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Abstract: In this article, we study the ground states and the first radial excited states of the flavor antitriplet heavy
baryon states  and  with the spin-parity  by carrying out  operator product  expansion up to vacuum
condensates of dimension  in a consistent way. We observe for the first time that the higher dimensional vacuum
condensates play an important role, and obtain very stable QCD sum rules with variations of the Borel parameters
for  the  heavy  baryon  states.  The  predicted  masses , ,  and  for  the
first radial excited states , , and , respectively, are in excellent agreement with the experiment-
al data and support assigning , , and  to be the first radial excited states of , ,
and , respectively. The predicted mass  for  can be confirmed using experimental data in
the future.
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I.  INTRODUCTION
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Recently,  the  CMS  collaboration  observed  a  broad
excess of events in the region of  in the

 invariant mass spectrum based on a data sample
corresponding  to  an  integrated  luminosity  of  up  to

 [1]. If it is fitted with a single Breit-Wigner func-
tion,  the  obtained  mass  and  width  are 
and , respectively. Subsequently, the LH-
Cb collaboration observed a  new excited baryon state  in
the  invariant mass  spectrum  with  high  signific-
ance  using  a  data  sample  corresponding  to  an  integrated
luminosity  of .  The  measured  mass  and  natural
width  are  and 

,  respectively,  which  are  consistent  with  the
first radial excitation of the  baryon, the  reson-
ance [2].  can be assigned to be the  state
[3, 4],  or assigned to be the lowest -mode excitation in
the  family [5].

Λ+c (2765) Σ+c (2765) Λ+c π
−π+

13.7fb−1

Λ+c (2765) Σ+c (2765)
980fb−1 e+e−√

s = 10.6GeV Λc

In 2001, at the charm sector, the CLEO collaboration
observed  or  in  the  invariant
mass spectrum using a  data sample recorded by
the CLEO detector at CESR [6]. The Belle collaboration
determined  the  isospin  of  or  to  be
zero using a  data sample in the  annihilation
around ,  and established it  to be a  res-

Λc(2765) Λc(2S )onance  [7].  can  be  assigned  to  be  the 
state [8, 9]; however, there are several other possible as-
signments [10].

Λ+c K−π+

2978.5±2.1±2.0MeV 43.5±7.5±
7.0MeV

Ξc(2980) Ξc(2970) Ξc(2980/2970)
Ξc(2S )

In 2006, the Belle collaboration reported the first ob-
servation of  two  charmed  strange  baryon  states  that  de-
cay  into  the  final  state ;  the  broader  one  has  a
mass of  and a width of 

 [11]. Subsequently, the BaBar collaboration con-
firmed  or  [12].  can be
assigned to be the  state [8, 9]; however, there are
several other possible assignments [10].

Λb(6072) Λc(2765) Ξc(2980)
Λb Λc Ξc

0.5GeV

√
s0 = Mgr +0.6 ∼ 0.8GeV 0.7 ∼

0.9GeV
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0.6 ∼ 0.8GeV 0.7 ∼ 0.9GeV

The mass spectrum of the single heavy baryon states
has been studied intensively in various theoretical models
[3-38].  If ,  and  are  the  first
radial  excited  states  of ,  and ,  respectively,  the
mass gaps  between the  ground states  and first  radial  ex-
cited states are less than , which are significantly
lower  than  the  amount  that  is  expected  by  the  3-dimen-
sional  harmonic  oscillator  model.  In  the  QCD sum rules
for the single heavy baryon states, if we carry out the op-
erator  product  expansion  up  to  the  vacuum  condensates
of  dimension  6,  we  have  to  choose  the  continuum
threshold parameters as  or 

 to  reproduce  the  experimental  data [26-32],
where  the  subscript  stands  for  the  ground  states.  The
energy  gaps  and  are  much
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0.5GeVlarger than the physical energy gap , in which the
contributions of the first radial excited states are included.
The  heavy  baryon  states,  which  have  one  heavy  quark
and two  light  quarks,  play  an  important  role  in  under-
standing the dynamics of  light  quarks in  the presence of
one heavy quark,  and also  in  understanding the  confine-
ment mechanism and heavy quark symmetry.
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Λb(6072) Λc(2765)

Ξc(2980)

At the hadron side of the correlation functions in the
QCD sum rules for the heavy baryon states, there are one
heavy and two light quark propagators. If the heavy quark
line  emits  a  gluon,  each  light  quark  line  contributes  a
quark-antiquark pair,  and  we  obtain  quark-gluon  operat-
ors  of  dimension  10.  In  previous  works,  the  operator
product expansion  was  carried  out  up  to  vacuum  con-
densates  of  dimension  6  [22-32].  In  Ref.  [29],  we  study
the  masses  and  pole  residues  of  the  flavor  antitriplet
heavy baryon states ( ,  and ( ,  by sub-
tracting  the  contributions  from  the  corresponding 
heavy baryon states with the QCD sum rules. Herein, we
revisit our previous work by calculating the vacuum con-
densates up to dimension 10, extend our previous work to
study  the  first  radial  excited  states  and ,
and  make  possible  assignments  of , 
and .

