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Constraining symmetry energy at subnormal density by isovector
giant dipole resonances of spherical nuclei”
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Abstract: In our previous study, the deduced Langevin equation has been applied to investigate the isoscalar giant

monopole resonance. In the current study, the framework is extended to study the isovector giant dipole resonance

(IVGDR). The potential well in the IVGDR is calculated by separating the neutron and proton densities based on the

Hartree-Fock ground state. Subsequently, the Langevin equation is solved self-consistently, resulting in the centroid

energy of the IVGDR without width. The symmetry energy around the density of 0.02 fm * contributes the most to

the potential well in the IVGDR. By comparison with the updated experimental data of IVGDR energies in spherical

nuclei, the calculations within 37 sets of Skyrme functionals suggest the symmetry energy to be in the range of 8.13-

9.54 MeV at a density of 0.02 fm °.
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1 Introduction

The nuclear giant resonances are the phenomena that
arise from the high-frequency collective motion of a
strongly interacting nuclear system. These resonances
have been the object of theoretical and experimental re-
search in modern nuclear physics over the last decades,
since they play a crucial role in the understanding of
nonequilibrium properties of nuclei and the nuclear force
[1-4]. The first observation of the giant resonance can be
traced back to 1947, when Baldwin and Klaiber meas-
ured the y spectrum in photonuclear reactions [5]. This
was referred to as the isovector giant dipole resonances
(IVGDR), which is microscopically described as the co-
herent excitation of particle-hole configurations across
one major shell, and macroscopically considered as the
quantized oscillation of neutron and proton densities in
anti-phase. After about 40 years later, the isoscalar giant
quadrupole and monopole resonances were also observed
by proton and « scattering experiments on nuclei [6, 7].

Because of its proven measurement technique and
strong relation to the microscopic structure of the nuclei,
the IVGDR has been employed as an excellent probe for
determination of nuclear properties, such as the fission
hindrance [8], nuclear deformation at finite excitation [9],
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clustering configurations [10], isospin mixing at high
temperature [11], and shear viscosity to entropy density
ratio [12]. The relationship between the symmetry en-
ergy and the IVGDR has been efficiently described by
some models, such as the hydrodynamical model [13],
isospin-dependent quantum molecular dynamics model
[14], and isospin-dependent Boltzmann-Uehling-Uhlen-
beck model [15] The experimental value of the IVGDR,
such as in *"Pb, has been used as a constraint on the sym-
metry energy at subnormal densities [16].

The symmetry energy is defined by the parabolic ap-
proximation of the total energy per nucleon of the isospin
asymmetry nuclear matter, E(p,é):E(p,0)+Esym(p)62+
O0(5*), where 6= (p,—p,)/(on+pp) is the isospin asym-
metry, and Ey, is the symmetry energy [17, 18] The
symmetry energy at normal density py = 0.16 fm * has
been studied from the properties of the nuclei in the
ground state [19]. Many efforts were made to constrain
the symmetry energy at subnormal densities, for example
around 0.25p( to understand the supernova [20], and in
the region of 0.5 < p/py < 0.7 to study the boundary in
neutron stars [21, 22] and crustal vibrations in Magnetars
[23]. The analyses of experimental data have generated a
constraint at subnormal densities [24, 25]. However, the
experimental determination of the symmetry energy is de-
pendent on the reliability of the model. Further studies
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are needed to improve the accuracy of the constraint on
the symmetry energy at subnormal densities.

In this study, we attempt to constrain the symmetry
energy at the subnormal density by the IVGDR data of
the spherical nuclei. This idea is not new, but in the
present work we develop it based on the global IVGDR
data and a new theoretical framework. In the recent pub-
lication [26], the updated experimental data and corres-
ponding uncertainties of IVGDR energies are presented.
We use these global data, rather than only the data of one
or several nuclei. Moreover, we use the theoretical frame-
work based on the Skyrme energy-density functional and
the Langevin equation, which has been successfully ap-
plied to study the isoscalar giant monopole resonances
(ISGMR) in our previous work [27]. The paper is organ-
ized as follows. In Sec. 2, we describe the method. In
Sec. 3, we present both the results and discussions. Fi-
nally, the summaries are given in Sec. 4.

2 Theoretical framework

The fluid dynamical reduction of the Boltzmann-
Langevin equation was carried out for a situation where
the velocity field can be described by a set of N collect-
ive variables [28]. A set of N coupled Langevin equa-
tions is obtained for the collective variables, which con-
stitute a generalization of the Bohr-Mottelson model for
the hot nuclei. For the IVGDR, the collective variable X
is the distance of the centres between the neutrons and the
protons, resulting in the Langevin equation [29],

.. oV
MX + X D(t) +6F (1), )

where M = mNZ/A represents the collective mass of the
neutron-proton relative motion, V' is the potential energy,
D(?) is the force related to the damping, and §F(¢) is the
random force. The centroid energy is independent of the
damping and the random force. Hence D(¢) and 6F(¢) are
not considered in the calculations. The potential energy is
the sum of the Coulomb and nuclear Skyrme energies, the
density dependence of which is given in our previous
work [27]. The nuclear Skyrme energy can be written as a
sum of the two-body term V), three-body term V3, effect-
ive mass term Vg, finite-range term Vg, spin-orbit term
Vso» and tensor coupling term Vi, [30, 31]:
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2
where p, 7, and J are the local nucleon density, kinetic en-
ergy density, and spin density, respectively. The sub-
scripts n and p represent the neutron proton, respectively.

