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Abstract: We construct the axialvector and tensor current operators to systematically investigate the ground and first

radially excited tetraquark states with quantum numbers J*¢ = 1*~ using the QCD sum rules. We observe one axi-
alvector tetraquark candidate for Z.(3900) and Z.(4430), two axialvector tetraquark candidates for the Z.(4020), and

three axialvector tetraquark candidates for Z.(4600).
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1 Introduction

The LHCD collaboration in 2019 performed an angu-
lar analysis of weak decays B’ — J/yK*n~ using proton-
proton collision data, inspected m(J/yn~) versus m(K*n™)
planes, and observed two possible resonant structures in
the vicinity of the energies m(J/yn~)=4200MeV and
4600MeV, respectively [1]. There were two tentative pro-
posals of the structure Z.(4600) in the vicinity of
m(J/yn~) = 4600MeV, namely the [dc]plac]a—[dclalac]p
type vector tetraquark state with JP¢€ =17~ [2] and the
first radially excited [dclr[acla —[dclalac]ly type tetra-
quark state with JP€=1%" [3].In this study, the sub-
scripts P, S, V, A, and T represent the pseudoscalar, scal-
ar, vector, axialvector, and tensor color-antitriplet diquark
states, respectively.

The BESII collaboration in 2013 reported the
charged charmonium-like resonance Z*(3900) in the
7*J/y invariant mass spectrum of the process
ete” - Jlyntn~ with Mz =(3899.0+3.6+4.9)MeV and
'z =(46+10+20)MeV, respectively [4]. The Belle col-
laboration also observed Zz(3900) in the same process
[5]; furthermore, the CLEO collaboration confirmed the
existence of the Z*(3900) [6]. At around the same time,
the BESIII collaboration observed the charmonium-like
resonance ZX(4025) in the vicinity of the threshold
(D*D*)* in the electron-positron scattering process
ete™ — (D*D*)*n™ [7]. Moreover, the BESIII collabora-

tion observed the charmonium-like resonance Z*(4020) in
the n*h. invariant mass spectrum of the electron-positron
collisions e*e™ —» n*n~h, [8]. Presently, Z(4020) and
Z*(4025) are listed in The Review of Particle Physics as
the same particle [9]. In 2014, the LHCb collaboration
performed a four-dimensional fit of the scattering amp-
litude for the decay B° — /7~ K™ in proton-proton colli-
sions and obtained the first independent confirmation of
the charmonium-like resonance Z; (4430), determining its
quantum numbers to be J” = 1* [10]. In 2017, the BESIII
collaboration established the quantum numbers of the
charmonium-like resonance Z.(3900) as J© = 1* [11].

There are several possible explanations for the exotic
states Z.(3900) and Z.(4020), including the molecular
states (from heavy quark symmetries [12, 13], QCD sum
rules [14, 15], light-front quark model [16], one-pion ex-
change model [17], and phenomenological Lagrangian
approach [18]), tetraquark states (from the diquark model
with the effective Hamiltonian [19], QCD sum rules
[20-23], and the potential model [24]), triangle singularit-
ies (in rescattering amplitudes) [25], threshold effects
[26], etc.

We can tentatively assign the hidden-charm reson-
ances Z.(3900) and Z.(4430) to the ground and first radi-
ally excited tetraquark state, respectively, considering
their similar decays, Z.(3900)* —» J/yn*, Z.(4430)* —
Y'n*, and the almost identical energy gaps Mz az0)—
Mz((3900) =591 MeV and le/ —Mj/¢ =589 MeV [27, 28]
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In Ref. [29], we adopted the method invented in Ref. [30]
for the conventional quarkonium to study Z=(3900) as the
ground state axialvector tetraquark state and the Z*(4430)
as the first radially excited axialvector tetraquark state,
respectively. We employed the energy scale formula

H= M3y, — (M) to select optimal energy scales of

spectral densities at the QCD side using the QCD sum
rules method with the effective (or constituent) charm
quark mass M, [31]. In Ref. [32], this subject is studied
with the QCD sum rules by adopting another parameter
system. In Refs. [22, 23], Z.(4020/4025) can be assigned
to be the ground state axialvector [uc]s[dC]s tetraquark
state with the quantum numbers J”€ = 17~ according to
the QCD sum rules calculations. If Z.(4600) is the first ra-
dial excitation of the hidden-charm tetraquark candidate
Z.(4020/4025), its preferred decay mode is Z.(4600) —
Y'n, rather than Z.(4600) — J/yr.

In this study, we perform a detailed and updated ana-
lysis of the ground and first radially excited states of the
charged hidden-charm tetraquark states with QCD sum
rules, and explore possible assignments of the Z.(4600)
state in the scenario of the axialvector hidden-charm tet-
raquark states with the quantum numbers J€ = 17~

This paper is structured as follows: in Sect. 2, we
present the analytical expressions of the QCD sum rules
obtained for the hidden-charm axialvector tetraquark
states Z.. Sect. 3 provides numerical results for the
masses and pole residues of Z, states and presents further
detailed discussions. The conclusions are provided in
Sect. 4.

