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Abstract: We present a new method for solving the probability distribution for baryons, antibaryons, and mesons at

the hadronization of the constituent quark and antiquark system. The hadronization is governed by the quark combin-

ation rule in the quark combination model developed by the Shandong Group. We employ the method of the generat-

ing function to derive the outcome of the quark combination rule, which is significantly simpler and easier to general-

ize than the original method. Furthermore, we use the formula of the quark combination rule and its generalization to

study the property of the multiplicity distribution of net-protons. Taking a naive case of quark number fluctuations

and correlations at hadronization, we calculate ratios of multiplicity cumulants of final-state net-protons and discuss

the potential applicability of the quark combination model by studying hadronic multiplicity fluctuations and the un-

derlying phase transition property in relativistic heavy-ion collisions.
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1 Introduction

Most hadronization models, such as the Lund string
model [1-4] or the coalescence/recombination models
[5-21] in electron-positron and hadron-hadron collisions,
assume that a hadron is formed by quarks and antiquarks
in the neighborhood of phase space. Normally, the phase
space can be decomposed into the longitudinal and trans-
verse directions. The longitudinal phase space plays a
particular role. For example, in the Lund model, a string
is formed between a quark and an antiquark moving back
to back, which is an object with only one spatial dimen-
sion, i.e., with only the longitudinal phase space. A
quark-antiquark pair is produced as the result of the string
breaking into two pieces. The process of string breaks
continues until it is terminated at a lowest energy scale.
The transverse momentum space of the excited quark-an-
tiquark pair is rather limited and can be described by the
exponentially suppressed function of the transverse mo-

mentum. In relativistic heavy-ion collisions, the longitud-
inal phase space remains dominant, although transverse
expansion is significant.

The quark combination model developed by the Shan-
dong group (SDQCM) [9-11, 22-35] is a kind of exclus-
ive or statistical hadronization model, which differs from
the Lund string model and the coalescence model. The
model first takes the constituent quark degrees of free-
dom as an effective description for the strongly-interac-
ted quark gluon system at hadronization. Subsequently,
the model adopts a quark combination rule (QCR) to
combine the quarks and antiquarks in the neighborhood
of the longitudinal phase space into baryons and mesons.
Since the longitudinal phase space is easily described by
the momentum rapidity, the correlation in rapidity is the
basis of the QCR. This type of QCR in SDQCM has suc-
cessfully explained many data of hadronic production in
e*e” and pp collisions [24, 25, 36, 37] and rapidity distri-
butions of hadrons in heavy-ion collisions [26, 27, 31, 38].
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The probability distributions of the particle numbers
of baryons, antibaryons, and mesons is an important ob-
servable in high energy collisions and is closely related to
hadronization dynamics. Especially, the particle number
distributions are essential to the search for the critical end
point of the QCD phase diagram in relativistic heavy-ion
collisions [39—43]. In this study, we propose a new meth-
od to solve the baryon and meson number distribution in
the context of the QCR in the SDQCM. The new method
is significantly simpler and easier to generalize to more
sophisticated cases than the original one [44]. We follow-
ingly employ these formula to calculate the multiplicity
distribution and ratios of cumulants for net protons in re-
lativistic heavy-ion collisions.

The paper is organized as follows. In Sec. 2, we
briefly present the original QCR in the SDQCM. Then,
we apply the generating function method to solve the
particle number probability of baryons, antibaryons, and
mesons for a given number of quarks and antiquarks. In
Sec. 3, we generalize the original QCR and derive the
corresponding particle number probability of baryons, an-
tibaryons, and mesons using the generating function
method. In Sec. 4, we compare the numerical difference
between the original QCR and the generalized QCR in
terms of moments of the antibaryon number. In Sec. 5,
we formulate the fluctuation and correlation of identified
hadrons. In Sec. 6 and 7, we study the effects of the quark
number fluctuation and resonance decays. In Sec. 8, we
provide an illustrative example of applying the QCR and
generalized QCR to calculate the ratios of cumulants for
net protons in heavy-ion collisions and compare it with
the obtained data. Finally, we provide a summary and dis-
cussions in Sec. 9.

2 Baryon and meson formation in original
quark combination rule

Because of the non-perturbative QCD feature, the
transition from quarks and/or gluons to hadrons is not
solved from the first principle, and it is presently only de-
scribed by the phenomenological models. Inspired by the
simple and effective description of the constituent quark
model in explaining the static property of hadrons,
SDQCM assumes the constituent quarks and antiquarks
as effective degrees of freedom for the strongly-interact-
ing quarks and gluons at hadronization ,and therefore
builds a simple hadronization phenomenology by the
combination of these constituent quarks and antiquarks
into hadrons. We emphasize that there are explicit experi-
mental signals for such constituent quark degrees of free-

dom in high energy collisions, such as the quark number
scaling property of elliptic flows and the transverse mo-
mentum spectra for hadrons observed in recent years
[45—-50]. A phenomenological quark combination rule
was proposed in Ref. [22] to describe the combination of
these constituent quarks and antiquarks in a one-dimen-
sional phase space and can successfully describe the data
of yields and momentum distributions of hadrons in high-
energy reactions [24—-27, 31, 36—38]. In this section, we
use the generating function method to solve the probabil-
ity distribution for the number of baryons, antibaryons,
and mesons formed by QCR.

2.1 Original quark combination rule

In the QCM, N, quarks and Nze antiquarks generated
in an event are placed into a queue and then allowed to
combine into hadrons one by one following the quark
combination rule (QCR) [22]. QCR is based on the basic
property of QCD. A gg pair may occur in a color octet
with a repulsive interaction or a singlet with a attractive
interaction. If gg is adjacent in phase space, gg will have
sufficient time or opportunity to be in a color state and
hadronize into a meson. For a gg pair, it may be in a sex-
tet or an antitriplet. If its nearest neighbor is a g in phase
space, they can hadronize into a baryon. If the neighbor
of qq is a g, gg will win the competition to form a meson
and leave a ¢ to combine with other quarks and/or anti-
quarks. This is because the attraction strength of the sing-
let for ¢g is two times that of the antitriplet for gq (via
counting the color factor in the one-gluon exchange case).
The original QCR proposed in Ref. [22] reads:

1. Check if there are partons in the queue. If there are
no partons, the process ends. Otherwise, start from the
first parton (g or g) in the queue and proceed to the next step.

2. Look at the second parton. If there is no second
parton, the process ends. Otherwise, if the baryon num-
ber of the second parton in the queue is different from the
first one, i.e., the first two partons are either gg or gqr,
they combine into a meson and are removed from the
queue, repeat step 1; Otherwise, if they are either gg or
qq, proceed to the next step.

3. Look at the third parton. If there is no third parton,
the process ends. Otherwise, if the third parton is differ-
ent in the baryon number from the first one, the first and
third parton form a meson and are removed from the
queue, repeat step 1; Otherwise, if the first three partons
combine into a baryon or an antibaryon and are removed
from the queue, go to step 1.

The following example demonstrates the function of
the QCR.

9192939495969798999109119129139149159169179189 19920 = M(q192)B(q39495)M(q697)M (q3G9)M (q10911)

B(G12913914)M(G15916)M(q17G,10) M(q18G20)-

Q)
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In relativistic heavy-ion collisions, the longitudinal rapid-
ity space is predominant, and the rapidity density of
quarks and antiquarks is quite large. Therefore, it is suit-
able and straightforward to apply such a QCR in one-di-
mensional longitudinal rapidity space. However, it is
quite complicated in three dimensional phase space, be-
cause one can not easily define a particular hadronization
order to apply QCR [51].