The density distribution of the static Hartree-Fock
ground state is determined by the Skyrme Hartree-Fock-
Bogolyubov (SHFB) model within the spherical sym-
metry, the code of which is given in Ref. [32].

Subsequently, the potential energy is calculated as a
function of the collective variable X after separating the
centers between the neutron and the proton densities. The
results for 40Ca, ()OZr, and **Pb are shown in Fig. 1. Be-
cause the Fermi kinetic energy is independent of the col-
lective variable X, the potential energy and the energy per
nucleon exhibit the same potential well. We observe the
harmonic-oscillator-type potential well. The valley val-
ues represent binding energies of the nuclei, which will
not affect the excitation energy of the IVGDR. The
widths of the potential wells exhibit a mass dependence,
which is the origin of the mass dependence of the IVG-
DR energy.

With the potential energy as a function of the collect-
ive variable X, the Langevin equation Eq. (1) can be

_3-""|""|""|""

E/A (MeV)

Fig. 1.
collective variable X in the IVGDR of 40Ca, 90Zr, and

(color online) Energy per nucleon as a function of the
208
Pb.
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solved self-consistently. The initial value X, of the col-
lective variable is zero. The initial velocity X, depends on
the input IVGDR energy E*,
2E
- ®)
The solution of Eq. (1) with initial conditions exhib-
its an oscillation structure. The Fourier transform of the
solution provides the frequency of the spectrum w, and
subsequently the output IVGDR energy E}, =hw. The
Langevin equation is solved again using the initial velo-
city depending on the output energy, unless the differ-
ence between the input and output IVGDR energies is
less than an infinitesimal amount (e.g., 0.001 MeV).
Figure 2 shows the solution of the Langevin equation
for 40Ca, QOZr, and “"Pb nuclei. In the calculation, the
BSk9 functional is applied. The solutions exhibit a good
oscillation structure. Due to the narrowest potential well,
the period for the “Ca nucleus is the shortest. With the
Fourier transform, one obtains the excitation energy
18.44 MeV from the period value 59.8 fm/c. Compared
with the data 20.14 + 1.01 [33], the excitation energy is
smaller by 8.4%. The period for the *Zr nucleus is 75.4
fm/c, resulting in E* (QOZr) = 16.44 MeV. Within the ex-
perimental error, the calculation agrees to the data 16.9 +
0.84 [34]. For the ®py nucleus, the calculation of the ex-
citation energy 13.90 MeV is very close to the data 13.34 +
0.40 [34].

Xo =

X (fm)

X (fm)

0 50 1(I)0 15I0 2(I)O
t (fm/c)
Fig. 2. (color online) Solutions of Eq. (1), shown as (a) the
collective variable X and (b) the velocity X) as a function of
time for 40Ca, 9OZr, and **Pb nuclei.

3 Results and discussions

Recently, the updated experimental data and corres-
ponding uncertainties of IVGDR energies were presented
[26]. We attempt to use these data to probe the symmetry
energy. Since the SHFB code within the spherical sym-
metry is applied, the data for the spherical nuclei, shown
as a function of the mass number in Fig. 3, will be con-

e data
76.78A713

100 150 200
A
Fig. 3. (color online) Excitation energies of the IVGDR as a
function of the mass number for spherical nuclei. In the cal-
culation, the functionals Skz4, BSk9, and SkKMP are ap-
plied, consecutively. The solid line shows the fit by the A"

law. Experimental data are obtained from Ref. [26].

sidered. A set of 37 Skyrme functionals is applied to per-
form the calculation. These are BSkl, BSk6, BSk7,
BSk8, BSk9, MSk2, MSk4, MSkS, MSk6, MSk7, MSkS,
MSLO0, SkMP, SkS2, SKzl, SKz2, SKz3, SKz4, SLy0,
SLyl, SLy10, SLy2, SLy230a, Sly230b, SLy3, SLy4,
SLy5, SLy6, SLy7, SLy8, SLy9, v075, v080, v090, v100,
v105, and v110. The nuclear incompressibility provided
by these Skyrme functionals is about 230 MeV, which is
the value constrained by the ISGMR data. As examples,
the calculations within the functionals Skz4, BSk9, and
SkMP are shown in Fig. 3. The slope of the symmetry en-
ergy at normal density is 5.75, 38.29, and 70.31 MeV for
Skz4, BSk9, and SkMP functionals, respectively. By
comparing the calculations within these three functionals,
one may conclude that the IVGDR energies depend
strongly on the slope parameter of the symmetry energy.
However, after analyzing the calculations within the set
of 37 Skyrme functionals, we fail to find a good correla-
tion between the IVGDR energies and the slope paramet-
er of the symmetry energy. This phenomenon may cause
an appreciable error when constraining the properties of
the symmetry energy, as in the study of Ref. [15]. In an-
other reference, the IVGDR is considered as a quantitat-
ive constraint on the symmetry energy around 0.1 fm
[13].