2 QCD sum rules for axialvector tetraquark
states

In the following, we state the two-point Green func-
tions (or correlation functions) I1,,(p) and I1,,.s(p) as the
first step,

My(p) =i f d*xe (01T {J,(x) ]} (0)}[0),
(1
Map(p) =1 f d*xeP*OIT {1,/ (x)] ] (0)[0),

where the four-quark current operators J,(x)= Jli(x),
Jﬁ(x), 13(x>,

ijk ~imn
100 = i () Cysc (0@ (1, CeT ()
—u"I(xX)Cy,ct (x)d" (x)ysCE " (x)],
ijk nimn
Ta(x) = : [ (X)Copyysc (0)d" (x)y"Ce"" (x)

—u"I(x)Cy" K (x)d" (x)ys o, CE ()],

ijk nimn

B0 =2 [ (0 Co ()" ()y5y” €T (x)

+uTI(x)Cyysck ()d™ (X)o7, CE ()],

ijk oimn

Ju(x) = [ (x)Cy,ct (0)d™ (x)y, Ce™" (x)

—ul(x)Cy, F()d" (x)y, Ce™ ()], )

the superscripts i, j, k, m, and n are color indexes with
values obeying the antisymmetric tensor ¢ and the charge
conjugation matrix C =iy>y°. If we _preform the charge
conjugation (and parity) transform C (and P), the axi-
alvector current operators J,(x) and tensor current operat-
or J,,(x) have the following properties:

CJl,(x0)C =-J,(x),
C:\]yv(x)qil = _Jﬂv(x)’ 3)
Pl (x)P71 = -JH(R),
P, (0P = J(R),
where the coordinates x* = (t,X) and ¥ = (t,—%).

The diquark operators s/} CT'Qy in the attractive
color-antitriplet 3. channel have five spinor structures,
where CT = Cys, C, Cy,ys, Cy,, and Co,, or Coy,ys cor-
respond to the scalar, pseudoscalar, vector, axialvector,
and tensor diquark operators, respectively. The favorable
quark-quark correlations are the scalar diquark and axi-
alvector diquark in the color-antitriplet 3. channel from
the QCD sum rules [33]. If we introduce a relative P-
wave between the light quark and heavy quark, we can
obtain the pseudoscalar diquark operator &'*g] CysysQx
and vector diquark operator sijkq]T,Cyﬂﬁ Oy without expli-
citly introducing the additional P-wave, as multiplying a
vs can change the parity, and the P-wave effect is embod-
ied in the underlined ys. Because the pseudoscalar and
vector diquark states (or the P-wave diquark states) have
larger masses compared to the scalar and axialvector
diquark states, we choose the scalar diquark and axi-
alvector diquark to construct the four-quark current oper-
ators to interpolate the lower tetraquark states.

The tensor heavy diquark operators &%“g! (x)
CouyysQc(x) and &gl (x)CopyQc(x) have both  axi-
alvector and vector constituents,

Pa“”" @y ()CT jiys QP = +6 g (DCojeys Qe(),
Pe g, (0)Ca0;Qc(x)P™ =+ ¢ ()C0ro;Qc(%),
Pa“”‘ 5 (C0;75 Q0P = e g (DCoy5Qc(%),
P& qy (0)CT Qe ()P = —™ gy (D)Co 1 Qe(),

(4)
where the space indexes j, k =1, 2, 3. The tensor diquark
operators also play an important role in constructing the
tetraquark current operators [34]. We multiply the tensor
diquark (antidiquark) operators with the axialvector or
vector antidiquark (diquark) operators to project the axi-
alvector and vector constituents and construct the four-
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quark current operators JZ(x) and J3(x). Thereafter, we
use V and A to represent the vector and axialvector con-
stituents of the tensor diquark operators, respectively.

The four-quark current operators Ji(x), Jx(x), and
Ji(x) potentially couple to the [ucls[de]a —[uclaldE]s
type, _[uc] i[dcla —[uclaldcly  type, and [uclyldcly+
[uclyldcly type axialvector hidden-charm tetraquark
states with the spin-parity-charge-conjugation J*¢ = 1*-,
respectively. Meanwhile, the current operator J,,(x) po-
tentially couples to both the [uc]s[dc]s type axialvector
tetraquark state with J©€ = 1*~ and the vector tetraquark
state with J©C = 17, Hereafter, we do not distinguish the

We insert a complete set of hadron states that have
nonvanishing couplings with the four-quark current oper-
ators J,(x) and J,,,(x) into the Green functions II,,,(p) and
IL,p(p) to obtain the hadronic representation [35, 36].
Then, we separate the ground state axialvector and vec-
tor tetraquark state contributions from other contribu-
tions, such as the higher excited tetraquark and con-
tinuum states, to obtain the results,

e PuPv
I (p)z—z(_g _,_”_)4....
H m%—p2 e p?

negative or positive electric-charge of Z. tetraquark =TT, (p?) (_ Qv + p”_f") Foee, (5)
states, as they have degenerate masses. p
2
I =—Z (2 —p? - -
yvaﬁ(p) = 2 _p2 (p 8ua8vB — P 8up8va — 8uaPvPB — 8vBPuPa + 8upPvPa t gmpup/f)
VA
12
Y
+ - 5 <_gyapvpﬁ —8wBPuPe t 8upPvPa + ngﬂPﬁ) t-e
my—p
=I12(p*) (P* 88y = P 8up8vr — BuarPyPp = 8ypPuPas + 8upPvDer + 8vaPuPp)
+T1y(p*) (~8uaPvPp — 8vpPuPa + 8upPvPa + 8valuPp) (6)
i : . Pub
where Z represents the axialvector tetraquark states; ¥ Z £,(4, p)e(A,p) = —guv + /12 v )
represents the vector tetraquark states; Az, Az and Ay are ¥ p

the pole residues or current-tetraquark coupling constants,
O OO)Z:(p)) =Az8,,
O (OZe(p)) =Az&mape” PP
O O)Y(p)) =y (84pv = &v4) (7)
where the antisymmetric tensor 23 = -1, and &,(4, p)

depicts polarization vectors of the axialvector and vector
tetraquark states, which satisfy the summation formula,