ΛQ(1S ,2S ) ΞQ(1S ,2S )

The article is arranged as follows: we derive the QCD
sum rules  for  the  masses  and pole  residues  of  the  heavy
baryon  states  and  in  Sec.  II;  in
Sec. III, we present the numerical results and discussions;
and Sec. IV is reserved for our conclusions.

ΛQ(1S,2S)

ΞQ(1S,2S)

II.  QCD SUM RULES FOR THE 
AND 

JP = 1
2
+

ΛQ ΛQ(2S ) ΞQ ΞQ(2S )
Λ JΛ(x) JΞ(x)

We  interpolate  the  spin-parity  flavor anti-
triplet heavy baryon states , , ,  and 
with the -type currents  and , respectively,

JΛ(x) = εi jkuT
i (x)Cγ5d j(x)Qk(x) ,

JΞ(x) = εi jkqT
i (x)Cγ5s j(x)Qk(x) , (1)

Q = c q = uwhere , b; , d; i, j, and k are color indexes; and
C is the charge conjunction matrix.

3c

εi jkqT
j CΓq′k

CΓ =Cγ5 Cγµγ5
Cγµ Cσµν

The attractive  interaction  induced  by  one-gluon  ex-
change favors forming diquark states or quark-quark-cor-
relations in the color antitriplet  [39, 40]. The color an-
titriplet diquark operators  have five structures
in  the  Dirac  spinor  space,  where , C, ,

,  and  for the  scalar,  pseudoscalar,  vector,  axi-
alvector,  and  tensor  diquarks,  respectively,  and  couple
potentially to the corresponding scalar, pseudoscalar, vec-
tor,  axialvector,  and  tensor  diquark  states,  respectively.
The calculations via the QCD sum rules indicate that the
favored quark-quark configurations are the scalar and axi-

Lρ

Lλ
Lρ = 0
JP = 0+ 1+

Λ Σ

Λ Λ

alvector  diquark  states,  while  the  most  favored  quark-
quark  configurations  are  the  scalar  diquark  states  [41].
We usually resort  to the light-diquark-heavy-quark mod-
el to study the heavy baryon states. In the diquark-quark
models,  the  angular  momentum  between  the  two  light
quarks  is  denoted  as ,  while  the  angular  momentum
between the light diquark and the heavy quark is denoted
as . If  the two light quarks in the diquark are in relat-
ive  S-wave  or ,  then  the  heavy  baryon  states  with
the  spin-parity  and  diquark  constituents  are
called -type  and -type  baryons,  respectively  [42].  In
this article, we study the ground states and first radial ex-
cited  states  of -type  heavy  baryons  with -type inter-
polating currents.

JP = 1
2
−

Λ

iγ5JΛ(x) iγ5JΞ(x)
iγ5

JΛ(x) JΞ(x)

We  can  interpolate  the  corresponding  spin-parity
 flavor antitriplet heavy baryon states with the -

type  currents  and  without  introducing
the  relative P-wave  explicitly,  because  multiplying 
with  the  currents  and  changes  their  parity
[43]. We now write the correlation functions,

Π(p) = i
∫

d4xeip·x⟨0|T
{
J(x)J̄(0)

}
|0⟩ , (2)

J(x) = JΛ(x) JΞ(x)where  and .

JΛ(x) iγ5JΛ(x) JΞ(x) iγ5JΞ(x)
Π(p)

We insert a complete set of intermediate baryon states
with  the  same  quantum  numbers  as  the  current  operat
ors , ,  and  into the  correla-
tion functions  to obtain the hadronic representation
[44-46].  After  isolating  the  pole  terms  of  the  ground
states and the first radial excited states, we obtain the fol-
lowing results:

Π(p) =λ2
+

̸p+M+
M2
+− p2

+λ2
2S ,+
̸p+M2S ,+

M2
2S ,+− p2

+λ2
−
̸p−M−
M2
−− p2

+λ2
2S ,−
̸p−M2S ,−

M2
2S ,−− p2

+ · · · , (3)

M± M2S ,±
±

λ± λ2S ,±
⟨0|J(0)|B±/2S ,±(p)⟩ = λ±/2S ,± B = ΛQ

ΞQ

where  and  are the masses of the ground states
and  first  radial  excited  states  with  the  parity  respect-
ively,  and  and  are  the  corresponding  pole
residues  defined  by , 
and .

