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Calculation of disconnected quark loops in lattice QCD*
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Abstract: Calculation of disconnected quark loops in lattice QCD is very time consuming. Stochastic noise methods

are generally used to estimate these loops. However, stochastic estimation gives large errors in the calculations of dis-

connected diagrams. We use the symmetric multi-probing source (SMP) method to estimate the disconnected quark

loops, and compare the results with the Z(2) noise method and the spin-color explicit (SCE) method on a quenched
lattice QCD ensemble with lattice volume 123 x 24 and lattice spacing a ~ 0.1 fm. The results show that the SMP
method is very suitable for the calculation of pseudoscalar disconnected quark loops. However, the SMP and SCE

methods do not have an obvious advantage over the Z(2) noise method in the evaluation of the scalar disconnected

loops.
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1 Introduction

Lattice QCD is a gauge invariant and nonperturbative
regularization scheme for QCD that was introduced by K.
Wilson in 1974 [1]. Many quantities can be obtained
from the first principles by using a finite space-time lat-
tice to simulate the interactions between quarks and
gluons. The calculation of diagrams with disconnected
quark loops is one of the most challenging problems in
lattice QCD. Disconnected loops are needed in calcula-
tions of many lattice QCD observables, such as the nucle-
on electromagnetic form factors [2, 3], pi-NN coupling
and pion polarizability [4], the mass of pseudoscalar fla-
vor-singlet mesons [5, 6], strangeness and charm content
of the nucleon [7, 8], hadronic scattering lengths and
structure functions [9], and electron or muon hadronic
g—2 loop contributions [10]. In the lattice QCD, the ex-
pectation value of disconnected quark loops can be writ-
tenas [11]

(pry)y=-Tr(rm), (1)
where I' € {]l, Vs V5> Y5Vit> Ty s,V = 1,2,3,4}, and M is the

Dirac fermion operator. In this work, we use Wilson's
Dirac operator, which can be written as
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where «a is the lattice spacing, and D is referred to as the
hopping matrix. The real number « is the hopping para-
meter [12]. To calculate the disconnected diagrams, we
need to solve the equation

Mx=0b, 4

where M is the Dirac matrix with dimension X x K, and b
is the source vector of dimension K x 1. The solution of
this equation is

x=M"'b. 5)

The evaluation of disconnected quark loops requires A/~!
connecting arbitrary pairs of lattice points. Generally,
Wilson's Dirac matrix is a large sparse matrix and its typ-
ical dimension K is from 10° up to 10°. Its direct evalu-
ation is prohibitively expensive, both in terms of com-
puter time and memory.

In order to calculate disconnected quark loops, specif-
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ic techniques must be introduced. Unbiased noise meth-
ods are traditionally used to estimate the inverse matrix
[13, 14]. The truncated solver method (TSM) [15] and the
spin explicit method (SEM) [16, 17] were introduced to
reduce the stochastic error. A probing technique is also a
way to deal with this problem [18]. However, we found
that all stochastic methods result in large errors in the cal-
culations of disconnected quark loops Tr(I"M‘l). Hence,
we introduce the symmetric multi-probing source (SMP)
method to calculate all disconnected quark loops, and
compare the results with the Z(2) noise and spin-color ex-
plicit (SCE) methods. All comparisons are based on the
point source results which are taken as exact.

2 Methods

2.1 Z(2) noise method

In general, the inverse of a large sparse matrix can be
calculated by using the unbiased stochastic method. Here,
we briefly review the Z(2) noise method. We assume L
column noise vectors b', b2, b3,..., b*, which have the fol-
lowing two properties [13]

by =7 Zb’

LZblb’—d +0(1/ VL), (7)

(1/VL), (©6)

where bl is the i-th entry in the noise vector /. The
stochastic average < ---> is taken over the ensemble of
noise vectors L.