2.2 Recursive relation for F(Ny;,Ng,Ng,N,,N;)

We consider the system consisting of N, quarks and
Nj antiquarks stochastically populated in one-dimension-
al phase space. After combination by QCR, there are Ny
baryons, Nz antibaryons, and N, mesons formed, and N,
quarks and N; antiquarks left. There are only five differ-
ent configurations with (N,,N;) =(0,0),(0,1),(1,0),(2,0),
and (0,2). The quark number conservation gives
Ny +3Ng+ N, =Nq,
Ny +3Nj+N;: =N )

The outcome of implementing the QCR to the queue of
N, quarks and N; antiquarks yields a group of numbers
(Nym,Np,Ng,N,,N;). The queue (Ny,Np,Np,0,0) can be
reached by one of the following ways of adding one ¢ or
g to the end of the other four queues with a smaller num-
ber of quarks and antiquarks

(a)(Ny —1,Np,Np,1,0) +4,

(b)(Ny —1,Np,N3,0,1) +¢,

(c)(Nm,Np—1,Np,2,0) +q,

(d)(Nm,Np,Np—1,0,2)+4. 3)

We use F(Ny,Ng,Ng,N,,N;) to denote the number of
different queues for a given group (N;,Np,Ng,N,,Nz).
We define F(0,0,0,0,0)=1 and F(Ny;,Np,Ng,N,,Nz) =0
for the case that any Ny, N, N3, N,, and N; are negative.
Under the constraint of Eq. (2), the sum of
F(Ny,Np,Ng,N,,N;) over all different groups of (Ny,
Npg,Ng,N,,N;) should be

S(N,Ny) = Z

{NMsNBvN[?er ri}

F(Ny,Np,Ng,N,,N5)

X ON,+3N,+N,.N,ON, +3N;+N,.N,
_( Ny+N; )= (Ng +Ny)! @
Ny T ONyINg! O
where 6;;=1 ifi=jand 6;;=0 if i # j.
For non-zero N, and N;, F(Ny,Np,Ng,N,,N;) has a
property
Ny
F(Ny;,Ng,Ng,No,Ni) = > F(i,Ng,Np,0,0).  (5)
i=0
Proof of Property. We first take (N,,N;) = (1,0) as an ex-
ample. We note that the queue yielding (Ny, Ng, N, 1,0)
can be achieved in two ways: (a) adding ¢ to the end of
the queue with (N, Ng,N3,0,0); (b) adding g to the end

of the queue with (Ny, — 1,Np, Nj,2,0), which can further
be obtained from the queue with (Ny; —1,Np,Nj3,1,0) by
adding a ¢q at the end. Thus, we obtain the recursive rela-
tion
F(Ny,Np,Ng,1,0) =F(Ny,Np,N3,0,0)
+ F(Ny —1,Np,N3,2,0)
=F(Ny,Ng,N3,0,0)
+F(Ny —1,Np,N5,1,0).  (6)
Solving the above equation recursively, we obtain Eq.
(5), where we used F(0,Ng,N3,1,0)=F(0,Np,N3,0,0).
The proof of the case (N,,N;z) = (2,0) is straightforward,
because the queue yielding (N, Ng,Ng,2,0) can be only
obtained from the queue with (N, Ng,Ng, 1,0) by adding
a g at the end. The proof for the cases (N,,N;) = (0,1) and
(N,,N;z) =(0,2) is similar.
Using properties in Eq. (5) and Eq. (3), we obtain
F(Ny,Np,N3,0,0) =F(Ny— 1,Np,N3, 1,0)
+ F(Ny —1,Np,N3,0,1)
+F(NM,NB— 1,NB,2,0)
+ F(Ny,Np,Ng—1,0,2). (7)
We make the replacement Ny — Ny —1 in the above
equation and take the difference between the two. Finally,
we use Eq. (5) to obtain the recursive equation for F(Ny,
Np,N3,0,0)
F(Ny,Np,N,0,0) =3F(Ny —1,Np,N3,0,0)
+ F(Ny,Np—1,N3,0,0)
+F(NM,NB,NB—1,0,0), (8)
where Ny >0, Np>0, Np>0 excluding two -cases
(Ny,Ng,N3,N,,N;) = (0,0,0,0,0),(1,0,0,0,0), which we
have F(0,0,0,0,0) =1 by definition and F(1,0,0,0,0) =2
by simple counting.

2.3 Solution to recursive equation by generating func-
tion method

First, we consider a special simple case: Ny > 1,
N =Nz=0, N, =N;=0. Eq. (8) is simplified to

F(Ny,0,0,0,0) = 3F(Ny —1,0,0,0,0), 9)
which immediately leads to the solution
F(Nu.0,0,0,0) = 2x 3%, (10)

for Ny, > 1 with F(1,0,0,0,0) = 2.

Now, we consider the general case for
F(Ny,Ng,N5,0,0) with Ny >0, Ng>0, Nz>0. We
define the generating function

AGy=Y DY

Ny=0 Ny=0N;=0
X F(Ny, Ng,Nj,0,0)x™yNo Ve (11)
and F(Ny,Ng,N3,0,0) is the coefficient of xMuyNszVe in

the polynomial expansion of A(x,y,z), once solved.
Tosolve A(x,y,z), we define apartial generating function
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AN, Ng) = ) F(Ny, Ny, Ng,0,0)x.
Ny=0

Inserting Eq. (8) for Ny, > 1, we obtain

(12)

(1-3x)A(x;Np,Ng) — F(0,N5,N3,0,0) = A(x;Ng — 1, Ng) + A(x; Ng, Nz — 1) — F(0,Ng — 1,N5,0,0) — F(0,Ng, N5 — 1,0,0).

In a special case with N = 0, we obtain

A()C,O,NB) ZWA(X, 0,0)
2x 1
= , 14
(1—30%  (1=30)" ()

where we used Eq. (10) and assumed that 3|x| < 1. In the
same way, we obtain

2x 1

A(x;Np,0) = + . 15
N0 = G5 gn P T om (15)
We also obtain two sum rules
(o) 1 _
S A Np Oy = (16)
= 1-3x—y
= . 1-—x
Z A(x;0,Np)ZV = T 3x-7’ (17)

Np=0
where the convergent region is |y|,|z] < [1 —3x].

We now multiply Eq. (13) by y¥z"s and take a sum
over N from 1 to infinity, and Nz from 1 to infinity. By

(13)

noticing A(x,y,2) = X3 o Xx -0 A(x; Np, Np)y"»z"» and em-
ploying Eqgs. (16) and (17), we solve the generating func-
tion as

1-—x

A(x,y,2) = (18)

1-3x-y-z
To obtain F(Ny, Ng,Nj,0,0), we first extract the coef-
ficient of ZV

1-x
(O ) i — 19
™) (1= 3x— )l (19)
Then, we extract the coefficient of y*» in C(z"?) as
NoNoy _ [ NB+Np 1-x
C@®y )_( Np (1= 3x)NotNot 1 (20)
where we apply
—n _ - n—-1+k k. k
(1+w) _;( L )(+1)w, 1)

for n> 0 and |w| < 1. Finally, we extract the coefficient of
N in C(NiyMe), e,

B _ AN, NB+NB NM+NB+NB _l NM_1+NB+NB
F(NMvNBaNB70’O)_3 ( NB NM 3 NM_l ’ (22)
which yields the final result for

2N, N Ng)(Ny+Np+Ng—1)!

2Ny +3 B+]\3] fli,( ']Af]t B¥p )SNM_I for Ny > 0,
F(Ny,Np,Ng,0,0)=3 oy B (23)

( BN B) for Ny, = 0.