We rewrite the correlation functions as

Π(p) ≠pΠ1(p2)+Π0(p2) , (4)

according to the Lorentz covariance, and obtain the had-
ronic spectral densities through the dispersion relation

ρH,1(s) =limϵ→0
ImΠ1(s+ iϵ)

π
,

=λ2
+δ

(
s−M2

+

)
+λ2

2S ,+δ
(
s−M2

2S ,+

)
+λ2
−δ

(
s−M2

−
)
+λ2

2S ,−δ
(
s−M2

2S ,−
)
+ · · · , (5)
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ρH,0(s) =limϵ→0
ImΠ0(s+ iϵ)

π
,

=M+λ2
+δ

(
s−M2

+

)
+M2S ,+λ

2
2S ,+δ

(
s−M2

2S ,+

)
−M−λ2

−δ
(
s−M2

−
)

−M2S ,−λ
2
2S ,−δ

(
s−M2

2S ,−
)
+ · · · , (6)

where we add the subscript H to denote the hadron side of
the correlation functions.

O(αk
s) k ≤ 1

We now carry out the operator product expansion up
to the vacuum condensates of dimension 10 in a consist-
ent way, and consider the vacuum condensates, which are
quark-gluon  operators  of  the  order  with .
Again, we obtain the corresponding QCD spectral densit-
ies through the dispersion relation

ρQCD,1(s) = limϵ→0
ImΠ1(s+ iϵ)

π
,

ρQCD,0(s) = limϵ→0
ImΠ0(s+ iϵ)

π
, (7)

QCDwhere  we  add  the  subscripts  to  denote  the  QCD

side of the correlation functions.
s0 s′0

exp
(
−s/T 2

)
Then, we choose the continuum thresholds  and 

to  include  the  ground  states  and  the  ground  states  plus
first  radial  excited  states,  respectively,  and introduce  the
weight function  to suppress the contributions
of  the  higher  resonances  and  continuum  states.  We  take
the combination∫ s0/s′0

m2
Q

ds
[√

sρH,1(s)+ρH,0(s)
]
exp

(
− s

T 2

)
, (8)

to  exclude  the  contaminations  from  the  heavy  baryon
states  with  negative  parity,  and  match  the  hadron  side
with the QCD side of the correlation functions. The com-
binations ∫ ∞

m2
Q

ds
[√

sρH,1(s)±ρH,0(s)
]
exp

(
− s

T 2

)
, (9)

pick up the heavy baryon states with positive and negat-
ive parities, respectively.

Finally, we obtain two QCD sum rules:

2M+λ2
+ exp

(
−M2

+

T 2

)
=

∫ s0

m2
Q

ds
[√

sρH,1(s)+ρH,0(s)
]
exp

(
− s

T 2

)
=

∫ s0

m2
Q

ds
[√

sρQCD,1(s)+ρQCD,0(s)
]
exp

(
− s

T 2

)
, (10)

2M+λ2
+ exp

(
−M2

+

T 2

)
+2M2S ,+λ

2
2S ,+ exp

−M2
2S ,+

T 2

 =∫ s′0

m2
Q

ds
[√

sρH,1(s)+ρH,0(s)
]
exp

(
− s

T 2

)
,

=

∫ s′0

m2
Q

ds
[√

sρQCD,1(s)+ρQCD,0(s)
]
exp

(
− s

T 2

)
, (11)

ρQCD,1(s) = ρΛ,1(s) ρΞ,1(s) ρQCD,0(s) = mQ ρΛ,0(s) mQ ρΞ,0(s)where , , , ,

ρΛ,1(s) = ρΞ,1(s) |ms→0, ⟨s̄s⟩→⟨q̄q⟩, ⟨s̄gsσGs⟩→⟨q̄gsσGq⟩ ,

ρΛ,0(s) = ρΞ,0(s) |ms→0, ⟨s̄s⟩→⟨q̄q⟩, ⟨s̄gsσGs⟩→⟨q̄gsσGq⟩ , (12)

ρΞ,1(s) =
3

128π4

∫ 1

xi

dx x(1− x)2(s− m̃2
Q)2+

ms[⟨s̄s⟩−2⟨q̄q⟩]
32π2

(
1− x2

i

)
− ms[⟨s̄gsσGs⟩−3⟨q̄gsσGq⟩]

96π2 δ(s−m2
Q)

+
⟨s̄s⟩⟨q̄q⟩

6
δ(s−m2

Q)− [⟨s̄s⟩⟨q̄gsσGq⟩+ ⟨s̄gsσGs⟩⟨q̄q⟩]
24T 2

(
1+

s
T 2

)
δ(s−m2

Q)

+
m4

Q⟨q̄gsσGq⟩⟨s̄gsσGs⟩
96T 8 δ(s−m2

Q)+
1

256π2 ⟨
αsGG
π
⟩
(
1− x2

i

)
−

m2
Q

384π2 ⟨
αsGG
π
⟩
∫ 1

xi

dx
(1− x)2

x2 −
msm2

Q[⟨s̄s⟩−2⟨q̄q⟩]
288T 4 ⟨αsGG

π
⟩1− xi

xi

−
m2

Q⟨s̄s⟩⟨q̄q⟩π2

108T 6 ⟨αsGG
π
⟩δ(s−m2

Q) , (13)
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ρΞ,0(s) =
3

128π4

∫ 1

xi

dx (1− x)2(s− m̃2
Q)2+

ms[⟨s̄s⟩−2⟨q̄q⟩]
16π2 (1− xi)−

ms[⟨s̄gsσGs⟩−3⟨q̄gsσGq⟩]
96π2 δ(s−m2

Q)