IfZ.(2) noise vectors are used in Eq. (4), we obtain

= Z Ml (8)
The inverse matrix element, M ~, 1s given as
<bjxi>= Y Mg' <bjbe>= M. ©9)
k

The variance of the Z(2) noise method is [19]

2 = Z|M”‘| (10)

i#j

It can be seen that the stochastic error of the Z(2) noise
estimate results only from the off-diagonal elements of
the inverse matrix.

Therefore, we obtain Tr(I’'M™")

Tr(rm~) ZI"M’ Zerfjlaij
i

ZZZZFM;JII”%; - Z%Zbg(mg). (11)
i,j i i !

In order to reduce the error of the Z(2) noise method, we
applied an independent stochastic inversion of the spin
and color components (spin-color explicit method, SCE
method) for each Z(2) noise vector, similar to SEM [16].

2.2 SMP method

The SMP source vector ¢p is introduced as follows
[20]

or(S(PLasa)= ) Y(.a.a), (12)

YeS (x,P)

where « is the Dirac index and a the color index. S (x, P)

represents the sites with the same color of x obtained by

ns ns ns e

the symmetric coloring scheme P(— -, —, mode)

where ng and n, are the spatial and temporal sizes of the
lattice. d is the distance parameter, and mode = 0, 1,2 cor-
responds to the Normal, Split and Combined mode. x is
the seed site at (xj,x»,x3,%4) and y are the other lattice
sites belonging to the set S(x,P). ¢ is the normalized
point source vector. The number of SMP sources Ngmp
that cover all lattice sites is

12d* mode =0,
Nsmp =4 24d* mode =1, (13)
6d*  mode =2.

Applying the SMP source in Eq. (4) to calculate the trace
of rm~—1, we obtain

Te(IM™)g,,, = Z Y (x.a.a)(TM™")¢p (S (x.P),.q)

xX,a,a

Y#EX
= Z w(x,a,a)(FM_l)w(x,a,a)+ Z Zw(x,a,a)(l"M_l)l//(y,a,a)
X,a,a yes (x,P) a,a
yEX
=Tr(rm") Z Zgb(x @.a)(rM™" )y (v.e.a), (14)

yeSs (x,P) a,a

where the second term in the last line is the sum of off-di-
agonal elements of pm~!. Considering the space-time
locality of M, this term can be regarded as the error in the

[
calculation of Tr (F M1

). If we choose the proper scheme
P of the SMP source, the error is quite small. In this case,
we can neglect the error term and get
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Tr(rM™" )~ Tr(rM™) - (15)

3 Simulation details

It is very time consuming to solve Eq. (4) if b is the
point source (p-s) vector which runs over all lattice sites
of a large lattice. In this work, we use the point source
method to evaluate Tr(F M‘l), and take the result as ex-
act, and use it for comparison. We only work with en-
sembles of Iwasaki pure gauge configurations, where the
volume is L2 x L, =123 x 24. The lattice spacing of the en-
sembles is a ~ 0.1 fm. The analysis is performed on 25
configurations with x = 0.151, corresponding to m, ~ 488
MeV. We show the results for Tr (M*I) and Tr (ysM”) in
the main body of this paper. The results for Tr(ngfl),
Tr(y5y]M_1> and Tr(o-34M“), selected as representative,
are presented in appendix A.

Using the identity M = ysMTys [21], we obtain

Tr(ysM ") =Tr(7575 (M’l)fys)
:Tr((M‘])T)@) =Tr((y5M_1)T). (16)

Therefore, Tr(y5M‘l) is a real number, and Tr(M‘l) is
also real. The absolute error Ar discussed in this work is
defined as

Ar:lrp—rm|, (17)

where r, is the result for the point source and r,, is the
result for any other method.
We also define the method error o~ as

N.
1 conf
2 2
"= —— ) Ar}. 18
Nconf(Nconf_l); ! ( )

Ar; is the absolute error of the i-th configuration (conf),

and Ny 1s the number of configurations. In the defini-
tion of o, we use r, and not the average value (r), of all
configurations, to eliminate the fluctuations due to differ-
ent configurations. Therefore, this definition gives only
the error of the method.