B

Eq. (23) is the result of QCR in Sect. 2.1 and was first
given in Ref. [44] by mathematical induction and the tra-
ditional combination method. The current derivation is a
simplified one, based on the recursive equation and the
method of generating functions. The probability of form-
ing Ny, mesons, Ng baryons, and N3 antibaryons in a
quark system with N, quarks and N; antiquarks is given
by

F(Ny,Np,N3,0,0)

P(Ny,Ng,Ng) =
(Ny,Np,Np) (NB+NB)

(24)
Np

Here, we have removed the label '0,0' from P(Ny;, Ng, Ng),
since this is the real case in hadronization.

[
3 Baryon and meson formation in general-
ized quark combination rule

3.1 Generalized quark combination rule

The ratio of baryons to mesons (B/M) given by QCR
in Sect. 2.1 is larger than the observation of heavy-ion
collisions [52, 53]. To suppress the B/M ratio, we can
generalize the QCR in Sect. 2.1 to decrease the forma-
tion probability of baryons relative to mesons. The gener-
alized QCR (gQCR) reads:

1. Check if there are partons in the queue. If there are
no partons, the process ends. Otherwise, start from the
first parton and proceed to the next step.

2. Look at the second parton. If there is no second
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parton, the process ends. Otherwise, if the baryon num-
ber of the second parton is different from the first one,
i.e., the first two partons are either gg or gq, they com-
bine into a meson and are removed from the queue, re-
peat step 1; Otherwise if they are either gq or gg, pro-
ceed to the next step.

3. Look at the third parton. If there is no third parton,
the process ends. Otherwise, if the baryon number of the
third parton is different from the first one, the first and
third parton form a meson and are removed from the
queue, repeat to step 1; Otherwise if the first three par-
tons are either gqq or gqq, proceed to next step.

4. Look at the fourth parton. If there is no fourth par-
ton, the first three partons form a baryon or an antibary-
on and the process ends. Otherwise, if the baryon num-
ber of the fourth parton is different from the first one, the
first and fourth parton form a meson and are removed
from the queue, repeat to step 1; Otherwise the first three
partons combine into a baryon or an antibaryon and are
removed from the queue, proceed to step 1.

The outcome of implementing gQCR to the queue of
stochastically populated N, quarks and N; antiquarks
yields a group of numbers (Ny;, Ng,Ng,N,,Nz). Similarly
as in the QCR case, the special queue with
(Ny,Np,N3,0,0) can be reached by one of four ways in
Eq. (3). Other queues with (Ny,Ng,Ng,N,,N;) where
N, #0 or N7 #0 can be reached by adding ¢ or g to the
end of queues with smaller Ny, Np, and Nj. Queues
marked as (N, Ng, N3, 1,0) can be achieved by

(@[(Nm,Np,N3,0,0) = (Ny,Np,Ng—1,0,3)] + ¢,

(b)Y(Npr—1,Np,N3,2,0)+g. (25)
In approach (a), the special queue (Ny,Np,Nz—1,0,3)
(included in (N, Np,N3,0,0)) is excluded because of step
4 in gQCR. Queues marked as (N, Np,N3,0,1) can be
achieved by

(@)[(Nm,Np,N3,0,0)—(Ny,Np— 1,N3,3,0)] + ¢,

(b)(Ny—1,Np,N3,0,2) +q. (26)
Queues marked as (N, Ng,Nj,2,0) can be achieved by

(@)(Nm,Np,Ng,1,0)+ ¢,

(b)(Ny—1,Np,N3,3,0) +3. 27)
Queues marked as (N, Ng,Nj,0,2) can be achieved by

(@)(Nm,Np,Ng,0,1)+4,

(b)(Ny —1,Np,N3,0,3) +gq. (28)
The special queues (Ny, Ng, N3,3,0) and (Ny, N, N3,0,3)
can be build using normal ones

(Nym,Np,N3,3,0) = (Ny,Np,N3,2,0) +¢, (29)

(Nm,Np,N3,0,3) = (Ny,Np,N3,0,2) + 4. (30)

Properties (25-30) lead to following recursive equa-
tions,

F(Ny,Np,Ng,1,0) =F(Ny,Np,Ng,0,0)
- F(Ny,Np,N3—1,0,2)
+F(Ny —1,Np,N3,2,0),

F(Ny,Np,N3,0,1) =F(Ny;,Np,N3,0,0)
—F(Ny,Ng—1,N3,2,0)
+F(NM—1,NB,NB,O,2),

F(Ny,Np,Ng,2,0) =F(Ny,Np,Np,1,0)

+ F(Ny —1,Np,N3,2,0),

F(Ny;,Np,N3,0,2) =F(Ny;,Np,N3,0,1)

+ F(Ny —1,Np,N3,0,2). 3D
For non-zero N, and N;, F(Ny,Ng,Ng,N,,N;) can be ob-
tained with the help of two properties in Appendix A. Us-
ing these, we can derive the recursive equation for
F(Ny,Np, N3,0,0)
F(Ny,Np,N3,0,0) =F(Ny,Np—1,Ng,0,0)

+ F(Ny,Np,N5—1,0,0)

- F(Ny,Npg—1,N5—1,0,0)

+6F(NM—1,NB,NB,0,0)

—-3F(Ny—1,Ng—1,N3,0,0)

—-3F(Ny—1,Np,N;—1,0,0)

—10F(Ny —2,N5,N3,0,0)

+F(Ny —2,Ng—1,N3,0,0)

+ F(Ny —2,Ng,Ng—1,0,0)

+4F(Ny —3,Np,N3,0,0). (32)
The detailed derivation of Eq. (32) is given in Appendix
B.

3.2 Solution to recursive equation by generating func-
tions for gQCR

We start with the most simple case F(Ny,0,0,0,0)
with Ny > 1, Eq. (32) is simplified as
F(Ny,0,0,0,0) =6F (N —1,0,0,0,0)
—10F(Ny -2,0,0,0,0)
+4F(Ny -3,0,0,0,0).
With the initial values F(0,0,0,0,0) =1, F(1,0,0,0,0) =2,
F(2,0,0,0,0) =6, and F(3,0,0,0,0) =20, we obtain the
solution

F(Ny,0,0,0,0) = %[(2+ V2" 4 (2- «/E)N] (33)

Now, we multiply Eq. (32) by xV and sum over
Ny > 3, obtaining the recursive equation Eq. (C3) for the
partial generating function A(x;Np,Nj) defined in Eq.
(12). In the special case with Ng =0 in Eq. (C3), we ob-
tain

(1 =3x+ x2)Ns 1-2x
A(x;0,Np) = . s 34
0.Nb) = G102 —ao)% T—dxsoz’ O
where we have used
1-2x
A(x;0,0) = ———. 35
(,0,0) 1—-4x+2x2 (33)
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In the same way, we derive A(x;Ng,0), whose result is
given by Eq. (34) by the replacement Nz — Np. We also
obtain two summation properties

> 1-2x
D AN, 0y =—— =
= 1-4x+2x
1-6x+10x% —4x°
X b
1—6x+10x%2 —4x3 —y(1 - 3x+x2)
(36)
= 1-2x
A(x;0,Np Np - — =7
NZ;O (0N = o

1-6x+10x% —4x3
X )
1 —6x+10x%2 —4x3 —z(1 -3x+x2)
(37)
We multiply Eq. (C3) by yV#z"s and take sums over
Ng > 1 and N > 1, such that we can solve A(x,y,z) as

A(x,y,2)

1 —dx+4x>-yz

T 1—6x+10x2—43 —y+3xy—x2y—z+3xz2—x22+y7
(38)

The detailed derivation of Eq. (38) is shown in (C1-C6).
We extract F(Ny,Np,N35,0,0) as the coefficient of
xNuyNszNs in the polynomial expansion of A(x,y,z). The

1
x
=T

f§img

2 ey _Tag
10 “Hinnﬁn‘i
U ”

ii
10_4 -
"]
e x=400 QCR o
10 8F © x=1000QCR ’
e x=400 gQCR
o x=1000 gQCR L
-8
10 PRI N [N SN ST N [N SO SN SN SN SO SO TN SN S
0 0.2 0.4 06 0.8 1
St (o)
om i ”iiiiiﬂfﬂ
] ]
[}
L
os- ®
L
L ®» ]
a
O " 1 1 1 1

Fig. 1.

result is a sum of four terms,
F(NM,NB,NB,0,0)=11+12+I3 + 1y, (39)
where these terms are given by Eq. (D8) in Appendix D.