+
⟨s̄s⟩⟨q̄q⟩

6
δ(s−m2

Q)−
m2

Q[⟨s̄s⟩⟨q̄gsσGq⟩+ ⟨s̄gsσGs⟩⟨q̄q⟩]
24T 2 δ(s−m2

Q)+
m2

Q⟨q̄gsσGq⟩⟨s̄gsσGs⟩
48T 6

(
−1+

s
2T 2

)
δ(s−m2

Q)

−
m2

Q

384π2 ⟨
αsGG
π
⟩
∫ 1

xi

dx
(1− x)2

x3 +
1

128π2 ⟨
αsGG
π
⟩
∫ 1

xi

dx
(1− x)2

x2 +
1

128π2 ⟨
αsGG
π
⟩ (1− xi)

−
msm2

Q[⟨s̄s⟩−2⟨q̄q⟩]
576T 4 ⟨αsGG

π
⟩

1− x2
i

x2
i

+
ms[⟨s̄s⟩−2⟨q̄q⟩]

96T 2 ⟨αsGG
π
⟩1− xi

xi

−
m2

Q⟨s̄s⟩⟨q̄q⟩π2

108T 6 ⟨αsGG
π
⟩δ(s−m2

Q)+
⟨s̄s⟩⟨q̄q⟩π2

36T 4 ⟨αsGG
π
⟩δ(s−m2

Q) ,

(14)

xi =
m2

Q

s
T 2, where  is the Borel parameter.

1/T 2 λ+
ΛQ ΞQ

We derive the QCD sum rules in Eq. (10) with regard
to , and then eliminate the pole residues  and ob-
tain the masses of the ground states  and ,

M2
+ =

− d
d(1/T 2)

∫ s0

m2
Q

ds
[√

sρQCD,1(s)+ρQCD,0(s)
]
exp

(
− s

T 2

)
∫ s0

m2
Q

ds
[√

sρQCD,1(s)+ρQCD,0(s)
]
exp

(
− s

T 2

) .

(15)

Hereafter, we will refer to the QCD sum rules in Eq. (10)
and Eq. (15) as QCDSR I.

τ = 1/T 2 Dn = (−d/dτ)n

1 2
ΛQ ΞQ

ΛQ(2S ) ΞQ(2S )

We  introduce  the  notations , ,
and  use  the  subscripts  and  to  represent  the  ground
states , ,  and  the  first  radially  excited  states

, , respectively, for simplicity.

λ̃2
1 exp

(
−τM2

1

)
+ λ̃2

2 exp
(
−τM2

2

)
= Π′QCD(τ) , (16)

λ̃2
1 = 2M+λ2

+ λ̃2
2 = 2M2S,+λ

2
2S,+

QCD
s′0

τ

where , ,  we  introduce  the
subscript  to  denote  the  QCD  representation  of  the
correlation functions below the continuum thresholds .
Firstly, let us derive the QCD sum rules in Eq. (16) with
respect to  to obtain

λ̃2
1M2

1 exp
(
−τM2

1

)
+ λ̃2

2M2
2 exp

(
−τM2

2

)
= DΠ′QCD(τ) . (17)

From Eqs. (16)-(17), we can obtain the QCD sum rules

λ̃2
i exp

(
−τM2

i

)
=

(
D−M2

j

)
Π′QCD(τ)

M2
i −M2

j

, (18)

i , jwhere the sub-indexes . We can then derive the QCD

τsum rules in Eq. (18) with respect to  to obtain

M2
i =

(
D2−M2

j D
)
Π′QCD(τ)(

D−M2
j

)
Π′QCD(τ)

,

M4
i =

(
D3−M2

j D2
)
Π′QCD(τ)(

D−M2
j

)
Π′QCD(τ)

. (19)

M2
iThe squared masses  satisfy the equation

M4
i −bM2

i + c = 0 , (20)

where

b =
D3⊗D0−D2⊗D
D2⊗D0−D⊗D

,

c =
D3⊗D−D2⊗D2

D2⊗D0−D⊗D
,

D j⊗Dk = D jΠ′QCD(τ) DkΠ′QCD(τ) , (21)

i = 1,2 j,k = 0,1,2,3with  the  indexes  and .  Finally,  we
solve  the  equation  in  Eq.  (20)  analytically  to  obtain  two
solutions [47-49],

M2
1 =

b−
√

b2−4c
2

, (22)

M2
2 =

b+
√

b2−4c
2

. (23)

ΛQ(2S )
ΞQ(2S )

From the  QCD  sum  rules  in  Eqs.  (22)-(23),  we  can  ob-
tain both the masses of the ground states and the first ra-
dial  excited  states.  The  ground  state  masses  from  the
QCD sum rules in Eq. (22) suffer from additional uncer-
tainties  from  the  first  radial  excited  states  and

,  and we neglect  the  QCD sum rules  in  Eq.  (22).
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Hereafter, we will refer to the QCD sum rules in Eq. (18)
and Eq. (23) as QCDSR II.