4 Results and analyses

The results and absolute errors of the first ten config-
urations are shown as representative in this paper.
However, we show the method error for all 25 configura-
tions. For the SMP method, the results for Tr(M‘l) are
shown in Table 1, and in Table 2 for Tr(y5M’1). The
number of source vectors for all methods is the same.

In Figs. 1, 2 and 3, the absolute errors of Tr (M‘l) for
the SMP, Z(2) noise and SCE methods are shown. As ex-
pected, as the number of source vectors increases, the ab-
solute errors become smaller for all three methods.

In Fig. 4, (Ar) of Tr(M‘l) for the SMP and SCE
methods are compared with the Z(2) noise method for the
same number of source vectors, indicating that when the
number of source vectors is small, the absolute errors of
SMP and SCE are larger than of Z(2). The figure also
shows that the SCE method does not bring any improve-
ment in the evaluation of the scalar disconnected quark
loops compared with the Z(2) noise method. Hence, the
Z(2) noise method is an efficient method for the calcula-
tion of Tr(M’] )

As the number of source vectors increases, the results
of the SMP, SCE and Z(2) noise methods become more
and more accurate. The results for Tr (M“) show that the
Z(2) noise method is a good choice for evaluating the
scalar disconnected loops.

The results for Tr(y5M‘1) for the SMP method are

Table 1. Results for Tr(M ’1) for the SMP method. N is the number of SMP source vectors. The numbers in the parentheses represent the parameters d

and mode of the SMP source; for example, (6,0) denotes d = 6 and mode = 0. The SMP method is a good approximation when the number of source

vectors is large.

conf. p-s N =15552(6,0) N =3072(4,0) N =1536 (4,2) N =384(2,1) N=192(2,0) N=96(2,2)
1 453821.05 453821.93 453834.19 453831.06 453821.88 453785.60 453890.51
2 454042.56 454049.54 454036.58 454040.99 454020.87 453919.91 453945.70
3 454216.18 454218.24 454219.28 454218.60 454223.99 454389.67 454395.52
4 454002.41 453999.82 453998.76 453994.74 453964.91 454033.19 454069.26
5 454354.48 454357.04 454337.75 454319.32 454291.41 454229.23 454220.83
6 454301.64 454299.51 454308.33 454298.46 454274.90 454210.82 454231.96
7 454085.53 454087.16 454089.11 454085.17 454083.09 454065.35 454038.91
8 454059.63 454060.60 454054.26 454053.96 454016.87 454104.69 454054.37
9 453944.56 453941.69 453936.50 453930.76 453919.66 453778.34 453765.85
10 453914.30 453915.53 453924.14 453923.83 453936.33 453826.90 453825.25
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Table 2. Results for Tr (y5 M ‘1) for the SMP method. N is the number of SMP source vectors. The numbers in the parentheses represent the parameters

d and mode of the SMP source.

conf. p-s N =15552(6,0) N =3072 (4,0) N =1536 (4,2) N=384(2,1) N=192(2,0) N=96(2,2)
1 —18.94 —18.37 —22.18 —15.61 —10.08 —21.66 —22.73
2 202.86 203.21 202.90 212.26 192.83 184.64 188.23
3 183.32 184.33 181.43 180.09 178.41 178.20 148.52
4 —170.65 —170.89 —163.42 -160.16 —186.75 -172.39 —206.26
5 —586.77 —583.80 —563.81 —555.51 —559.26 —569.70 -519.76
6 74.85 73.18 73.35 75.99 81.00 96.71 124.26
7 —288.10 —290.81 —288.23 —284.46 —291.66 —280.63 —271.28
8 141.12 141.86 137.16 138.44 153.09 167.57 164.22
9 —338.58 —335.66 —342.16 —329.44 —338.10 —332.02 —351.82
10 —223.22 —220.96 —224.15 —221.93 —237.32 —218.63 —222.10
200 =(6 0 % | I N=1296
L I (4.0) i -
180 EE i 80 -E:zjzg .
160 [ B (2.0) ] 70 | ENg=32
140 L @2 i L I Ns=16
60 |- EENg=8
120 | - 3
5100 + -
80 | -
60 | - i
40 | -
20 | - I
1 2 3 4 5 6 7 8 9 10 1 5 3 4 5 5 7 8 9 10
configuration configuration