4 Particle number distribution for baryons
and mesons

In a system of N, quark and Nj antiquark, we obtain
in Eq. (24) the probability P(Ny,Np,Nz) to form Ny
mesons, N baryons, and Nj antibaryons. A general form
of the raw moments of meson and baryon numbers is

NyNpNg = Z NﬁNZNEP(NM,NB,Ng)
NuNoN;

X ONy+3N,.N,ON,+3N5.N, » (40)

where we use an overline to denote the average at fixed
quark and antiquark numbers. The central moments for
baryons and mesons are related by the quark number con-
servation
6Ny =6N?, 6N}, = (=3)" 6N}, (41)

where 6N; = N; - N; with i = M, B, B.

In Fig. 1, we show the ratios of the cumulants for an-
tibaryons as functions of the quark-antiquark asymmetry
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(color online) Ratios of cumulants for baryon or antibaryon number as functions of quark-antiquark asymmetry z with origin-

al QCR and gQCR at two different values of total quark number x: C;/x, C2/Cy, C3/C», and C4/C».
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_Ng—Ng
h Nq +Ng ’
with the original QCR and gQCR at two values of the

total quark number x = N, + N;. The cumulants for antiba-
ryons are given by

(42)

C, =CP =N, C3 = 6N} = N3,

Cy =6N}-3C2 = 6N% -3C2, (43)

Note that the first order cumulant for baryons is related to
that for antibaryons by C = C| +zx/3. As x is not small
(x=200), Cy/x, C2/Cy, C3/C2, and C4/C, are almost in-
dependent of x (i.e., the system size) and are only mainly
dependent on the quark-antiquark asymmetry z (propor-
tional to the net-baryon density). Therefore, we plot their
z dependence under the original and generalized QCR, re-
spectively in Fig. 1. Panel (a) shows that fewer antibary-
ons are produced with gQCR than with the QCR. The an-
tibaryon production with gQCR is more suppressed than
the QCR for larger z. We can parameterize the antibary-
on number [54] as Ng/x = (z/3)(1-2)"/[(1 +2)* = (1 -2)"]
with a =3 for QCR and a =5 for gQCR. We see that the
cumulant ratios C,/Cy, C3/C,, and C4/C, tend to unity at
large z. This is because the antiquark number is small at
large z, and the aggregation of quarks and antiquarks in
phase space to form baryons and antibaryons is more
stochastic and follows the Poisson distribution. Antibary-
ons are produced at a lower level in the gQCR, and thus
the feature of the Poisson distribution is more obvious,
which is reflected in the cumulant ratios in the gQCR ap-
proaching unity more quickly at large z than in the QCR.
At small z, C3/C, and C4/C; are low and approach the
Gaussian distribution.

5 Multiplicity property of identified hadrons

Following the method of Refs. [35, 55], we obtain
some multiplicity properties of identified hadrons by tak-
ing advantage of the stochastic combination rule. In this
study, we only consider the production of octet baryons
with JP = (1/2)* and decuplet baryons with J” = (3/2)",
pseudo-scalar mesons with J” =0~, and vector mesons
JP =17 in the flavor SU(3) ground state. The mean val-
ues of the multiplicities for identified baryons and
mesons are given by

_ Ny _

Np =gs, Nq( - 1)(Nq _Z)NB,
N(q)

Ny, =M. 3N N, (44)
qlVg

with

Nyp,

Nf ]+1

v =sal ]
o=l
Njf,}:]—[r[(Nf—jH), (45)
s

where f denotes the quark or antiquark flavors in the ba-
ryon B;, and the meson M;, ny g, and nyy, are the number
of flavor f'quarks in B; and M, respectively. S g counts the
number of different permutations in quarks and anti-
quarks, gp and gy are spin selection factors for B; and
M;, respectively. We introduce a parameter, Ry,p, to de-
note the relative weight of vector mesons to pseudo-scal-
ar mesons with the same quark content, and introduce
parameter Rp,o to denote the relative weight of decuplet
baryons to octet baryons with the same quark content. We
assume Ry;p = 0.45 and Rp,o = 0.5 from studying hadron-
ic yields in relativistic high-energy collisions [56, 57].
Because the values of the two parameters are extracted
from the experimental data of hadronic yields, we em-
phasize that the two parameters can absorb the
effects/contribution of various excited states and higher-
mass resonances to a certain extent.

Taking the proton as an example, we have Nl(,") =
3N, (N, — 1) N, for all possible combinations of uud. Then
the ratio Nl(,q) /Ng (Nq - 1) (Nq - 2) stands for the formation
probability of the proton with the quark flavor uud. The
spin selection factor for the proton is g, = 1/(1+Rp,0).

We introduce the configuration of multiple hadrons as
{kn, h1, kn,ha, ...} = {knh), where h; denotes one hadron, and
kp, its number in the configuration. We define the joint
moment of the multiplicity for such a configuration as

N =T N , where we have used the falling factorial
of the hadron multiplicity ij’ = Hﬁ“:l (N,—n+1). The av-
erage value of the joint moment of the multiplicity reads

[ ) ] N(q) k,,—
le,,h} = gh,,’ X, qN N N (46)
h ; ;

where kp =}, k;,Op counts the number of baryons in
the multi-hadron configuration with Qg;, =1 with 4; as a
baryon and Qp,, =0 for /; as a meson and an antibaryon.
Similarly, kz counts the number of antibaryons, and ky,
counts the number of mesons in the multi-hadron config-
uration. k, = 3, kn, Qg counts the number of constituent
quarks in the multi-hadron configuration with Q, =3 for
hiasg a baryon, Qg =0 for h; as an antibaryon, and
Qg =1 for h; as a meson. Similarly, k; counts the num-
ber of antiquarks. The numerator in Eq. (46) is defined as

ny

N = []_[S,,]]_”_[ (Np—j+1), 47)

which denotes the number of all possible combinations
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out of all quarks with specific flavors in the hadrons in
the multi-hadron  configuration, where f spans
u,d,s,i,d,s, and ny =3, kyns, counts the number of f
flavor quarks or antiquarks in the multi-hadron configura-
tion.

