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Pseudoscalar meson and baryon octet interaction with strangeness zero in
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Abstract: The interaction of the pseudoscalar meson and the baryon octet is investigated by solving the Bethe-Sal-

peter equation in the unitary coupled-channel approximation. In addition to the Weinberg-Tomozawa term, the contri-

bution of the s— and u— channel potentials in the S-wave approximation are taken into account. In the sector of

isospin I = 1/2 and strangeness S = 0, a pole is detected in a reasonable region of the complex energy plane of /s in

the center-of-mass frame by analyzing the behavior of the scattering amplitude, which is higher than the nN threshold

and lies on the third Riemann sheet. Thus, it can be regarded as a resonance state and might correspond to the

N(1535) particle of the Particle Data Group (PDG) review. The coupling constants of this resonance state to the 7N,

nN, KA and KX channels are calculated, and it is found that this resonance state couples strongly to the hidden

strange channels. Apparently, the hidden strange channels play an important role in the generation of resonance states

with strangeness zero. The interaction of the pseudoscalar meson and the baryon octet is repulsive in the sector of

isospin / = 3/2 and strangeness S = 0, so that no resonance state can be generated dynamically.

Keywords: chiral Lagrangian, pion-nucleon interaction, Bethe-Salpeter equation

PACS: 12.40.Vv, 13.75.Gx, 14.20.Gk

1 Introduction

The pion-nucleon interaction is an interesting topic
and has attracted considerable attention of the nuclear
physics community in the past decades. There are two
very close excited states of the nucleon in the S, chan-
nel, N(1535) and N(1650), which are difficult to describe
within the framework of the constituent quark model [1].
However, in the unitary coupled-channel approximation
of the Bethe-Salpeter equation, most of the excited states
of the nucleon are treated as resonance states of the
pseudoscalar meson and the baryon in the SU(3) flavor
space, as are these two particles. In Ref. [1], it is pointed
out that the hidden strange channels of KA and KT might
play an important role in the dynamical generation of the
N(1535) particle.

The N(1535) particle, generated dynamically in the
unitary coupled-channel approximation with a three-body
Nrn final state, was considered in [2]. However, the in-
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clusion of Nzr as a final state in the calculation is com-
plex, especially as there are six arbitrary constants in the
real part of the three-body Nnxr loop function, and thus it
must be treated as a free function consistent with experi-
mental data. This approach was studied again by includ-
ing the pN and nA channels in a non-relativistic approx-
imation, besides the pseudoscalar meson-baryon octet
channels [3]. In fact, the elastic scattering process
pN — pN gives the main contribution to the dynamical
generation of the N(1650) resonance, as was shown in
Ref. [4]. In the processes pN — N and pN — nA, the
Kroll-Ruderman term supplies a constant potential and
plays a dominant role, while the m-exchange potential is
trivial and proportional to the square of the three-mo-
mentum of the final state in the center-of-mass frame.
Moreover, the structure of N(1535) and N(1650) particles
was also studied in the unitary coupled-channel approx-
imation in [5, 6], where a loop function of the intermedi-
ate pseudoscalar meson and the baryon in the on-shell ap-
proximation is taken into account when the Bethe-Sal-
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peter equation is solved.

In Ref. [7], the N(1535) and N(1650) resonance states
were studied in the unitary coupled-channel approxima-
tion with the Lagrangian of the pseudoscalar meson and
the baryon octet up to the next-to-leading-order. By fit-
ting the S partial wave amplitude with the experimental
data up to the energy +/s = 1.56 GeV, the resonance state
corresponding to the N(1535) particle is generated dy-
namically. In addition, it is amazing that the N(1650) res-
onance state can be produced at the same time at higher
energies.