The diquark-antidiquark type four-quark current oper-
ators J,(x) and J,,(x) potentially couple to the diquark-
antidiquark type hidden-charm tetraquark states. We per-
form Fierz rearrangements to those currents in both the
spinor space and color space to obtain a series of color-
singlet-color-singlet (or meson-meson) type current oper-
ators, for example,

1 - - -
Ju(x) =2—ﬁ{i5(X)i75€(X)d(X)7” u(x) = ic(x)y* c(0)d(x)iysu(x) + e()u(x)d(x)y*ysc(x)

— 2y ysu(x)d(x)c(x) — ie(x)y,ysc()d(x)o* u(x) + ie(x)oH” c(x)d(x)y,ysu(x)
— ie(xX)o*ysu(x)d(x)y,c(x) + ic(x)y,u(x)d(x)o* ysc(x)}, Q)

while the constituents, like &(x)iysc(x)d(x)y u(x),
c(x)y*c(x)d(x)iysu(x), etc, potentially couple to the
meson-meson type scattering or tetraquark molecular
states.

However, we must be careful in performing the Fierz
rearrangements, where the rearrangements in the spinor
space and color space are quite non-trivial, and the scen-
arios of the diquark-antidiquark type tetraquark states and
meson-meson type molecular states are considerably dif-
ferent.

According to the arguments by Selem and Wilczek, a

diquark-antidiquark type tetraquark may be described by
two diquarks trapped in a double potential well, where
the two potential wells are separated apart by a barrier
[37]. At long distances, the diquark and antiquark serve
as point color charges and attract each other strongly, just
like in the quark and antiquark bound states. However,
when the two diquarks approach each other, the attrac-
tions between the quark and antiquark in different
diquarks decrease the bonding energy of the diquarks and
tend to destroy the diquarks. Those effects (beyond the
naive one-gluon exchange force) increase when the dis-
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tance between the diquark and antidiquark decreases, and
arepulsive interaction between the diquark and anti-
diquark emerges. If this repulsion is large enough, it leads
to a barrier between the diquark and antidiquark [38]. The
two potential wells that are separated by a barrier can
provide good descriptions of the diquark-antidiquark type
tetraquark states [38].

Meanwhile, in the dynamical picture of the tetra-
quark states, the large spatial separation between the
diquark and antidiquark leads to a small wave-function
overlap between the quark-antiquark pair [39], and the re-
arrangements in the spinor space and color space are
highly suppressed.

It is difficult to account for the non-local effects
between the diquark and antidiquark pair in the four-
quark currents J,(x) and J,,(x) directly in practical calcu-
lations. For example, the current Jli(x) can be modified to

ijk nimn

J 'j (x,6) = [ (x)Cysck ()d™ (x + €)y,Ce " (x + €)

—u"I(x)Cy,c* (x)d™ (x + €)ysCe " (x + €)],
(10)
to account for the non-locality by adding a finite e;
however, it is highly difficult to deal with the finite € both
at the hadron side and at the QCD side in a consistent
manner. Hence, we express the current J}l(x, €) in terms of
the Taylor series of e,

1
aJ I (x,€)

1077} (x,€)
T oer 2 0e"def

+ Py,
0’ 2 999 leeo’

(11)
then we express the correlation function II,,(p) likewise

in terms of the Taylor series of e,
T,y (p) = Ty (O(€%)) + T,y (O(€h)) + Ty (O(€M)) + -+, (12)

where the components IT,,, (O(ei)) withi=0, 1, 2, ... rep-
resent the contributions of the order O(¢'). In this article,
we study the leading order contributions J}(x) = J}(x,0)
and IL,,(p) =11, (O(eo)). The effects beyond the leading
order frustrate the Fierz rearrangements of the diquark-
antidiquark type currents into a series of color-singlet-
color-singlet (meson-meson) type currents freely.

We employ the Feynman diagram drawn in Fig. 1 to
describe the lowest order contributions in the correlation

1 _ gl
Jy(x,€)=J,(x,0)+

—)‘
/’ ‘\

Fig. 2.
quarks and dashed lines represent heavy quarks.

functions for the diquark-antidiquark type four-quark cur-
rents and use the Feynman diagrams drawn in Fig. 2 to
describe the corresponding lowest order contributions in
the correlation functions for the color-singlet-color-sing-
let type four-quark currents. The Feynman diagram
drawn in Fig. 1 cannot be freely factorized into the two
Feynman diagrams drawn in Fig. 2 due to the barrier (or
spatial separation) between the diquark and antidiquark
[38, 39]. When a quark (antiquark) in the diquark (anti-
diquark) penetrates the barrier, the Feynman diagram
drawn in Fig. 1 is factorizable in color space. In this case,
the non-factorizable diagrams start at the order O(a?)
[40].