We take a few examples of multi-hadron configura-
tions to illustrate Eq. (46). The first example is the con-
figuration with two protons, where we have k, =2 and
Nf, =N, (Np - l), thus we obtain

_ (q)
Ny=N,(N,—1)=g; N,,,, Np(Ng=1), (48)

6
q

where Np(Np— 1) denotes the average for all possible ba-
ryon pairs, N](,‘g = 32N3N§ is the number of all possible
combinations out of six quarks with specific flavors in
two protons. The ratio N%,) /Ng provides the probability of
the six-quark combination with a particular flavor struc-
ture (uud)(uud). The second example is the configuration
ppii, we have

N3N =N, (N, = 1) Nz

(@) (9)
(N || N e
=18,—% ||8a—= [Ns(Ns—DNp,  (49)
N7 N

3
q q
where the first parentheses in the second line yield the
probability of two baryons with the flavor and spin struc-
ture of two protons, whereas the second parentheses yield
the probability of an antibaryon with the flavor and spin
structure of the antineutron.
All orders of moments and correlation functions of
hadron multiplicity can be built from Eq. (46). The two-
body correlation function reads

Cop =0N40Ng = Ny N — N,Ng
:N(xﬂ + 60/,/3N(r - ﬁ(lﬁﬁ’ (5 0)

where «, B denote two hadrons, and we have used

Nop = NoNp for o # 8 and I\_J(,ﬂ = N(% for @ = 8. The three-
body correlation function reads

Copy =ON4ONgSN, = NoNgN, — NoCp,
~NgCay—NyCop— NoNpN,, (51
where N,NgN, can be expressed by falling factorials,

NaNﬁNy ZNaﬁy + 6a,ﬁﬁay + 60,7Naﬁ + 6ﬁ’yﬁaﬁ
+ 04,0y N (52)
Here we used N,p, = NoNgN, for @ 8 # 7y, Nog, = N(%Ny

for @ =B #7, and N, = N2 for & = B =y. Notably, Nyg,
is symmetric for any permutation of «, 8, and y. The
four-body correlation function can be written as

Copye =0Na0NzON,ON,
=N¢NgN, N — (N(,C,gyE + permutation)
- (ﬁaﬁﬁcyf + permutation) —NoNsN,Ne,  (53)
where N,NsN, N, can be expressed by falling factorials
NoNgN, N :ﬁaﬁye + (6a,ﬁﬁrwe + permutation)
+ (6a‘y6ﬁygﬁaﬁ + permutation)
+04,30a.y00,eNa- (54)
Here, we have used N,p,c = N,NgN,N, for a £+ 7y # €,
Naﬁyg = N%NYNE for a= B#y#e, Naﬁyf = N(%N6 for
a=B=v+#e€, and NaﬁnyNg for a=F=y=¢€. Naﬁye is
symmetric for any permutation of @, 8, y and €.
The cumulants of the net proton number N, —Nj can
be calculated by combinations of the above multi-body

correlation functions (except C;, which is simply the
mean value of the net proton number)

C] ZNP —N,',,

Cz :Cpp - 2Cp13 + Cﬁﬁ,

C3 =Cppp=3Cppp+3Cppp = Cppps

Ca =Cpppp = 4Cpppp +6Cpppp = 4Cpppp + Cippp = 3C3.

(55)

In Fig. 2, we show the cumulant ratios for the net proton
number with QCR and the gQCR at a given total quark
number x=2000 as functions of the quark-antiquark
asymmetry z. We checked that the cumulant ratios of the
net proton number are independent of x for large x. Here,
we assume that the number of strange quarks is
N; = N; =0.45N;, where the strangeness conservation is
satisfied, and the strangeness suppression factor 0.45 is
consistent with the observation in relativistic heavy-ion
collisions [27]. Because the net-baryon number is fixed at
given numbers of quarks and antiquarks, Fig. 2 only
shows the fluctuations of the net proton number brought
by the quark combination process. C;/C, and C3/C, of
the net proton number increase with z and approach to 1.5
and 1/3 as z — 1, respectively. C4/C, decreases with z and
approaches —1/3 as z — 1. These results differ from those
of the statistical model for hadron resonance gas with
thermal equilibrium [58], in which C;/C; and C3/C; in-
crease to one, and C4/C, almost keeps a constant of one
at large baryon number chemical potential.

6 Effects of quark number fluctuations at
hadronization

The numbers of quarks and antiquarks may fluctuate
in high-energy collisions event by event, such that had-
ronic observables should be influenced by fluctuations at
the quark level. We denote the distribution of quark num-
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Fig. 2.
quark asymmetry z at x = 2000.

bers at hadronization as

P({Ns}) = P(Nu» Na, Na, Nj, Ny, N), (56)

and the event average of a hadronic observable Ay, is giv-
en by

Ay =" P(INA) AL (IN7), (57)
{N/}
where A4, ({N f}) denote the average at fixed quark and an-
tiquark numbers, obtained in the previous section.
In the practical evaluation, it is more convenient to
take the expansion of A, ({N f}) in Ny around the event-
average numbers of quarks and antiquarks {(Ny)} as

- - A,
A =Ah’() + Z a—lvji (SNf

(9 Ah
i) Z ON;,ONp |,

where 6Ny = Ny —(Ns) and the subscript '0' denotes the
values at (Ny). Substituting into Eq. (57), we obtain

5Nfl(SNfZ+“~, (58)

PA,,

<Ah>—Aho+ZZaNﬁaNﬁ (70N L)

‘ <5Nﬁ 5Nﬁ5Nﬁ>
0

+oy (39)

which involves multi-body correlations for the quark and
antiquark number with the quark number distribution

(b) —-+-C,/C, QCR
—+-C,/ C, gQCR

T
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(color online) Cumulant ratios of net proton number directly produced through QCR and gQCR as functions of quark-anti-

P(iN71)

Cpr. =(6N;6Ny,),
Chp, =(0N; 0NNy ),

Crpps ={NNSNLONL). .

where we used the same symbols C as in Sec. 5 to denote
the quark number correlation functions, but with quark
flavor indices.

Using the above moment expansion method, we can
study, for the selected phase-space window such as the
midrapidity region [y| <0.5, the influence of different
quark and antiquark distributions in the window on the
production of hadrons at hadronization. This extends the
applicability of QCR described in Sec. 2 and 3, where
only the stochastic quark-antiquark population is con-
sidered.

7 Influence of resonance decays

The long life (stable) hadrons measured in experi-
ments include contributions from resonance decays. In
this section, we consider the influence of resonance de-
cays on multiplicity correlations of long-life hadrons. For
a resonance h;, the hardons' stable daughters are denoted
as a, B,v, etc., and the corresponding decay branching ra-
tios are Dj,, Djg, Dy, etc., respectively. The distribution
function of {Na,Nﬁ,Ny,m} from decays of the resonance

h; with the particle number N,, is denoted as f (Nh,,{NfI}),
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where N! denotes number of the stable hadron « from the
resonance h;. We take the multi-nominal distribution for
the selection of decay channels. Convoluting with the
joint distribution of directly produced hadrons
P({Nhi},{<N f>}) at hadronization, we obtain joint distribu-
tions of stable hadrons F({Nn,Nﬁ,Ny, “e- }) [35].