The properties of the N(1535) particle have also been
studied by solving the relativistic Lippmann-Schwinger
equation, where the corresponding Hamiltonian is di-
vided into two parts, a non-interacting part and an inter-
acting part, and the couplings and the bare mass of the
nucleon are determined by fitting the experimental data.
This method is called the Hamiltonian effective field the-
ory by the authors [8]. Recently, the different partial
wave phase shifts were analyzed by calculating the K-
matrix of the pion-nucleon interaction [9]. It is interest-
ing that the internal wave functions of the A(1232),
N(1535) and N(1650) resonance states were investigated,
and it was announced that the 7N, nN, KA and K¥ com-
ponents are negligible in these resonance states [10]. It is
apparent that the conclusion made in Ref. [10] is incon-
sistent with the previous results due to the chiral unitary
models.

In this work, the interaction of the pseudoscalar
meson and the baryon octet is studied in the unitary
coupled-channel approximation, and the contribution of
the s— and u— channel potentials in the S-wave approxim-
ation is taken into account besides the Weinberg-Tomoz-
awa contact term. Furthermore, a revised loop function of
the Bethe-Salpeter equation is used in the calculation
[11], where the relativistic correction is included.

By adjusting the subtraction constants for different in-
termediate particles of the loop function in the sector of
isospin I = 1/2 and strangeness S =0, a pole at 1518 —i46
MeV in the complex energy plane is detected, which
might correspond to the N(1535) particle of the PDG re-
view [12].

This article is organized as follows. In Section 2, the
potential of the interaction between the pseudoscalar
meson and the baryon octet is constructed, where the
Weinberg-Tomozawa contact term, and the s— channel
and u— channel interactions are all taken into account in
the S-wave approximation. In Section 3, the fundamental
formula for solving the Bethe-Salpeter equation in the
unitary coupled-channel approximation is presented. The
cases of isospin / =1/2 and I = 3/2 are discussed in Sec-
tion 4 and Section 5, respectively. Finally, the summary
is given in Section 6.

2 Framework

The effective Lagrangian of the pseudoscalar meson
and baryon octet interaction can be written as
D/F
2
In the above equation, the symbol (...) denotes the trace
of matrices in the SU(3) flavor space, and D“B=

L =(B(iy,D" - M)B) + (Byuyslu,Ble). (1)

Ip o« . )
O“B + 3 [[M'ﬁ”u],B] with w?=U= expgi— and u* =
0
iut“u—iuo*u’, where D=0.80, F=0.46 "and £;=92.40
MeV is the meson decay constant in the chiral limit.
The matrices of the pseudoscalar meson and the bary-
on octet are given as follows

1, 1 .
—n +—7 K*
V2 Ve X
=12 n ——7T0+—l7 K? 2
N N ) 2
K g0 -~
3
and
1 I ] A =t
- - p
V2 V6 . .
B= b —— 30— A n | 3
NG N7 . 3)
Cn =0 -—A
V6

The first term in the Lagrangian in Eq. (1) represents
the contact interaction of the pseudoscalar meson and the
baryon octet, which is usually called the Weinberg-To-
mozawa term, while the other terms which are relevant to
the coefficients p and F give a contribution to the s— and
u— channel interactions, as shown in Fig. 1.

According to the Feynmann rules, the Weinberg-To-
mozawa contact potential of the pseudoscalar meson and
baryon octet interaction can be written as

P; P; Pi Pj
AN / ~ - —~
N\ / N -~
~
B, B; B, B
@ ! (b) '
P; Bj
AN /
AN /
B, B,

(©
Fig. 1. Feynman diagrams of the pseudoscalar meson-bary-
on octet interaction. (a) contact term, (b) u— channel and (c)
s— channel.
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Vit = ,,4”] UpjsA)yuU(pis A)K; + KD, (4)
where p;, p;(k;,k;) are the momenta of the initial and final
baryons (mesons), and 4;,4; denote the spin orientations
of the initial and final baryons. For low energies, the three-
momenta of the incoming and outgoing mesons can be
neglected, and thus the potential in Eq. (4) is simplified as