In Ref. [40], Lucha, Melikhov, and Sazdjiand argued
that the diquark-antidiquark type four-quark currents can
be changed into color-singlet-color-singlet (meson-
meson) type currents through the Fierz transformation.
The Feynman diagrams, which make contributions to the
quark-gluon operators of the order O(a?) and O(a;) in ac-
complishing the operator product expansion are factoriz-
able, and they are canceled out by the contributions of the
two-meson scattering states at the phenomenological side.
Furthermore, the factorizable parts (in color space) of the
Feynman diagrams of the order O(a?) are also canceled
out by contributions from the two-meson scattering states
(or more precisely, the free two-meson states). The relev-
ant non-factorizable contributions start at the order O(a?).
We do not agree with their viewpoint, as there is a repuls-
ive barrier [37, 38] or a large spatial separation [39] em-
bodied in the non-local effects to prevent freely perform-
ing the Fierz transformation, although at the present time
we cannot take into account non-local effects in the QCD

PSS

~

Fig. 1.
diquark-antidiquark type currents, where solid lines repres-

Feynman diagram of lowest order contributions for

ent light quarks, and dashed lines represent heavy quarks.
P CRUN
,: - )— =~ : B A Y
~

I\Y

X N0

Feynman diagrams of lowest order contributions for color-singlet-color-singlet type currents, where solid lines represent light
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sum rules and have to assume the leading order approx-
imations J(x) = J}(x,0) and Tl (p) =TI, (O(e®). Our
viewpoint is that the relevant contributions begin at the
order O(a?), and it is not necessary or it is very difficult
to perform the Fierz transformation to separate factoriz-
able and non-factorizable contributions in the color space.
Hence, we should take into account both the factorizable
and nonfactorizable Feynman diagrams for the diquark-

2\2 —

antidiquark type currents.

When the quark or antiquark penetrates the barrier,
we can perform the Fierz rearrangements and study the
effects of the scattering states. Thus, we explore the con-
tributions of the meson-meson type scattering states (in
other words, the two-meson loops) to the Green function
I1,,(p) for the four-quark current J; (x) as a representative
example,

~ /lZ ~ ~ /lz
[ (p) = = —2=Fu(P) — ——=8ua(P) DD (P)EP (D)3 (p) ——=
pr-M; 2-M2 p*—M;
1 h e Ax/z
- Z—ZAng(p)ZJ/W(p)g B(p)8s(P) . /Az +ooe,
P MZ p - MZ
2
Z -
=- g P+, (13)

p*- M% =2pp(P) = Zyyn(p) +---

where
. d461 G%DD’
Zon(p) =i [ ,
pp-(P) =1 2n) [qQ_M%)][(p_q)z_Mlzy]
. d*q G%J/wr
%)un(p) =i f . (4
Jjya(P 2n [q2 _M3/¢] [(p—q)2 _M%] (14)

Zu(P) = —guw + p;fv, and the Gzpp- and Gz, are the had-

ronic coupling constants. We resort to the bare quantities
Az and M so as to absorb the divergent terms that ap-
pear in the integrals in calculating the self-energies
Zpp-(P), Zjux(p), etc. The self-energies after renormaliza-
tion result in a finite energy-dependent width to modify
the dispersion relation,

2

Z

P = M2 +ipT(p?)
where the experimental value of the total decay width
Tz 3000 (M2) = (46 £ 10+20)MeV [4] (or (28.2+2.6)MeV
[9]), and the zero width approximation of spectral densit-
ies at the phenomenological side are considered reason-
able [41]. In this study, we neglect contributions of the
meson-meson type scattering states or the two-meson
loops, and the predictions remain robust.

We calculate all Feynman diagrams in performing the
operator product expansion to obtain the QCD spectral
representation of the Green functions (or correlation func-
tions) IT,,,(p) and T1,,.z(p). In the analytical calculations,
we consistently take into account vacuum condensates
(by selecting the quark-gluon operators of the orders
O(a*) with k < 1) up to dimension 10 and factorize higher
dimensional condensates into lower dimensional con-
densates by assuming vacuum saturation. After obtaining
the analytical expressions of the Green functions at the
quark-gluon level, we obtain the spectral representation

Hyv(p) ==

Gu(p)+---, (15)

[
via the dispersion relation. Then, we match the hadronic
representation with the QCD representation of the Green
functions (or correlation functions) I1,(p*) below the con-
tinuum threshold parameters sy and carry out the Borel
transformation with regard to P> = —p? to obtain the QCD
sum rules:

M2
/l%exp(—T—ZZ]: j;mg dsp(s)exp(—%), (16)
p(s) =po(s) +p3(s) + pa(s) + ps(s) + pe(s)
+p7(5) +pg(s) +p10(s), 17

Az = AzMy, the T2 is the Borel parameter, the subscript i
in the components of the QCD spectral densities p;(s)
represents the dimensions of the vacuum condensates,
p3(5) o(qq),
a,GG

P4(s) o< ),
/s

p5(s) {ggs0Gq),
po(s) o(Gq)?, dmas(gq)*,
a,GG
)5
T
08(8) <{gq){gGgsoGq),

p1(s) o(Gq)

a,GG
by

). (18)