From the joint distribution functions of stable had-
rons, we obtain the average yield of a stable hadron «

(No) = > (N D, (61)

where the index i runs over all directly produced hadron
species, including stable hadrons (we define D,, = 1), and
we use the shorthand notation N;=N;. The two-body
multiolicitv correlation function is

Caﬁ = Z C,’jD,‘aDjﬁ + Z(N,’)Dia (5013 - D,‘ﬁ) . (62)
ij i
The three-body multiplicity correlation function of stable
hadrons is

Copy = Z CijkDiaD jpDiy + Z CijDio [5aﬁ - Diﬁ] Djy
ik 7
+ 2, CiiDiaDis [0y = Diy |+ [05y = Dy ]}
ij

+ Z<Ni>Dia [(5aﬁ - Diﬂ) (5ay - Diy)

+Diﬁ (D,'y - 5,3)/)] . (63)

The four-body multiplicity correlation function of stable
hadrons is

Copye = Z CijuiDioD jgDyyDic + Z [Ci ik +(NHC jk] {(5aﬁ - Diﬁ) DioDjyDie + (5ay - Diy) DioD gDy

ijkl ijk

+ (00 — Die) Dia D jy Dig + (5/37 - Diy) DigD joDie + (555 - Die) DigD oDy, + (6)/5 - Die) D;,D jaDkﬁ}

+ Z [Cij + <Ni><Nj>] {Dia (5aﬁ - Diﬁ) Dj, (5ye - Dje)
ij

+ Dia/ (603/ - Diy)Djﬁ (6ﬁ5 - Dje) + Dia/ (605 - Dis) Djﬁ (6ﬁy - Djy)}

+ Z C,‘jD,'a, {((5(1’3 - D,’p) (607 - D,'y) + D,‘ﬁ (Diy - (5/37)} ng + Z CijDia {(6aﬁ - Di,B) (6ae - Die) + Diﬁ (Die - 6ﬁ6)} Dj?’
— 7

ij
+ Z C,‘jD,'a, {((5(17 - D,'y) (Oqe— Die) + Diy (D,‘E - 6}/5)} Dj'g + Z CijDiﬁ {(6ﬁy - Diy) (6ﬁe - Die) + Diy (Dis - 675)} Dja
ij ij

+ Z(N,)Dm{ —~6DisDiy Dic +2[6pDiy Dic + (Say + Opy ) DigDic + (Sae + Spe +Oye) DipDiy |
i

- [(61176,36 + 6(1/66ﬁ’)/ + 6(1/‘)/6(1/6 + 6/3)/6,85) Diﬂ + (6&/36ye + 60486&6) Diy + 5aﬂéayDie] + 6(l/ﬁ6(l/‘)/6(l/f}'

The higher order multiplicity correlation functions
can similarly be derived from the joint distribution func-
tions of stable hadrons.

8 Application: cumulants for net protons in
heavy ion collisions

In this section, we take the simple example of a quark
system and calculate the cumulant ratios for net protons
in the final state with gQCR. We discuss our results in the
context of the experimental observation in AutAu colli-
sions at RHIC.

We consider a quark system with the property
So=C3/Cy=z and ko?=C4/C;=1 for the baryon
quantum number, which is similar to the base line of the
grand canonical ensemble in the statistical model [59]. A
simple case for the quark number correlation functions

(64)
satisfying the above property is
Crr =Ny,
Crrr =3(Ny),
Crrrr =9HNp) +3(Np)?, (65)

for diagonal elements and non-vanishing off-diagonal
elements (f; # f2)
Crpirt, = (NpXNE). (66)
We assume the following properties for correlation func-
tions of the strangeness as a result of the strangeness con-
servation
Cy5 =Cis,
Cys5 =Cyz5 = Cigs,
Css5 =Cosss- (67)
Because the total quark number x in the mid-rapidity
region [y| < 0.5 in central heavy-ion collisions at RHIC en-
ergy is usually large (x 2500), the cumulant ratios for net

034103-10



Chinese Physics C Vol. 44, No. 3 (2020) 034103

protons in the final state in our model is not sensitive to x
(the system size). Here, we just take x = 5000 in the cal-
culation. We use Eq. (61) to fit the data of the p/p yield
ratio in Aut+Au collisions and determine z in the collision
energy range /syy € [7,200] GeV.

In Fig. 3, we show the results for the cumulant ratios
for net protons in the final state at different collisional en-
ergies. Our results only incorporate the contributions of
quark number fluctuations and correlations up to the
fourth order, as in Eq. (59). The auxiliary horizontal axis
shows the corresponding quark-antiquark asymmetry
parameter z. Results including the contributions from
strong and electromagnetic (S&EM) decays of reson-
ances are depicted by dashed lines, while results with full
decay contributions including weak decays are depicted
by solid lines. The STAR data are shown in solid circles
with error bars.

In the figure, we see that the cumulant ratios for net

ﬂo | 02 0.04 0.03
= 1F e 0-5% 0.4<pT<0.8 GeV/c
= ---- QCM S&EM decay
L QCM full decay
05
i --_ 9
0 .
i 1 1
10 10°
© 04 03 02 j 004 003
(7))
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O —
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©
3 15_
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NN
Fig. 3. (color online) Cumulant ratios for net protons at dif-

ferent collision energies. Solid circles with error bars de-
pict experimental data [43, 60]. Solid and dashed lines rep-
resent theoretical results of SDQCM.

protons as functions of collisional energies in our model
describe the experimental data: M/o? and So increase
with z or equivalently decrease with collisional energies,
while o2 decreases with collisional energies until it
reaches a minimum at +/syy =20 GeV and then increases
toward unity at high energies. Our results for ko are the
consequence of the competition between two effects: (1)
The cumulant ratio C4/C, from directly produced net pro-
tons by quark combinations, as shown in Fig. 2,
always decreases with increasing z; (2) The cumulant ra-
tio C4/C, for baryons or antibaryons, as shown in Fig. 1,
rapidly increases as zz0.2 (corresponding to +/syy<20
GeV).

We now provide some remarks regarding the results
for xo? of net protons. Although our results for net pro-
tons can reproduce the nontrivial dependence on colli-
sional energies, we always have ko? = 1 for net baryons at
all collisional energies because of the flavor/charge con-
servation in the quark combination. Therefore, our res-
ults indicate that cumulant ratios of the net proton num-
ber in this simple case do not exactly follow those of the
net baryon number. This is different from the statistical
model [57] for hadron resonance gas with thermal equi-
librium, which predicts similar cumulant ratios for net-
protons and net-baryons.

We emphasize that the current results are preliminary
and are mainly used to show the potential application of
our model in hadronic fluctuations, and the related phase
transition in relativistic heavy-ion collisions. Some limit-
ations in current calculations should be clarified. In this
study, we only consider the production of ground-state
hadrons. Effects of higher-mass resonances are only par-
tially absorbed by parameters Ry;p and Rp,o. According
to our previous study [35], the production of hadrons with
small yields tends to follow the Poisson distribution. In-
cluding those higher-mass resonances with small yields
may enlarge the fourth moments of protons to a certain
extent. Our model is a static one and does not consider
the diffusion of hadrons/quarks during the finite hadron-
ization time, which will have some influence on the cal-
culation of net-proton fluctuations in a specific window.
Further, to make final comparison with the data of net
protons, we should consider more realistic quark number
fluctuations and correlations in the studied rapidity win-
dow, which may be obtained by grand-canonical statist-
ics of the thermal quark system or by canonical statistics
with a Bernoulli trial selection of the specific window.
We should also consider other effects related to the finite
acceptance window, such as the diffusion/blur of charges
during the hadronic scatterings stage as well as that
caused by resonance decay [55, 58, 61— 73]. We will
study these effects in this framework in the future.
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9 Summary

We developed a new statistical method to solve the
probability distribution for the number of baryons, antiba-
ryons, and mesons formed in the hadronization of a con-
stituent quark and antiquark system governed by the
quark combination rule (QCR) in the quark combination
model developed by the Shandong Group. We use a set of
numbers (Ny,Np,Ng,N,,N7) to classify the outcome of
implementing the QCR for a queue of N, quarks and Nj
antiquarks, where there are Ny, mesons, Ny baryons, and
N3z antibaryons formed by combination but with N,
quarks and N; antiquarks left without forming hadrons.
The number of different ways of a given configuration
(Nm,Np,Ng,N,,Nz) is denoted as F(Ny,Np,Ng,N;,Nz).
We build the recursive relation for F(Ny, Ng,N3,0,0). We
adopt the generating function method to solve the recurs-
ive relation and provide the analytical expression of
F(Ny,Ng,N3,0,0). This method is far simpler than the
previous one and is easy to generalize. To accommodate
the baryon yield in experimental data in relativistic
heavy-ion collisions, we consider a generalized combina-
tion rule (gQCR). We provide the solution of the baryon

and meson probability distribution function under the
new rule. Because the (anti)baryon production is more
suppressed in the gQCR, we find that the cumulant ratios
of the antibaryon number achieve Poisson statistics more
rapidly in the gQCR than in the QCR with increasing ba-
ryon number density.