III.  NUMERICAL RESULTS AND DISCUSSIONS

⟨q̄q⟩ = −(0.24±0.01GeV)3 ⟨s̄s⟩ =
(0.8±0.1)⟨q̄q⟩ ⟨q̄gsσGq⟩ = m2

0⟨q̄q⟩ ⟨s̄gsσGs⟩ = m2
0⟨s̄s⟩

m2
0 = (0.8±0.1)GeV2 ⟨αsGG

π
⟩ = 0.012±0.004GeV4

µ = 1GeV MS
mc(mc) = (1.275±0.025)GeV mb(mb) = (4.18±0.03)GeV

ms(µ = 2GeV) = (0.095±0.005)GeV

MS

At the QCD side, we take the vacuum condensates to
be  the  standard  values , 

, , ,

,  at the
energy scale  [44-50], and take the  masses

, 
and  from the Particle
Data Group [51]. Moreover, we consider the energy-scale
dependence of  the  quark  condensates,  mixed  quark  con-
densates,  and  masses according  to  the  renormaliza-
tion group equation,

⟨q̄q⟩(µ) = ⟨q̄q⟩(1 GeV)
[
αs(1 GeV)
αs(µ)

] 12
33−2n f

,

⟨s̄s⟩(µ) = ⟨s̄s⟩(1 GeV)
[
αs(1 GeV)
αs(µ)

] 12
33−2n f

,

⟨q̄gsσGq⟩(µ) = ⟨q̄gsσGq⟩(1 GeV)
[
αs(1 GeV)
αs(µ)

] 2
33−2n f

,

⟨s̄gsσGs⟩(µ) = ⟨s̄gsσGs⟩(1 GeV)
[
αs(1 GeV)
αs(µ)

] 2
33−2n f

,

mb(µ) = mb(mb)
[
αs(µ)
αs(mb)

] 12
33−2n f

,

mc(µ) = mc(mc)
[
αs(µ)
αs(mc)

] 12
33−2n f

,

ms(µ) = ms(2GeV)
[

αs(µ)
αs(2GeV)

] 12
33−2n f

,

αs(µ) =
1

b0t

1− b1

b2
0

log t
t
+

b2
1(log2 t− log t−1)+b0b2

b4
0t2

 ,
(24)

where

t = log
µ2

Λ2 , b0 =
33−2n f

12π

b1 =
153−19n f

24π2 , b2 =

2857− 5033
9

n f +
325
27

n2
f

128π3

Λ = 213MeV, 296MeV 339MeV
n f = 5 4 3

Λc(1S ,2S ) Ξc(1S ,2S )
n f = 4

,  and  for  the  flavors
, ,  and ,  respectively [51, 52].  For  the  charmed

baryon  states  and ,  we  choose  the
flavor number , while for the bottom baryon states

Λb(1S ,2S ) Ξb(1S ,2S )
n f = 5

 and ,  we choose the flavor number
.

√
s0 = Mgr +0.50±0.10GeV

Mgr +0.6 ∼ 0.8GeV 0.7 ∼ 0.9GeV

gr
ΛQ ΞQ

Λc
Ξc Λb Ξb µ = 1GeV
1GeV 2GeV 1.8GeV

0.2GeV Ξb

T 2

s0

Λb

In  QCDSR  I,  we  choose  the  continuum  threshold
parameters  to  be  rather  than

 or  as a constraint to ex-
clude  contaminations  from  the  first  radial  excited  states
[26-32], where the subscript  denotes the ground states

 and . Furthermore, we choose the energy scales of
the QCD spectral densities in the QCD sum rules for ,

,  and  to be the typical energy scales ,
, ,  and , respectively,  where  we  sub-

tract  from the energy scale for  to account for
the finite mass of the s-quark. After trial and error, we ob-
tain  the  Borel  parameters , continuum threshold  para-
meters ,  pole  contributions  of  the  ground  states,  and
perturbative contributions,  which are shown explicitly in
Table 1. From the table,  we can see that the pole contri-
butions are approximately 40%-60% or 40%-70%, so the
pole dominance  is  satisfied.  The  perturbative  contribu-
tions are larger than 50% except for , although the per-
turbative contribution is  approximately 43%-46% in that
case; the contributions of  the vacuum condensates of  di-
mension 10 are tiny,  and the operator product expansion
is well convergent.