We neglect the cumbersome analytical expressions of
spectral densities at the quark-gluon level in saving prin-
ted pages. We refer to Ref. [20] for technical details on
calculating the Feynman diagrams. In contrast, we refer
to Refs. [20, 23] for explicit expressions of spectral dens-
ities at the quark-gluon level for the axialvector current
J;(x) and tensor current J,,(x). In this study, we recalcu-
late those QCD spectral densities, at:ld use the formula

1 1 . A .
t?jtf,m = —géijémn+ 551""6"" with 1 = 5 to deal with the

p10(s) <(Ggs0Gq)*,(Gg)*(
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higher dimensional vacuum condensates, where A“ is the
Gell-Mann matrix. This routine leads to slight but neg-
lectful differences compared to old calculations. For the
currents J5(x) and J3(x), we neglect the tiny contribu-
tions of 4na(gq)>, which originate from operators such
as <‘?j')’ﬂ‘]igsD Gaﬁtfrm>

We derive Eq. (16) with regard to 7= iz’

the QCD sum rules for the tetraquark masses by eliminat-
ing the pole residues A through a fraction,

T
So

f dsp(s)e™
4m?

Thereafter, we refer the QCD sum rules in Eq. (16)
and Eq. (19) as QCDSR 1.

If we take into account the contributions of the first
radially excited tetraquark states Z. in the hadronic rep-
resentation, we obtain the QCD sum rules,

2

M? M2, 5
A%exp(—T—zz)+/I%,exp(—T—§]=f4zdsp(s)exp(—%),

then reach

(19)

(20)

where () is the continuum threshold parameter. Sub-
. . 1

sequently, we introduce the notations 7=—,
T2

dy .
D" = e and resort to the subscripts 1 and 2 to rep-
T

resent the ground state tetraquark state Z. and the first ra-
dially excited tetraquark state Z/ for simplicity. We re-
write the QCD sum rules as

exp (—TM%)-F/l% exp (—TMg) = Tgep(7), 21
where we introduce the subscript QCD to denote the QCD

representation. We derive the QCD sum rules in Eq. (21)
with respect to 7 to get

A%Mf exp (—TM%) + /léM% exp (—TM%) = DIlgcep(T).  (22)
From Egs. (21)—(22), we obtain the QCD sum rules,
(D-M2)Mgcp ()

/11-2 exp (—TMiz) = YRYE
i J

) (23)

where the indexes i # j. We derive the QCD sum rules in
Eq. (23) with respect to 7 to get

2 _ 2
M2= (D —MjD)HQCD(T) M=
' (D—M]z.)HQCD(T) '

(D3 - MJZDZ) HQCD(T)

(D - sz.)HQCD(T)
(24)
The squared masses M7 satisfy the equation,
~bM? +¢ =0, (25)

where

_D*®D’-D*®D
- D?2@D°-D®D’
D*®D-D*®D?
D*®D'-D®D’

D’ ® D" =D'Tlgep(t) DM oep (1), (26)
where the indexes i=1,2 and j,k=0,1,2,3. Finally, we
solve above equation analytically to obtain two solutions

[30],

Cc=

b— Vb*—4c

M}=—"F—, 27)
b+ Vb2—4

M2 = % (28)

From hereon forward, we denote the QCD sum rules in
Eq. (20) and Egs. (27)—(28) as QCDSR II. In calculations,
we observe that if we specify the energy scales of the
spectral densities in the QCD representation, only one
solution  satisfies the energy scale formula

p= M vz —(2M,)? in the QCDSR II, and we have to

abandon the other solution. In this study, we retain the
mass M, (Mz) and discard the mass M, (Mz).

3 Numerical results and discussions

We assume the standard values or conventional val-
ues of the vacuum condensates (7g) = —(0.24 +0.01 GeV)?,
(Ggs0Gqy=m(Gq),m?=(0.8+0.1)Ge V> (£9%9)=(0.33 GeV)*
at the typical energy scale u=1GeV [35, 36, 42], and
take the modified minimal subtraction mass of the charm
quark m.(m.) = (1.275+0.025)GeV from the Particle Data
Group [9]. We must evolve the quark condensate, mixed
quark condensate, and modified minimal subtraction
mass to a special energy scale to warrant the parameters
in QCD spectral densities with the same energy scale.
Then, we account for the energy-scale dependence of the
input parameters at the quark-gluon level,

?(lGeV)]“I;v

1GeV
(Gg)(1) =(qq)( )[ )

b}

s 1GeV ” 20y
(q850Gq) (1) (quO'Gq)(IGeV)[M]

s ) }3—z,1f
me(u) =m.(m c)[ il :| s
S( C)
W) = by logt | b3(log*t—logt— 1) + bobs
s b t b2 t b ’
(29)
2 33-2 153-19
where t:log”— by = B nf, 1= Tznf’
857 _ 5033,°%, 325 2 T i
T Mt orny
by = 17870 , with the values A =210MeV,
Vs
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292MeV, and 332MeV for the quark flavors ny =35, 4,
and 3, respectively [9, 43]. As we explore the hidden-
charm tetraquark states, we choose the flavor ny =4 and
search for the best energy scales u.