‘/lf:j'on = C’] 4ff]
As U(p;,A4;) and U(p;,4;) are the wave functions of the
initial and final baryons, the matrix y, in Eq. (5) can be
replaced by the unit matrix 7 in the low energy region,
i.e., yo — I. Finally, the Weinberg-Tomozawa contact po-
tential of the pseudoscalar meson and baryon octet inter-
action takes the form

T, A)yoU(pi, Ak + kD). (5)

VCOI] _

M+E) (Mj+E')i
ij lj4ff] 4

——Q2Vs-M;- M)( R
J

l

(6)
where +/s is the total energy of the system, M; and M; de-
note the initial and final baryon masses, while £ and E’
stand for the initial and final baryon energies in the cen-
ter-of-mass frame. The coefficients C;; for the sector of
strangeness zero and charge zero are listed in Table 1.
Moreover, we assume that the values of the decay con-
stants are only relevant for the pseudoscalar meson with
fo=13fr, fk=1.22frand f;=92.4MeV,as giveninRef.[2,7].

Table 1.

octet interaction with strangeness S = 0 and charge 0 =0, C;; = Cj;.

The coefficients C;; in the pseudoscalar meson and baryon

Cij K*E~ K50 KOA Tp 7% nn
K3~ 1 ) 0 0 -5 - \/g
KO50 0 o - -3 ¥
KA 0 - \/g R 3

p 1 -2 0

n 0 0

nn 0

The second term in Eq. (1) represents the antibaryon-
baryon-meson vertices, and can be rewritten as

L= Almz1leﬂ758uMmNn5 (7)

with N = {£*,27,3°, p,27,n,2°, A} and M = {n*, 7", 7%, K*,
K~,K° K% n}.
The coefficient A, in Eq. (7) takes the form
1
Almn =~ [(D + F)Clmn + (D - F)Clnm] (8)
2fo
where
3
Com =75 D, X XinXunkidjde), ©)
ijk=1

with A the matrix of the SU(3) generator and

1 1 0 00 0 0 O
i i 0 0 0 0 0 0
00 V20 0 0 0 O
1o o 0 1 1 0 0 0
X=5lo o0 0o i -0 o0 o 19
00 0 00 1 1 0
00 0 0 0 i —i 0
00 0 0 0 0 0 V2

Thus, the s— and u— channel interaction of the pseudo-
scalar meson and the baryon octet can be constructed ac-
cording to the vertices in Eq. (7).

If the three-momenta of the incoming and outgoing
particles are neglected in the calculation, the s— channel
potential of the pseudoscalar meson and baryon octet in-
teraction can be written approximately as

(vi-E)(vi- )
Vs+M ’

where M denotes the mass of the intermediate baryon, A
and A’ represent the coefficients given in Eq. (8).
Similarly, the u— channel potential can be obtained

Vi~ AAY (11)

as

(Vs=E)E+E = \s=M)(\s=E') (12)
u—M:? ’
with the Mandelstam variable u = (p; —k j)z.

In the calculation of Egs. (11) and (12), a physical ba-
ryon mass is adopted so as to obtain the s-channel and u-
channel interaction potentials. The mass renormalization
of baryons has to be accomplished before the tree-level
diagrams in the interaction of the pseudoscalar meson and
the baryon octet are studied. In the chiral unitary model,
the loop function of the intermediate pseudoscalar meson
and baryon is considered in the on-shell approximation
when the Bethe-Salpeter equation is solved, which will be
discussed in Sect. 3, so that the whole interaction chain is
taken into account without a cutoff. Therefore, we can ex-
amine whether a resonance state can be generated dynam-
ically or not.

The Weinberg-Tomozawa term and the s— channel
potential of the pseudoscalar meson and baryon octet in-
teraction are only related to the Mandelstam variable s,
therefore, they only give a contribution to the S-wave
amplitude in the scattering process of the pseudoscalar
meson and the baryon octet.