 
T 2

s0(s′0)

Table  1.    Borel  parameters  and  continuum  threshold
parameters  for  the  heavy  baryon  states,  where  "pole"
stands for the pole contributions from the ground states or the
ground states plus first radial excited states, and "perturbative"
stands for the contributions from the perturbative terms.

T 2/GeV2 √
s0/GeV pole (%) perturbative (%)

Λc 1.4−1.8 2.75±0.10 40-72 50-58
Ξc 1.7−2.1 3.00±0.10 42-71 64-71
Λb 3.6−4.0 6.10±0.10 41-60 43-46
Ξb 3.8−4.2 6.30±0.10 40-60 51-54
Λc(2S ) 1.8−2.4 3.00±0.10 41-74 70-80
Ξc(2S ) 1.8−2.4 3.25±0.10 54-84 74-83
Λb(2S ) 4.6−5.0 6.30±0.10 49-66 76-79
Ξb(2S ) 5.1−5.5 6.55±0.10 51-66 83-85

 

ΛQ ΞQ

√
s0−Mgr = (0.50−0.55)GeV

We now consider  all  uncertainties  of  the  input  para-
meters,  and  obtain  the  values  of  the  masses  and  pole
residues  of  the  ground  states  of  the  flavor  antitri
plet heavy baryon states  and , which are shown in
Figs. 1-2 and Table 2. From Table 1 and Figs. 1-2, we can
see that  rather  flat  platforms  appear  in  the  Borel  win-
dows,  and  the  uncertainties  originating  from  the  Borel
parameters  are  rather  small.  It  is  the  first  time  that  we
have  obtained  very  flat  platforms  for  the  heavy  baryon
states.  From Tables  1-2, we can see  that  the  central  val-
ues  have  the  relation ;  the
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s0continuum  threshold  parameters  are  large  enough  to
consider  all  the  ground  state  contributions  but  small
enough to suppress the first radial excited state contamin-
ations sufficiently.  Furthermore, they meet our naive ex-
pectations.

In  this  article,  we  have  neglected  the  perturbative

O(αs) O(αs)

1+C(s,m2
Q)
αs(T 2)
π

C(s,m2
Q)

O(αs)

 corrections;  if  we  consider  the  perturbative 
corrections,  the  perturbative  terms  should  be  multiplied

by a factor , where  are coeffi-
cients. Although we cannot estimate the uncertainties ori-
ginating  from  the  corrections  with  confidence

T 2 Λc Ξc Λb

Ξb Λc(2S ) Ξc(2S ) Λb(2S ) Ξb(2S )

Fig. 1.    (color online) Masses with variations of the Borel parameters , where A, B, C, D, E, F, G, and H correspond to , , ,
, , , , and , respectively. "Expt" denotes the experimental values.
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mu = md = 0 C = 53/12+γE

C(s,m2
Q) = 53/12+γE

MΛc/b
= 2.29/5.64GeV

without  explicit  calculations,  a  crude  estimation  is  still
possible. In the case of the proton and neutron, we can set

,  and  obtain  the  coefficient 
[53]. If we take the approximation ,
we can obtain the central values  in-

2.24/5.61GeV
2.29/5.62GeV

MΛc/b
= 2.29/5.64GeV

O(αs)
⟨q̄q⟩2

stead  of ;  compared  to  the  experimental
values  from the Particle Data Group [51],
the  central  values  are  excellent.  In
fact, we should also calculate the perturbative  cor-
rections to the four-quark condensates , as they play

T 2 Λc

Ξc Λb Ξb Λc(2S ) Ξc(2S ) Λb(2S ) Ξb(2S )
Fig. 2.    (color online) Pole residues with variations of the Borel parameters , where A, B, C, D, E, F, G, and H correspond to ,

, , , , , , and , respectively.
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O(αs)
⟨q̄q⟩

O(αs)

O(αs)

an important role, and re-determine the Borel windows to
extract  the  heavy  baryon  masses,  as  in  the  case  of  the
heavy  mesons,  in  which  the  perturbative  correc-
tions  to  the  quark  condensates  are  also  calculated
[54].  Overall,  neglecting  the  perturbative  correc-
tions cannot  notably  impair  the  predictive  ability,  be-
cause as  we  obtain  the  heavy  baryon  masses  from  frac-
tions,  the  perturbative  corrections in  the  numerat-
ors  and  denominators  cancel  each  other  out  to  a  certain
extent; see Eq. (15).