The Okubo-Zweig-lizuka super-allowed decays

Z. = Jlyn, Z. - y'n, Z!! - y"'n, (30)

are expected to easily take place. The energy gaps maybe
have the relations Mz — Mz = my —my)y, and Mz — My =
my» —my. The charmonium masses are myy = 3.0969
GeV, my =3.686097 GeV, and my = 4.039 GeV from the
Particle Data Group [9], my —myy =0.59 GeV,
my —myy = 094 GeV. We choose the continuum
threshold parameters to be +/so=Mz+0.59GeV and

s, = Mz+ 0.95 GeV tentatively and vary the continuum

threshold and Borel parameters to satisfy the following
four criteria:

1. The ground state tetraquark state or single-pole
term makes the dominant contribution at the hadron side;

2. The operator product expansion is convergent be-
low continuum thresholds, and the higher dimensional
vacuum condensates make a minor contribution;

3. The Borel platforms appear in both the lineshapes
of the tetraquark masses and pole residues with vari-
ations of the Borel parameters;

4. The masses of the tetraquark states satisfy the en-
ergy-scale formula.

After trial and error, we reach the feasible continuum
threshold parameters and Borel windows. We also ac-
quire the optimal energy scales of the spectral densities at
the quark-gluon level and the contributions of the ground
state tetraquark states for the QCDSR I, as shown in Ta-
ble 1. In general, for the continuum threshold parameters
sp, we can assume that any values satisfy the relation
My, < +[so <My + A, where the subscript gr denotes the
ground states, as there is an energy gap A between the
ground state and the first radial excited state. For the con-
ventional S-wave quark-antiquark mesons, the energy

gaps A vary from my,.,, —mk o) =522MeV  to
Ma(1300) — Mz =1160MeV, ie., A =522~ 1160MeV [9]. In
the QCD sum rules for conventional quark-antiquark
mesons, we usually choose the values +/so= Mg+
(0.4 ~0.7)GeV [42]. In Table 1, the continuum threshold
parameters s satisfy the relation v/so = Mz +(0.4~0.6) GeV
or Mz +(0.5~0.7) GeV. It is reasonable that as the val-
ues exp (—sgm /Tﬁmx) = (1 ~2)%, where the subscript max
denotes the maximum values, the contributions of the Z,
are significantly suppressed, if there are any present. In
Table 1, we write the continuum threshold parameters as
5o =21.0+1.0GeV? rather than as sy = (4.58 £0.11GeV)?
for the [uclz[dc)a —[uclaldel; and [uc]aldc]s tetraquark
states to retain the same form as in our previous work
[23]. In Ref. [23], we study the axialvector [uc]4[dc]4 tet-
raquark state and choose continuum threshold parameters
as 5o =21.0+1.0GeV>.

We obtain the corresponding parameters for QCDSR
IT using trial and error, see Table 2. In this study, we em-

ploy the energy scale formula u = ‘/M)z( vz~ (2M,)? with

the effective charm quark mass (or constituent charm
quark mass) M, to restrain the tetraquark masses and en-
ergy scales of the spectral densities [31]. The energy
scale formula can enhance contributions of the ground
state tetraquark states remarkably at the hadron represent-
ation and improve the convergent behaviors of the operat-
or product expansion at the QCD representation by en-
hancing the contributions of the lower dimensional vacu-
um condensates. This is feasible for the hidden-charm tet-
raquark and hidden-charm pentaquark states [44].

From Table 1 and Table 2, we find that the contribu-
tions of the single-pole terms (the ground state tetraquark
states) are about 40% —60% for QCDSR 1. The corres-
ponding contributions of the two-pole terms (the ground
state tetraquark states and the first radially excited tetra-
quark states) are about 70% —80% for the QCDSR I,
which satisfies the pole dominance criterion well. In
QCDSRII, the contributions of the ground state tetra-

Table 1. Borel parameters, continuum threshold parameters, energy scales of QCD spectral densities, and pole contributions for QCDSR 1.

Z. T2/GeV? S0 u/GeV pole
[ucls [dEla — [uc)aldEls 2.7-3.1 (4.4+0.1GeV)? 14 (40-63)%
[uc] z[de]a — [uclalde] 4 3.2-3.6 21.0+1.0GeV? 1.7 (40-60)%
[ucly[dely + [ucly[de]y 3.7-4.1 (5.25+£0.10GeV)? 29 (41-60)%
[uclaldcla 3.2-3.6 21.0+1.0GeV2 1.7 (41-61)%

Table 2. Borel parameters, continuum threshold parameters, energy scales of QCD spectral densities, and pole contributions for QCDSR II.

Ze+Z, T%/GeV? S0 u/GeV pole (Z.)
[ucls [de)a — [uclaldels 2.7-3.1 (4.85+0.10GeV)? 2.6 (72-88)% ((35-52)%)
[uc] z1de]a — [uclaldelz 3.2-3.6 (4.95+£0.10GeV)? 2.8 (64-80)% ((30-44)%)
[uclaldela 32-3.6 (4.95+0.10GeV)? 2.8 (64-81)% ((29-43)%)
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quark states are approximately 30%—45%, which is signi-
ficantly lower than the corresponding ground state tetra-
quark contributions in the QCDSR 1. For the ground state
tetraquark masses and pole residues, we prefer the predic-
tions from QCDSR 1. In numerical calculations, we find
that the contributions of vacuum condensates of dimen-
sion 10 (the largest dimension) are of percent level at the
Borel widows for both the QCDSR I and QCDSR 1I. The
minor contributions warrant good convergent behaviors
of the operator product expansion.