We studied the multiplicity fluctuation and correla-
tion functions for identified baryons directly produced in
collisions. We also studied correlation functions of final
state hadrons including contributions from resonance de-
cays. As an illustrative example, we consider a quark-an-
tiquark system with the property So =z and ko2 =1 for
the baryon quantum number, which is similar to the base
line in the grand-canonical ensemble in the statistical
model. We calculate the cumulant ratios in the quark
combination model and find that So for net protons in
the model increases with decreasing collisional energies,
which is consistent with the experimental observation.
More interesting is that ko> for net protons has a nontrivi-
al energy behavior consistent with the data.

We dedicate this work to Qu-bing Xie (1935-2013)
who was the teacher, mentor and friend of ZTL, FLS, and

ow.

Appendix A: Derivation of two properties for gQCR

We present two properties for F(Ny,Ng,Ng,N,,N;) in this ap-
pendix.

Property 1. For (¥,,N;) = (1,0),(0,1), F(Ny,Np,Ng,N,,N;) can be

Ny Np Np

expressed in terms of F( N}y Ny, N, 0,0) with N}, < Ny, N < Np and
N/, < Np,

F(Nu,Ng,Ng, 1,00= Y 3" 3" €10, (nan)2™ =018 F(ng, Ni = g, Ny = g, 0,0),

ny=0ng=0ng=0

Ny Np Np

F(Ny,Np,Ng,0,1)= > " Z 0L, (g2 =10 Mo F(pg, N = np. N = 5.0,0), (A1)

ny=0ng=0ng=0

where the coefficients C10 . (ny) are given by C}¢ O() =1 and

anB
=1 3 S o beaat
J1=nm Ja+b=Ja+b-1
c;%(nM):o, for b#a,a+l, (A2)

for a+b> 0. The coefficients C})} ,_(nu) are given by

Ny Ny
o) = (D™ ' oo N1, for

=M Javb=Javb-1

Cop(nm) = 1and

b=a,a-1,

Ny Np Np

C () =0, for b#aa-1, (A3)

for a+b > 0. The sums over np, ng, and ny in Eq. (A1) continue un-
til any of the baryon, antibaryon, or meson number become negat-
ive, since F(Nuy,Ng,Ng, N, N7)
Nz, N, Or N; are negative.

Property 2. For (N,,N;) = (2,0),(0,2), F(Nuy,Np,N, Ny, N;) can be
expressed in terms of F(NV, ,Nl’;,Né,0,0) with N}, < Ny, N < Np and
Nj <N,

=0 for the case where any of Ny, Ng,

F(Nu,Ng,Ng.2,00= > 3" > €28 (m)2"¥ ™" F(nyg,Np =g, Ng —n,0,0),

ny=0ng=0ng=0

Ny Np Np

F(Nw,Np,Np,0,2)= > > > €2, (na)24 ="M F(nyg, Nig = ng, N~ n,0,0), (A4)

ny=0ng=0ng=0

where the coefficients are identical to Egs. (A2, A3): €20

g (o) = Col y (nag) and €% (nar) = Cy) ().
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To demonstrate the two properties in Eq. (A1) and Eq. (A4), we
can solve F(Ny,Np,N3,2,0) by substituting the first equation into
the third one in Eq. (31),

Nm
F(Nm,NB,Ng,2,0) = Z [F(nym,Np,Ng,0,0)— F(ny,Np,Ng—1,0,2)]
=0
x 2NM =1
(AS5)

In the same manner, we can solve F(Ny,Np,N3,0,2) by substituting

the second equation into the fourth one in Eq. (31)

Ny
F(Nym,Ng,N3,0,2) = Z [F(npm,Np,N3,0,0)— F(ny, Np—1,Np,2,0)]
ny=0

x 2N
(A6)

From Eqgs. (AS, A6) we obtain Eq. (A4). Then from Eq. (A4) and
the last two equations of Eq. (31) we obtain Eq. (A1).

Appendix B: Derivation of recursive equation Eq. (32)

We derive the recursive equation for F(Ny,Ng,Nj,0,0) with the
help of Eq. (31). We start from Eq. (7), which also holds for gQCR.
Using Eq. (31), Eq. (7) can be rewritten as

F(Ny,Np,Ng,0,0) =G(Ny,Np,Ng) = 3G(Ny — 1,Np,Np)

+G(Ny —2,Np,Np), (B1)

where G is defined by

G(Nm,Np,Ng) = F(Ny,Np,Ng,2,0)+ F(Ny,Np,N3,0,2). (B2)

We need to define another auxiliary function
H(Np,Np,Ng) =F(Ny,Np—1,Np,2,0)+ F(Ny,Np,Ng—1,0,2)
=2F(Ny,Np,Ng,0,0) +2G(Ny — 1,Np,Np)
—G(Nm,Np,Ng) = G(Ny,Np,Np)

—4G(NM—I,NB,NB)+2G(NM—2,NB,NB), (B3)

where we used the first two equalities of Eq. (31) to obtain second
line and used Eq. (B1) to obtain the last line. In contrast, we can
also derive another form of H(Ny,Np,Ng) by applying the last two

equalities and subsequently the first two equalities of Eq. (B3) and
finally applying Eq. (31). The result is as follows:

H(Ny,Np,Ng) =F(Ny,Np—1,Ng,1,0)+ F(Ny —1,Np—1,N3,2,0)

+F(Ny,Np,Ng—1,0,1)+ F(Ny — 1,Ng,Ng—1,0,2)
:ZH(NM— I,NB,NB)—G(NM,NB— 1,NB— 1)
+G(NM,NB— l,NB)—3G(NM— 1,Ng— ],NB)
+G(NM—2,NB— I,NB)+G(NM,NB,NB— 1)
—3G(NM— I,NB,NB— 1)+G(NM—2,NB,NB— 1).
(B4)
From Eq. (B3), we also obtain

H(Ny,Np,Ng)— 2H(Nys — 1,Ng,Ng) =G(Ny1, Ns, N3) —6G(Nys — 1, N5, Nj)
+ IOG(NM—Z,NB,NB)
—4G(Ny —3,NB,Np).
(B5)
By setting Eq. (B4) equal to Eq. (B5), we derive the recursive
equation for G and then for F(Ny,Np,N3,0,0) through Eq. (B1), as
in Eq. (32).

Appendix C: Derivation of generating functions for gQCR

We multiply Eq. (32) by x™» and sum over Ny > 3 (the equation is well defined for Ny > 3). Hence, we obtain

A(x;Ng,Np) — X*F(2,Ng,N3,0,0) — xF(1,Ng,N3.,0,0) — F(0, N, N3,0,0) = A(x;Ng — 1, Np) — x> F(2,Ng — 1,N,0,0) — xF(1, N3 — 1,N3,0,0)
— F(0,Ng—1,N5,0,0)+ A(x; Ng, N5 — 1) = x> F(2,Ng, N3 — 1,0,0) = xF(1,Ng,N5 — 1,0,0) - F(0,Np, N5 — 1,0,0)
—A(x;Ng—1,Ng— 1)+ x> F(2,Np —1,N3—1,0,0) + xF(1,Ng — 1, N3 — 1,0,0) + F(0,Ng — 1, N5 — 1,0,0) + 6x[A(x; N3, Nj)
—xF(1,Ng,N,0,0)- F(0,Np,N3,0,0)] = 3x[A(x; N — 1,Ng) —xF(1,Ng — 1,N3,0,0) - F(O,Ng — 1,N3,0,0)]
—3x[A(x;Np,Ng—1)—xF(1,Np,Ng—1,0,0)— F(0,Ng,Ng—1,0,0)] - lez[A(x;NB,Ng)—F(O,NB,NE,O,O)] +x2[A(x;NB —1,Np)

-F(,Ng— 1,N3,O,0)]+x2[A(x;N3,NB— 1)-F(0,Ng,Ng— 1,0,0)]+4x3A(x;N3,NB).