Λc T 2

√
s0 = 2.75GeV

D = 6
Λc

D = 8 10

D = 8 10

D = 6 √
s0 = 3.0GeV

T 2

Λc

In Fig.  3,  we  plot  the  predicted  mass  of  the  ground
state  with  variations  of  the  Borel  parameter  by
considering  the  vacuum  condensates  up  to  dimension  6,
8, and 10, respectively, for the continuum threshold para-
meter .  From  the  figure,  we  can  see  that
the  truncation  fails  to  lead to  a  flat  platform or  to
reproduce  the  experimental  value  of  the  mass  of ,
whereas  the  truncations  and  both  lead  to  very
flat  platforms  and  reproduce  the  experimental  value.  In
fact,  the truncations  and  make little  difference,
which indicates  that  the  vacuum  condensates  of  dimen-
sion 8 (10) play an important (a minimal) role. We should
consider the vacuum condensates up to dimension 10 for
consistency.  If  we  insist  on  taking  the  truncation

,  we  have  to  choose  a  much  larger  continuum
threshold  parameter ,  and  the  predicted
mass  increases  monotonically  with  the  increase  of  the
Borel  parameter ;  we  can  reproduce  the  experimental
value of  the  mass  of  with  a  suitable  Borel  parameter
but large uncertainty.

mJ/ψ = 3.0969
GeV mψ′ = 3.686097GeV mψ′′ = 4.039GeV

In  QCDSR  II,  we  can  borrow  some  ideas  from  the
conventional  charmonium  states.  The  masses  of  the
ground state, first radial excited state, and second excited
state  of  the  charmonium  states  are 

, ,  and , respect-

mψ′ −mJ/ψ = 0.59GeV mψ′′ −mJ/ψ =0.94GeV√
s′0 ⩽ Mgr +0.90GeV

Λc(2S ) Ξc(2S ) Λb(2S )
Ξb(2S ) µ = 2GeV 2GeV
4GeV 3.8GeV
0.2GeV Ξb(2S )

T 2

s0

ively, from the Particle Data Group [51]. The energy gaps
are  and ,  and
we  can  choose  the  continuum  threshold  parameters

 tentatively to  avoid  contamina-
tions  from the  second radial  excited  states.  Furthermore,
we choose the energy scales of the QCD spectral densit-
ies in the QCD sum rules for , , , and

 to be the typical energy scales , ,
,  and ,  respectively;  again  we  subtract

 from the energy scale  for  to  account  for
the finite mass of the s-quark. After trial and error, we ob-
tain  the  Borel  parameters , continuum threshold  para-
meters , pole  contributions,  and  perturbative  contribu-
tions, which are shown explicitly in Table 1. From the ta-
ble, we can see that the pole contributions vary from 40%
to 80%, so the pole dominance is satisfied. The perturbat-
ive  contributions  are  larger  than  70%,  so  the  operator
product expansion is well convergent.

MΛb(2S) =

6.08±0.09GeV MΛc(2S) = 2.78±0.08GeV MΞc(2S) =

2.96±0.09GeV
6072.3±2.9±0.6±0.2MeV 2766.6±2.4

MeV 2967.1±1.4MeV
Λb(6072) Λc(2765) Ξc(2980/2970)

Λb Λc Ξc

MΞb(2S) = 6.24±0.07GeV

Again we consider all uncertainties of the input para-
meters,  and  obtain  the  values  of  the  masses  and  pole
residues of the first radial excited states of the flavor anti-
triplet heavy baryon states, which are also shown in Figs.
1-2 and Table 2. From Table 1 and Figs. 1-2, we can see
that  rather  flat  platforms  appear  in  the  Borel  windows,
and the uncertainties originating from the Borel paramet-
ers  are  rather  small.  The  predicted  masses 

, ,  and 
 are in  excellent  agreement  with  the  ex-

perimental  data , 
,  and  ,  respectively  [2, 51],  and

support assigning ,  and 
to be the first  radial  excited states of ,  and , re-
spectively.  The  prediction  can
be confronted by experimental data in the future.

If the masses of the ground states, first radial excited
states, third radial excited states, etc. of the heavy baryon

Λc(3S ) Ξc(3S ) Λb(3S )
Table  2.    Masses  and  pole  residues  of  the  heavy  baryon
states, where the masses of , , and  are ob-
tained from the Regge trajectories.

M/GeV λ(10−2GeV3) M/GeV[expt]

Λc 2.24±0.09 1.51±0.23 2.28646
Ξc 2.45±0.10 2.21±0.35 2.46795
Λb 5.61±0.12 1.96±0.36 5.6196
Ξb 5.79±0.09 2.23±0.35 5.7919
Λc(2S ) 2.78±0.08 3.20±0.48 2.7666
Ξc(2S ) 2.96±0.09 4.48±0.56 2.9671
Λb(2S ) 6.08±0.09 6.35±0.93 6.0723
Ξb(2S ) 6.24±0.07 8.36±1.05

Λc(3S ) 3.1749
Ξc(3S ) 3.3936
Λb(3S ) 6.4935

 

Λc

T 2 D = 6

∗
√

s0 = 3.0GeV

Fig.  3.    (color  online)  Mass  of  with  variations  of  the
Borel  parameter ,  where , 8,  and  10  denote  trunca-
tions of the vacuum condensates up to dimension 6, 8, and 10,
respectively. The star  denotes the continuum threshold para-
meter ,  and  "Expt"  denotes  the  experimental
value.
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ΛQ ΞQstates  and  satisfy the Regge trajectories,