We consider all the uncertainties of input parameters
next. We obtain the numerical values of the masses and
pole residues of the ground state tetraquark states Z. and
the first radially excited tetraquark states Z/, shown in Ta-
ble 3 and Table 4. The ground state tetraquark masses
from the QCDSR I and the radially excited tetraquark
masses from the QCDSR 1I satisfy the energy scale for-

mula yu =, /M)Z(/y/z—(ZMC)Z, where the updated value of

the effective charm quark mass (or constituent charm
quark mass) M, = 1.82GeV is adopted [23]. In Table 4,
we also present the central values of the ground state tet-
raquark masses and pole residues extracted from the
QCDSR 1II at the ideal energy scales shown in Table 1.
We examine Table 4 and observe that the ground state
tetraquark masses cannot satisfy the energy scale for-
mula, hence we will discard those values. This is the
shortcoming of the QCDSR 1I.

In Fig. 3, we plot the ground state tetraquark masses
from QCDSR I and the first radially excited tetraquark
masses from QCDSR II with respect to variations of the
Borel parameters in significantly larger regions than the
Borel windows, which are shown in Table 1 and Table 2.
Fig. 3 shows that indeed very flat platforms appear in the
Borel windows for the [uc]s[dcla— [uclaldEls type,
[ucl;[dcla — [uclalde); type and [uclaldCls type axi-
alvector tetraquark states. For the [ucly[de]y + [ucly[deE]y
type tetraquark state, we only plot the ground state tetra-

quark mass, as the ground state tetraquark mass is suffi-
ciently large. Fig. 3 also shows that the platform in the
Borel window is not sufficiently flat, at the region
T? <3.6GeV?, the mass increases quickly and monoton-
ously along with the increase of the value of Borel para-
meter, and the platform appears approximately only at the
region T? > 3.6GeV?>.

The predicted mass Mz =3.90+0.08GeV for the
ground state tetraquark state [uc]s[dc]a—[uc]s[dc]s exhib-
its a good agreement with the experimental value
MZ(39OO) = (389901‘ 36149)MCV from the BESIII col-
laboration [4], which is in favor of assigning the Z.(3900)
to the ground state tetraquark state [uc]s[dc]a— [uc]a[dE]s
with the quantum numbers J©¢ = 1*~ [20]. In Ref. [45],
we study the non-leptonic decays Z}(3900) —J/yn*, n.p*,
D*D*, DOp*+ with the three-point QCD sum rules. In
analytical calculations, we consider both the factorizable
and nonfactorizable Feynman diagrams, match the had-
ronic representation with the QCD representation accord-
ing to solid quark-hadron duality, and obtain the total de-
cay width I'; =54.2+29.8MeV, which agrees with the
experimental value (46 = 10 +20)MeV very well consider-
ing the uncertainties [4].

The predicted mass Mz =4.47+0.09GeV for the first
radially excited tetraquark state [uc]s [de]s — [uclaldCls ex-
hibits good agreement with the experimental value
Mzaz0) = (447571 )3)MeV from the LHCb  collabora-
tion [10], which is in favor of assigning the Z.(4430) to
the first radially excited tetraquark state [uc]s[dc]a—
[uclalde]ls with the quantum numbers J7¢ = 1*~. We in-
vestigate its non-leptonic decays with the three-point
QCD sum rules to make a more reasonable assignment.

The predicted mass Mz =4.01+0.09GeV for the
ground state tetraquark state [uc];[d¢]s — [uclaldc]; and
Mz =4.00+£0.09GeV for the ground state tetraquark state
[uc]a[dc]a both exhibit good agreement with the experi-
mental values Mz4020/4005) = (4026.3 +2.6 £3.7)MeV [7]

Table 3. Masses and pole residues of ground state tetraquark states Z. from QCDSR I, where superscripts + represent positive and negative parity con-

stituents of tensor diquark states, respectively.

Ze 1S uesS 23S Myz/GeV A7/GeV?
[ucls [de]a — [uclaldels 0,1;1)—1[1,0;1) 3.90+0.08 (2.09+0.33)x 1072
[uclz[dEla — [uclaldel; 1%, ;1) —11,1%;1) 4.01+0.09 (5.96+0.94)x 1072
[uclyldely + [ucly[dely 17,11 +(1,17:1) 4.66+0.10 (1.18+0.22)x 107!
[uclalde]a I1,1;1) 4.00+0.09 (2.91£0.46)x 1072

Table 4. Masses and pole residues of ground state tetraquark states Z. and first radially excited tetraquark states Z/. from QCDSR II.

Zo+Z, Mz/GeV Az/GeV? Mz |GeV Az /GeV?
[ucls[dela - [uclaldels 3.81 1.77x 1072 4.47+£0.09 (6.02£0.80)x 1072
[uc] 5de]a — [uclalde); 3.78 3.94x1072 4.60+0.09 (1.35£0.18)x 107!

[uc]a[de]a 3.73 1.76x 1072 4.58+0.09 (6.55+0.85)x 1072
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C, and D represent the [uc]s[dc]a — [uclaldels, [uclz[dela —[uclaldels, [uclyldely + [ucly[dely, and [uclalde]la tetraquark states, respect-

ively.

and (4022.9+0.8 £2.7)MeV [8] from the BESIII collabor-
ation. There are two axialvector tetraquark state candid-
ates with quantum numbers J”C = 1*~ for Z.(4020). The
two-body strong decays should be studied to make the as-
signment more reasonable.