Fig. 1. (color online) Absolute error of Tr(M‘l) for the SMP
method. The numbers in the parentheses represent the para-
meters d and mode of the SMP source vectors; for example,
(6,0) denotes d = 6 and mode = 0.

120 I N,=15552
I N,=3072
[CIN,=1536
100 [CIN,=384 |
I N,=192
g0 L EEN=s6
—
<60 } ]
40 | B
20 | .

1 2 3 4

5
configuration

Fig. 2. (color online) Absolute error of Tr(M“) for the Z(2)
noise method. N, is the number of Z(2) source vectors.

6 7 8 9 10
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Fig. 3. (color online) Absolute error of Tr(M‘l) for the SCE
method. Ng is the number of SCE source vectors.

[ swP

N=96 N=192  N=384

N=1536 N=3072 N=15552
Fig. 4.  (color online) o of Tr(M‘l) as a function of the num-

ber of source vectors N for the three different methods.
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shown in Table 2. The absolute errors of Tr(ysM‘l) are
presented in Figs. 5, 6 and 7. As the number of source
vectors increases, the absolute errors of all methods de-
crease, as expected. Fig. 6 shows that the Z(2) noise
method gives a too large error of Tr(ysM‘l), especially
for small V.

In Fig. 8, the method error of Tr (ysM’l) is shown, in-
dicating that o decreases with increasing number of
source vectors for all three methods. The SCE method
results in a smaller o than the Z(2) noise method for the
same number of source vectors. Hence, the SCE method
is an obvious improvement compared with the Z(2) noise
method. Also, the SMP method gives a much smaller
method error than the Z(2) noise method, especially for a
small number of source vectors.

All these results indicate that the Z(2) noise method
gives a larger error than the SMP and SCE methods for
the same number of source vectors in the calculation of
Tr(ysM‘l). Compared with the Z(2) method, the SCE

method indeed improves the calculation of Tr (ysM "). On
the other hand, the absolute errors of the SMP method are
smaller than the SCE method. The results of the SMP
method are quite precise when the parameter d is large
enough. Hence, the SMP method has a considerable ad-
vantage over the SCE and Z(2) noise methods in the es-
timation of Tr (75 M )

In Table 3, o-/o ) of the SMP and SCE methods for
different N are presented. In the case I'=1, the Z(2)
method is the best of the three methods, while for I' = ys,
the SMP method gives better results than the others. o for
the SMP method is 22.15% ~ 38.31% of the Z(2) noise
method, and about half of the SCE method. Therefore,
the SMP method is a considerable improvement in the es-
timation of pseudoscalar disconnected loops.

70

I (6.0)
I (4.0)
60 FC1@2 -
Clen
I (2.0)
50 @2 o E

40 i
3
30 | g

20 E

J Ji.L ]
0 ]
0 1 2 3 4 5 6 7 8 9 10 11
configuration

Fig. 5. (color online) Absolute error of Tr(y5M‘1) for the
SMP method.

210 F [ N =15552
[ N,=3072
- ~ [CIN,=1536
180 - ~ [CON=384 ]|
I N=192
150 | M N9

120 q

Ar

90 B
60 - B

’ il

1 2 3 4 5 6 7 8 9 10
configuration

Fig. 6.  (color online) Absolute error of Tr(y5M*1) for the
Z(2) noise method.

B N-129
180 |- IIIN=256 M E
CNe=128
N2

150 - mmN=16 1
BN

120 | g
90 a
60 | s
'L
1 2 3 8 9 10

configuration

Ar

Fig. 7. (color online) Absolute error of Tr(ysM'l) for the
SCE method.