M2
n = α(n−1)+α0 , (25)

α α0

α α0

√
s′0 ⩽ MΛc(3S ) MΞc(3S )

MΛb(3S ) √
s′0−M2S = (0.20−0.30)GeV

M3S −
√

s′0 = (0.15−0.20)GeV
s′0

√
s′0−Mgr = (0.70−0.80)GeV

mψ′′ −mJ/ψ = 0.94GeV

with two parameters  and , we take the experimental
values of the masses of the ground states and first  radial
excited states shown in Table 2 as input parameters to fit

 and , and obtain the masses of the second radial ex-
cited states, which are also shown in Table 2 as the "ex-
perimental values". From Tables 1-2, we can see that the
continuum  threshold  parameters , 
and ,  respectively;  the  contaminations  from  the
second radial excited states are excluded. The central val-
ues  have  the  relations  and

,  and  the  continuum
threshold  parameters  are  large  enough  to  consider  all
the  first  radial  excited  state  contributions  but  small
enough to exclude the second radial excited state contam-
inations. The central values ,
which  are  consistent  with  the  experimental  value

 [51].

Λb(6072)
3P0 Λb(6072)

ρ Λb
JP = 1/2−

sl = 0 sl = 1 sl

J(x) Λb(6072)

In Ref.  [5], Liang and Lu study the strong decay be-
haviors under various assignments of  within the

 model,  and  obtain  the  conclusion  that  can
be assigned to be the -mode excitation of the  family
with the spin-parity  by introducing mixing ef-
fects  between  the  and  states,  where  de-
notes the angular momentum of the light degrees of free-
dom. Accordingly,  we can introduce the relative P-wave
between  the u and d quarks  explicitly  and  construct  the
current  to interpolate :

J(x) = J0(x)cosθ+ J1(x) sinθ ,

J0(x) = εi jkuT
i (x)Cγα

↔
∂α d j(x)bk(x) ,

J1(x) = εi jkuT
i (x)Cγα

↔
∂β d j(x)σαβbk(x) , (26)

↔
∂α=

−→
∂ α−

←−
∂ αwhere .  Without  directly  calculating  the

mass  and  decay  width,  we  cannot  obtain  the  conclusion
as to whether or not the QCD sum rules support such an

assignment; this is the subject of our next work.
Λc Ξc Λb

Ξb
JP = 1/2+

Λb(6072) Λc(2765) Ξc(2980/2970)

Λb(6072) Λc(2765) Ξc(2980/2970)
Λb Λc Ξc

Ξc(2S)

Ξc(2970)+ 1/2+

The spin-parities of the ground states , , , and
 have been established; the values listed in the Review

of Particle Physics are  [51]. In this article, we
study  the  masses  and  pole  residues  of  the  ground  states
and  first  radial  excited  states  of  the  flavor  antitriplet
heavy  baryons,  and  make  possible  assignments  of

,  and  according  to  the
predicted masses, as their spin-parities have not been es-
tablished  yet.  The  present  predictions  support  assigning

, , and  to be the first ra-
dial excitations of , , and , respectively, although
more  theoretical  and  experimental  works  are  required  to
make more reliable assignments. There is no experiment-
al  candidate  for  the  state.  After  the  manuscript
was submitted to https://arxiv.org, and appeared as arXiv:
1704.01854, the Belle collaboration determined the spin-
parity  of  to  be  for  the  first  time  [55],
which is consistent with the present calculation.

IV.  CONCLUSION

Λ

ΛQ ΞQ

JP = 1
2
+

JP = 1
2
−

10

MΛb(2S ) = 6.08±0.09GeV MΛc(2S ) = 2.78±0.08GeV
MΞc(2S ) = 2.96±0.09GeV

Λb(6072)
Λc(2765) Ξc(2980/2970)

Λb Λc Ξc

In  this  article,  we  construct -type  currents  to  study
the ground states and first radial excited states of the fla-
vor antitriplet heavy baryon states  and  with spin-
parity  by  subtracting  the  contributions  from  the
corresponding  heavy  baryon  states  with  spin-parity

 via the QCD sum rules. We carry out the operat-
or product expansion up to the vacuum condensates of di-
mension  in  a  consistent  way,  observe  that  the  higher
dimensional vacuum condensates play an important role,
and obtain very stable QCD sum rules with variations of
the  Borel  parameters  for  the  ground  states  for  the  first
time. We then study the masses and pole residues of the
first  radial  excited  states  in  detail;  the  predicted  masses

,  and
 are in excellent  agreement with

the  experimental  data,  and  support  assigning ,
, and  to be the first radial excited

states of , , and , respectively. Finally, we use the
Regge trajectories to obtain the masses of the second ra-
dial  excited  states  and  observe  that  the  continuum
threshold parameters  are  reasonable  to  avoid  contamina-
tions from the second radial excited states.
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