The predicted mass Mz =4.60+0.09GeV for the first
radially excited tetraquark state [uc];[de]s — [uclaldcl;
and Mz =4.58 £0.09GeV for the first radially excited tet-
raquark state [uc]s[dc]s both exhibit good agreement with
the experimental value Mzue00) = 4600MeV from the LH-
Cb collaboration [1]. In contrast, the predicted mass
Mz =4.66+0.10GeV for the ground state tetraquark state
[uclyldely + [uclylde]y is also compatible with the experi-
mental data Mzueo0) = 4600MeV from the LHCb collab-
oration [1]. Furthermore, the decay Z.(4600) — J/yr can
take place more easily for the ground state tetraquark
state, which is in good agreement with the observation of
the Z.(4600) in the J/ym invariant mass spectrum [1]. In
summary, there are three axialvector tetraquark state can-
didates with J¢ = 17~ for the Z.(4600), and further theor-
etical and experimental studies are required to identify
Z.(4600) unambiguously.

In Ref. [2], we identify Z.(4600) as the [dc]p[ac]a—
[dclalic]p type vector tetraquark state tentatively accord-
ing to the predicted mass Mz=(4.59+0.08)GeV
from the QCD sum rules [46], and explore its non-lepton-
ic decays Z.(4600) — J/ym, nep, J/Yao, xcop> D*D*, DD,

D*D and pD* with QCD sum rules by matching the had-
ronic representation with the QCD representation with
solid quark-hadron duality. The large partial decay width
[(Z;(4600) — J/yn™) =41.4*29>MeV  exhibits  good
agreement with the observation of the Z.(4600) in the
J/yn~ invariant mass spectrum.

In Table 3, we present the diquark spin S,., anti-
diquark spin S z;, and total spin S of the hidden-charm tet-
raquark states. Table 3 shows that the [uc];[dc]a—
[uclalde]; and [ucla[dc]s tetraquark states (that have tet-
raquark structures [17,1;1)—|1,17;1) and [1,1;1), respect-
ively) have slightly larger masses than the
[ucls[de)a — [uclalde]s tetraquark state (which has the
structure |0, 1;1)—11,0; 1)). This is reasonable, as the most
favored diquark configurations or quark-quark correla-
tions from the attractive interaction in the color-anti-
triplet (color-triplet) channel induced by one-gluon ex-
change are the scalar diquark (antidiquark) states. In pre-
vious studies, the scalar, pseudoscalar, vector, and axi-
alvector diquarks states were investigated with the QCD
sum rules, the scalar and axialvector heavy diquark states
in the color-antitriplet have almost degenerate masses, or
have almost the same typical quark-quark correlation
lengths, the mass gaps between the scalar and axialvector
heavy diquark states are very small or tiny [33]. Further-
more, this agrees with the predictions of the simple con-
stituent diquark-antidiquark model [27].

063105-9



Chinese Physics C Vol. 44, No. 6 (2020) 063105

The vector (or P-wave) diquark states [ucly and [uc]y
are expected to have larger masses than the axialvector
(or S-wave) diquark states [uc]4 and [ucly, as there is a re-
lative P-wave between the light and heavy quark. In the
case of the traditional cz charmed mesons, the energy ex-
citing a P-wave costs about 458MeV from the Particle
Data Group [9],

Smp; +3mp, +mp,  3mp- + mp

9 4

If the energy exciting a P-wave in the gc diquark systems
also costs approximately 458 MeV, the [uc]y[dcly+
[ucly[de]y tetraquark state has the largest ground state
mass, which is even larger than the masses of the first ra-
dially excited states of the hidden-charm tetraquark states
[ucl;[dc]a — [uclalde]; and [uc]alde]s with the quantum
numbers J7C = 1%, as exciting two P-waves costs about
0.9GeV, which is larger than the energy gap 0.6GeV
between the ground state hidden-charm tetraquark state
and the first radial excitation of the hidden-charm tetra-
quark states.

=458 MeV.  (31)

4 Conclusion

We investigate the ground states and the first radially
excited states of the [uc]s[dc]a—[uclaldC]s type,
[ucl;[de]a — [uclaldcl; type, and [uclaldCla type tetra-
quark states and the ground state [ucly[dec]y+ucly[de]y
type tetraquark state with the quantum numbers J7¢ = 1+~
using QCD sum rules in a systematic manner. The pre-
dicted tetraquark masses are in favor of assigning
Z.(3900) and Z.(4430) as the ground state and the first ra-
dially excited state of the [uc]s[dc]a—[ucla[dc]s type axi-
alvector tetraquark states, respectively; Z.(4020) as the
ground state [uc];[de]a—[uc]a[de]; type axialvector tetra-
quark state or [uc]s[d¢]4 type axialvector tetraquark state;
Z.(4600) as the first radially excited [uc]z[dc]la—
[uclalde]; type axialvector tetraquark state or [ucla[dc]a
type axialvector tetraquark state, or the ground state
[uclyldely + [uclyldely type axialvector tetraquark state.
Further experimental and theoretical studies are re-
quiered to identify the Z.(4600) unambiguously.
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