25

I svP
I 7(2)
[Jsce

dlis.

N=96 N=192 N=384 N=1536 N=3072 N= 15552

20

15

10

Fig. 8. as a func-

tion of the number of source vectors N.

(color online) Method error of Tr 7;M

5 Conclusions

We have calculated in this work all disconnected
quark loops using the SMP, SCE and Z (2) noise methods,
and presented in the paper a detailed analysis of the res-
ults for the scalar and pseudoscalar disconnected quark
loops. As expected, the absolute errors of the SMP, SCE
and Z(2) noise methods decrease as the number of source
vectors in the evaluation of the disconnected quark loops
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Table 3.  o/0z() for the SMP and SCE methods for different NV.
r method N =96 N =192 N =384 N =1536 N =3072 N =15552
SMP 199.22% 371.77% 179.12% 141.37% 138.09% 105.91%
! SCE 99.56% 148.38% 176.85% 161.88% 164.25% 143.99%
SMP 35.77% 38.31% 25.13% 32.53% 23.36% 22.15%
7 SCE 65.87% 81.97% 65.56% 56.26% 51.62% 52.64%

increases. In the case of scalar disconnected loops, it was
shown that the SCE method does not have an advantage
over the Z(2) noise method. The absolute errors of the
Z(2) noise method are smaller than of the SMP and SCE
methods even if the number of source vectors in the cal-
culation of scalar disconnected diagrams is small.

We also found that the SMP method can improve the
precision of the calculation of Tr (y5M") by about a
factor of 2.5-4.6 compared to the Z(2) noise method, and
that the SCE method does not have an advantage over the

SMP method. The results show that of the three methods,
SMP is the best for the calculation of Tr (y5M") . We be-
lieve that the SMP method is suitable due to the operator
hermiticity, but the reason why it gives a significant im-
provement in the calculation of pseudoscalar disconnec-
ted quark loops requires further study.

Numerical simulations have been performed on the
Tianhe-2 supercomputer at the National Supercomputer
Centre in Guangzhou (NSCC-GZ), China.

Appendix A: < Ar > of the other disconnected quark loops

In this appendix, we show <Ar> in Figs. Al, A2, A3 and
o/ozn) in Table Al of Tr(y3M-1), Tr(ysylM‘]) and Tr(o—34M‘1),

which indicate that the SMP method does not have a significant ad-

I svP
Iz

20 [CJScE -

15
o
10 -
5 _
0
N=96 N=192 N=384 N=1536 N=3072 N=15552
Fig. Al.  (color online) o of Tr(y3M") as a function of the

number of source vectors N.

vantage compared with the Z(2) noise and SCE methods. As the
number of source vectors increases, the absolute errors of all meth-
ods decrease. When the number of source vectors is large enough,
all methods give quite similar results.

Il svP
60 I Z(2)
[Isce
50 | E
40 E
©
30 | E
20 E
10 | E

N=1536 N=3072 N=15552
(color online) Method error of Tr(ysyiM~!) as a
function of the number of source vectors N.

N=96 N=192  N=384

Fig. A2.

Table Al. o /0z2) for the SMP and SCE methods for different .
r method N =96 N =192 N =384 N =1536 N =3072 N = 15552
SMP 205.18% 269.00% 174.39% 129.72% 123.95% 101.65%
7 SCE 134.94% 176.29% 153.68% 174.92% 142.95% 154.08%
SMP 66.81% 63.66% 55.92% 37.60% 52.31% 47.30%
I SCE 43.32% 52.49% 46.56% 41.89% 57.33% 48.15%
SMP 72.78% 54.20% 47.71% 64.61% 70.62% 73.00%
. SCE 84.09% 60.01% 79.27% 87.96% 90.24% 133.93%
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N=96

N=192

N=384

I svP
B z2)
[Jsce

N=1536 N=3072 N=15552

Fig. A3. (color online) Method error of Tr (0-34M“) as a function of the number of source vectors N.
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