As is well known, a function can be expanded with
the Legendre polynomials, i.e.,
+00

F) =D enPax), (13)

n=0

Vl-“j ~ AA’

with P,(x) the nth Legendre polynomial and the coeffi-
cients
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1
en= 2”; ! f FOPa(x)dx. (14)
-1

In the S-wave approximation, only the coefficient ¢y is
necessary.
The denominator u — M? in Eq. (12) can be written as

u—M* =M} +m’— M* = 2(pkS - i k)
=(M} +m; — M* = 2pYk))
__ 2Bilklcose

M? +m? - M? —2p?k? |

(15)

where 6 is the angle between the three-momenta of in-
coming and outgoing mesons, and ﬁi(l?j) and M;(m;) are
the three-momentum in the center-of-mass frame and the
mass of the initial baryon (final meson). Taking

21k .
r=—-7 and x = cosé, we obtain
M? +m?— M2 - 2E(s— E")
1 o 11, (1-«
= dx=-- —In|—]. 16
2[11—a/xx 2a/n(l+a) (16)

Thus, the u— channel potential of the pseudoscalar meson
and baryon octet interaction in the S-wave approximation
can be easily calculated as

(V5= EXE+E' — \5=M)(\5- ')

VI(S) =AA
S Mi2+m§—M2—2E(\/§—E’)
-1 l-a
—In|—]. 17
X2a n(1+a/) a7

Therefore, the S-wave potential of the pseudoscalar
meson and baryon octet interaction can be written as

Vij = VEm+ Vi + VIS). (18)

3 Bethe-Salpeter equation

The Bethe-Salpeter equation can be expanded as
T=V+VGT =V+VGV+VGVGV +.... (19)

When the Bethe-Salpeter equation in Eq. (19) is solved,
only the on-shell part of the potential V;; in Eq. (5) gives
a contribution to the amplitude of the pseudoscalar meson
and baryon octet interaction, and the off-shell part of the
potential can be reabsorbed by a suitable renormalization
of the decay constants of mesons f; and f;. A more de-
tailed discussion can be found in Refs. [13, 14]. There-
fore, if the potential in Eq. (5) is adopted, the second term
VGV in Eq. (19) can be written as

VG Vi ~ U(pj, A)GU (pi, LK) + k?)z- (20)

If the relativistic kinetic correction of the loop function
of the pseudoscalar meson and baryon octet interaction
is taken into account, the loop function G; can be written
as

Gl:i ddq 4+M1 1
Qn)* ¢? - M? +ie (P—q)* —m? +ie’

2

with p the total momentum of the system, m; the meson
mass, and M, the baryon mass.

The loop function in Eq. (21) can be calculated in the
dimensional regularization (See Appendix 1 of Ref. [11]
for details), and thus the loop function takes the form

2 2
YuP 2 2 2, M 2 M
G =———|(aj+ D(m; —=M;)+|m;In— — M;In —
1 32P27l'2 (l )( 1 1) 1 ,UZ 1 luz
PHP*+ M} -m7] 1
Yu I R G,
4P2M, 2

(22)
where g; is the subtraction constant, u is the regulariza-
tion scale, and Gj is the loop function in Ref. [15],

, 2M,; m> M?-m?+s M?
G(s) =@{al(y)+lnlu—é + %lnm—é
I

+ % [in(s = (M} —m}) +2g, Vs) +In(s + (M} —m})
+24; Vs) = In(=s + (M} —m}) +2, )

—In(=s - (M} —m})+24, @]},

(23)
with g; the three-momentum of the meson or the baryon
in the center-of-mass frame.

Since the total three-momentum P =0 in the center-
of-mass frame, only the yoP° part remains in Eq. (22).
Similarly, the matrix y, can be replaced by the unit mat-
rix / since U(p;,4;) and U(p;,4;) are the wave functions
of the initial and final baryons. Thus, the loop function of
the intermediate pseudoscalar meson and baryon octet be-
comes

2 2
K m M
Gr=g5 o |(ar+ 1)(m? — M?) +(m,21n#—£ —M}lnu—;”
s+M?*—m?* 1
1 ! ’
+| ———+-|G).
( NG 2) :

(24)
When the s— channel and u— channel interactions are
considered, the loop function in Eq. (24) is still suitable.
However, the off-shell part of the potential is reabsorbed
by the renormalization, so that the decay constants of
mesons and the masses of intermediate baryons all take
physical values when the Bethe-Salpeter equation is
solved.

