not significantly strong, especially for the case
of a well deformed nucleus . An interesting picture

158Gd

−
υ0

for  the SU(3)  decomposition coefficients  is  observed for
,  which resembles the eigenfunctions of the simple

one-dimensional  harmonic  oscillator  given  by  the
Hermite polynomials. Figures 4 and 5 thus indicate a new
kind  of  symmetry,  called  quasi-dynamical  symmetry
[59].  This symmetry is  associated with the mathematical
concept  of  embedded representations  [60].  We also  note
that  all  the SU(3) multiplets  that  contribute  to  the  struc-
ture of collective states, for both nuclei, belong to a single
SO(6) irreducible representation  namely that of maxim-
um seniority  of the corresponding bandhead structure.
Thus, the results for the microscopic structure of the rota-
tional states of the lowest collective bands in the two nuc-
lei  under  consideration  reveal,  in  addition  to  the  good
SO(6)  symmetry,  the  presence  also  of  an  approximate
SU(3) quasi-dynamical symmetry for the low angular mo-
menta, in the sense given in Refs. [27, 59]. 

V.  CONCLUSIONS

⊃ ⊗ ⊃ ⊗ pn ⊗ ⊃

The purpose of this work is to develop a computation-
al technique for the shell-model reduction chain Sp(12,R)

 SU(1,1)  SO(6)  U(1)  SU (3)  SO(2)  SO(3)
of the  PNSM.  This  dynamical  symmetry  limit  was  re-

 

γ 106Ru β

γ 158Gd

A = 0 B = −0.0924 a = 0.004 b = 0 h = −0.23
106Ru A = 0 B = −0.0127 a = 0.0134 b = 0.0000093

h = −0.1384 158Gd 106Ru

Fig. 3.    (color online) Comparison of the excitation energies
of the ground and  bands in  and those of the ground, ,
and  bands in  via  experiments  according to  Eqs.  (67)
and (70).  The values of  the model  parameters  in  MeV are as
follows: , , , ,  and  for

 and , , , ,  and
 for ,  respectively.  For ,  the  results  of

the general  collective  model  (GCM)  with  a  collective  poten-
tial  including  terms  up  to  the  sixth  order  are  given  as  well
[58].

 

γ 106Ru

Fig. 4.    (color online) The SU(3) decomposition of the wave
functions of the ground and  bands in  for different an-
gular momentum values.
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cently shown to correspond to a microscopic shell-model
version  of  the  generalized  quadrupole-monopole  Bohr-
Mottelson collective model by embedding the latter in the
microscopic shell-model theory [10].

⊃
⊗ ⊃ ⊗ pn ⊗ ⊃

A2(α,β) ·F2(α,β) ≃ [A2(α,β)×
F2(α,β)]υ=2

ν=±2100 F2(α,β) ·F2(α,β) ≃ [F2(α,β)×
F2(α,β)]4

±4100

The  shell-model  coupling  scheme,  defined  by  the
considered reduction chain,  provides  an alternative  basis
for  the  diagonalization  of  different  Hamiltonians  of  the
algebraic and polynomial type in the many-particle posi-
tion and momentum coordinates of the nuclear system. In
the present paper, however, we consider simple algebraic
interactions,  which  are  expressed  as  simple  functions  of
the  symplectic  generators  of Sp(12,R)  dynamical  group.
Closed  analytical  expressions  along  the Sp(12,R) 
SU(1,1)  SO(6)  U(1)  SU (3)  SO(2)  SO(3) dy-
namical symmetry chain are obtained for  the matrix ele-
ments of the basic building blocks of the PNSM and the
Sp(12,R)  symplectic  generators,  which  in  turn  allows
computing the  matrix  elements  of  other  physical  operat-
ors of interest. In particular, the reduced matrix elements
of  the  tensor  operators 

 and 
,  which couple the microscopic shell-model

states  from  different  oscillator  shells,  are  also  explicitly
provided. The  matrix  elements  of  other,  more  complic-
ated  interactions  can  be  obtained  utilizing  the  analytical
expressions presented here. In this way, the computation-
al  technique  developed  in  the  present  paper  generally
provides us with the required algebraic tool for perform-
ing realistic symplectic-based shell-model calculations of
nuclear collective excitations.

⊗

Two  simple  examples  are  given  which  illustrate  the
application of  the  theory  to  the  determination  of  the  mi-
croscopic  shell-model  structure  of  the  observed  low-en-
ergy rotational states in 106Ru and 158Gd, exhibiting differ-
ent  collectivity  in  their  spectra.  The SU(1,1)  SO(6)
shell-model coupling scheme of the PNSM will extend its
applicability in describing the collective properties of dif-
ferent  heavy  mass  nuclei.  This  variant  of  the  PNSM
provides an  interesting  and  relevant  framework  for  ex-
ploring  the  nuclear  collective  dynamics.  More  detailed
application of the proton-neutron symplectic-based shell-
model  theory  to  the  description  of  low-lying  excited
states in  different  nuclei  with  varying  collective  proper-
ties will be presented elsewhere.
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