Figure 2 shows that the amplitudes of the IVGDR are
0.98, 0.47, and 0.35 fm for 40Ca, QOZr, and “"Pb respect-
ively. This means that only the skins of the neutrons and
protons, in which the density is in the subnormal region,
are separated in the resonances. Figure 4(a) shows the
density distribution of the static Hartree-Fock ground
state of 40Ca, 9Oer, and ***Pb nuclei. The thicknesses of the
skins are less than 2 fm, which is less than the amp-
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Fig. 4. (color online) (a) Density distribution of the static

Hartree-Fock ground state of 40Ca, 9OZr, and “®Pb nuclei.
(b) Difference of the isospin asymmetry between the
ground state and the IVGDR state for the collective vari-
able X= 0.1, 0.2, 0.3, and 0.4 fm. The amplitude increases
from X=0.1 fm to 0.4 fm, which is marked for “Ca.

litudes of the IVGDR. Figure 4(b) shows the difference
of the isospin asymmetry between the ground state and
the IVGDR state for X = 0.1, 0.2, 0.3, and 0.4 fm. Only
the isospin asymmetry in the skin exhibits a great change
in the IVGDR. Moreover, the cures have peaks near 0.02
fim . The symmetry energy at density 0.02 fim * indicates
the highest contribution to the potential well.

We use two observables to describe the agreement of
the calculations to the data. One is the mean square devi-
ation (MSD), and the other is the scale parameter. The
MSD is defined as,

1 u Ezal,i_E:xp,i)2
MSD= R 0, = @
i exp,i

where N is the number of the nuclei whose data is avail-
able, E7,; is the calculated IVGDR energy, Epi is the
experimental IVGDR energy, and oy, is the error of the
data. In order to consider the contribution of each data ac-
cording to the uncertainties, the factor 1/0"%Xp is included.
The MSD for each functional, as a function of the sym-
metry energy at density 0.02 fmﬂ, is shown in Fig. 5 (a).
The MSD definitely rules out both very small and very
large symmetry energy at subnormal density. The func-
tionals MSk2 and SLy230a are suggested according to
the smallest values of MSD. They have a symmetry en-
ergy of 8.13 MeV and 9.54 MeV at a density of 0.02 fim .

The IVGDR energy decreases with increasing mass,
which can be described by the scale law kA ", Fitting
the data, we obtain £ = 76.78 £+ 0.28. For the calculations,
the scale parameters increase linearly with increasing
symmetry energy at a density 0.02 fm °, as shown in Fig.
5(b). The scale parameters for the functionals MSk2 and
SLy230a denote the upper and lower limits of the data
range, respectively. The symmetry energy at the density
of 0.02 fm "’ is in the region 8.13 MeV to 9.54 MeV.

20 — T T T T
(a) - (b)
85+ R
15 R
>80t . 1
@210 | . 1S $
L] vi =
~ r"
75+ _.' R
5L "= . -
= 70} * ]
0 L . " L L L L L L
6 8 10 12 6 8 10 12
Eq,m(p=0.02) (MeV) Em(p=0.02) (MeV)
Fig. 5. (a) Mean square deviation of the calculation com-

pared with the data, and (b) scale parameter, shown as a
function of the symmetry energy at density 0.02 fim >
provided by the Skyrme functionals.

Many studies dealt with the symmetry energy at subnor-
mal densities, as described in the review articles Ref.
[24]. At the density of 0.02 fim °, the symmetry energy
from 6.4 MeV to 8.2 MeV is recommend by the best fit-
ted to the masses of double magic nuclei [35]. This re-
commended region is slightly smaller than our suggested
region, although they overlap. Another symmetry energy
of 8.8 MeV, suggested by the chiral effective field calcu-
lations, is in the center of our suggested region [36].

4 Conclusion

The fluid dynamics reduction of the Boltzmann-
Langevin equation was carried out for a situation where
the velocity field can be described by a set of N collect-
ive variables [28, 29]. In our previous study, the deduced
Langevin equation was applied to investigate the isoscal-
ar giant monopole resonance. In the present study, the
framework is extended to investigate the isoscalar giant
dipole resonance (IVGDR). The collective variable X for
the IVGDR is set as the distance between the centers of
the neutrons and the protons. The potential energy is
found to be a function of the collective variable X is the
harmonic-oscillator-type. By the self-consistent solution
of the Langevin equation without damping and with ran-
dom force, the calculations of the IVGDR energies for
spherical nuclei reproduce the general trend of the data in
spherical nuclei. Using the set of 37 Skyrme functionals
to perform the calculation, the IVGDR energies were
found to be sensitive to the symmetry energy at subnor-
mal density. The evolution of the isospin asymmetry in
the IVGDR demonstrates that the symmetry energy at
density 0.02 fm " has the largest contribution to the po-
tential well. By comparing the calculations with the data,
the functionals MSk2 and SLy230a provide the sym-
metry energies of 8.13 MeV and 9.54 MeV at a density of
0.02 fm °, respectively.
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