One can verify that a complete cancellation occurs for terms pro-
portional to x> and those proportional to x after applying Eq. (32)
for Ny =2 and Ny = 1, respectively. The constant terms in F read
I=F(0,Ng,Ng,0,0)- F(0O,Ng—1,N3,0,0) - F(0,Np,Nz — 1,0,0)
+F(0,Ng—1,Nz—1,0,0)
=0NgNg.0 ~ O(Ng—1)Ng,0 ~ ONp(Nz-1),0 + ONg—1)(Nz-1),05 (C2)
where we used the initial value F(0,Ng,Ng,0,0) =6nyn;0. This
means that if there are no mesons, baryons and antibaryons cannot

o 0

(&)

co-exist, and if there are only quarks or antiquarks in the system,
the number of different queues is 1. Then, Eq. (C1) is simplified as

A(x;Np,Np) =(6x+4x* = 10x*) A(x; Ng, Np) + (1 - 3x+x°)
X [A()C;NB - I,NB)+A(X;NB,NB - 1)]
—A(x;Np—1,Ng— 1)+ 0NpNg,0 = 6(Np-1)N3,0

= ON(Ng-1),0 + S(Np—1)(Np-1),0- (C3)

We now multiply Eq. (C3) by y"8z¥s and take a sum over Np > 1
and Nj > | to obtain

(1-6x+10x =4x*)A(x,y,2) = (1 - 3x+7) Z Z yVBZVB [A(x; Ng — 1,Np) + A(x; N3, Ny — 1)] - i i A(x;Np—1,Ng—1)y"s"s

Np=1Np=1

Ng=1Np=1
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00 o

N N
+ Z Z [5NBNB,0—5(1\1371)1\/5,0—51\/3(1\/371),0 ‘HS(NB—I)(NB—I),O])’ BB

Np=1Ng=1

To simplify the above equation, we use

Z Z A(x;Np —a,Ng —b)yNe 2B =6,165,1y2A(x,7,2) + 6,4,00p,12
e et

+64,005,0

Np=0

and

as well as Egs. (36) and (37), we finally obtain Eq. (38).

||D48

Appendix D: Derivation of Eq. (39) in gQCR

Ay, )= ) A Np, 0y

[5NBNB,0 —O(Ng-1)N50 —ONg(Nz-D.0 + 6(NB—1)(NB—1),O])7NBZNB,

(c4)
Ay = D AONRE [ +641850| Ay, = ) AN, 0y
Ng=0 Np=0
= > AO0,Nps +AM;0,0)|, (C5)
Ng=0
(C6)

From Eq. (38) we can extract F(Ny,Ng,N3,0,0), the coefficient of x"#yN8zVs in the polynomial expansion of A(x,y,z). To this end, we re-

write A(x,y,z) as

1-3x+x*
—6x+10x2 —4x3

1—dx+4x>—yz

1—6x+10x2 —4x3 ;[1

Alx,y,2) =

s O+2) -

1 1
1—6x+ 10x2 _4x3yz]

_ 1 —4x+4x2 -y Nq+Nq JHL_k+l 1-3x+x? j+k -1 !
1—6x+10x2—4x3 & £ q ’ 1—6x+10x2 — 4x3 1—6x+10x2 —4x3
i=0 j+k+I=i
C1l—dxtda’—yz i : Z’:( i ) i~k i—jX( 1-3x+02  \* -1 =k ©1)
Timevri0 -4 Lo gk )T T mer 102 -a) \T-er i —ad)
n n!
. . =" D3
where we used the multinomial theorem (kl, [ km) AT (D3)
m
(W1 + W+ wp)" = ( n )l_[ whi (D2) Then, we can extract the coefficient of y¥37V2 as
ki, ko, ..., k ’
Ky kot tk=n V) ml =1 C(yNBZNE) =C1+Cr+C3+Cy, (D4)
with multinomial coefficients where C1 34 are given b
23, g y
|
w =3t 2i-Np-Ng 1 Np+Np—i
Cl=T 02 43 Z 2 3 2 3 ’
1-6x+10x* —4x pry Js kal 1—-6x+10x* —4x 1-6x+10x* —4x
S 1-3x+x2 2i=Ng=Np —1 Np+Np—i
c —_— —_— .
27 l—()x+10x2 4x3;( i—Np, i NB, Np+Np—i )(1—6x+10x2—4x3) (l—6x+10x2—4x3)
= 1 3x4 2 2i-Np-Ng 4 Np+Np—i
c — —_ :
3T 6xr 10)c2 4x3 ;( i—Ng, l—NB, Np+Np—i )(1—6x+ 10x2—4x3) (1—6x+10x2—4x3)
] S =3t 2 2i-Ng-Ng+2 1 Np+Np-2-i
Co=e . ! x| =2 - - (D5)
1—6x+10x2 —4x3 g i—Np,i—Ng, Np+Np—i 1—6x+10x2 —4x3 1 —6x+10x2 —4x3
We have expressed the summation indices j and £ in terms of Np 1-3x+x” = (] - 3+2ﬁx](1 - 3_2\@)(], (D6)
and Ny for a given summation index i. The sum over i involves a
2
finite number of terms. For example, in C;, we have 6x+10x7 —4x° =6x(1 - X)(l - §X), (D7)

Np+ N >i>Max(Np,Np), since any term in the summation with the
factorial of a negative integer in the denominator is vanishing.

We can factorize the following two polynomials as

and expand Cy, C2, C3, C4 into a power series of x with the help of
the binomial theorem. Then, we can extract the coefficient of x¥u
in C(yV8zs). This yields the coefficient of xMyN8zVs in A(x,y,z) or
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F(Ny,Np,N3,0,0) as the sum of the following four terms

_ _1\Np+Ng—i l
h Z(;( D ( i—-Ng+1,i-Ng+1, Ng+Ng—2—i
par

Jrk+l+m+n=Ny,

i 2i—Ng—Nj
i—Np, i—Nz, Ng+Nz—i j

X(_3+2\B]f(_372\5]"( 2i—N;:—NB )6’( iJlrl )(_1),7,( nl1 )(_%)"’

. —
i=0

Jk+l+m+n=Ny;—1

[ 2i-Np—Ng
i—Np, i—Ng, Np+Np—i J

(R o e ()

I =4Z(—1)NB+NB4( ,ll )
i=0

Jrk+l+m+n=Ny -2

i 2i—Ng-Ng
i—Np, i—Ng, Ng+Np—i J

T o e ()

14:_2(—1)NB+N3-1‘( rll )

i=0 Jrk+l+m+n=Ny

2 2 k l

><(_3+ ﬁ]i[_ﬂ]k( 2i—~Np—-Ng+2 )6’( i+l

which yield the final result of gQCR in Sec. 3.

( i—-Np+1, i—NB+1, NB+NB—2—i

Joor ()

)( 2i—Np—Ng+2 )
J

(D8)
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