In our calculations, we make a transition

V=V MM,
G, =G,/M,, (25)
so that the scattering amplitude
T=[1-VGI"'V (26)
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becomes dimensionless.

1
4 I:Eandszo

In the sector of isospin I = % and strangeness S =0,
the wave function in the isospin space can be written as

;3 5) = - \[m p>+\[|n n,

27
InN = ——>— ), (28)
KA'I L, _ K°A 29
| ’5’_§>_| >9 ( )
and
1 1 0 2 e
IKZ; = > 2 \/7|K°Z )+ \/;K ). (30)

Thus, the coefficients C;; in the Weinberg-Tomozawa
contact potential of the pseudoscalar meson and baryon
octet interaction can be obtained in the isospin space,
which are summarized in Table 2.

Table 2.

octet interaction with isospin / = % and strangeness S =0, Cj; = Cjj.

The coefficients C;; in the pseudoscalar meson and baryon

Cij aN nN KA KX
N 2 0 % _ %
N 0 -3 -3
KA 0 0
Kx 2

The s— channel, u— channel and Weinberg-Tomoza-
wa contact potentials in the S-wave approximation are de-
picted in Fig. 2. From Fig. 2, it is seen that the 7N s—
channel potential is repulsive and the other s— channel
potentials are weaker than the #N potential, while all u—
channel potentials in the S-wave approximation are at-
tractive. Although the curves for nN and KX are not
smooth when /s < 1300 MeV, this occurs far away from

the energy region we are interested in, and we assume
that there is no effect on the pole position of the amp-
litude. As the Weinberg-Tomozawa term is dominant, the
correction from the s— channel potential and the S-wave
u— channel potential is not important.

The total potential for the different pseudoscalar
meson and baryon systems with isospin /=1/2 and
strangeness S =0 are depicted in the right side of Fig. 2,
which shows that the 7N and K¥ potentials are attractive,
while the nN and KA interactions are weak.

Although the s— channel and u— channel potentials
are weaker than the Weinberg-Tomozawa contact interac-
tion in the sector of isospin /7 = 1/2 and strangeness S =0,
the subtraction constants must be readjusted in the calcu-
lation when the contribution of the s— and u— channel po-
tentials are taken into account.

According to the PDG data, the N(1535) particle is as-
sumed to lie in the region of Re (pole position) = 1490~1530
MeV, and —2Im (pole position) = 90~250 MeV in the
complex energy plane of /s [12]. When the Bethe-Sal-
peter equation is solved in the unitary coupled-channel
approximation, we set the regularization scale to u = 630
MeV, just as is done in most works using this method[3,
4, 11, 14]. Moreover, all subtraction constants change
from —3.2 to —0.5 with a step of 0.3, and we hope a reson-
ance state can be generated dynamically in a reasonable
energy region. In the previous works, the subtraction con-
stant was usually chosen to be —2, which is thought to be
a natural value. We changed the subtraction constants in
the neighborhood of —2 in order to find the influence of
different values on the mass and decay width of the res-
onance state.

Altogether, we found 39 sets of subtraction constants
suitable for producing a pole in the energy region con-
strained by the PDG data, listed in Table 3. The pole pos-
itions and the couplings to 7N, nN, KA and K¥ are also
listed. A resonance state with a mass of about 1520 MeV
and a decay width of about 90 MeV is generated using 12
sets of subtraction constants, while both the mass and the
decay width increase slightly when the other 27 sets are

nN

1=1/2,5=0
S-channel

t 1=1/2,8=0
N U-channel
L S-wave

KA

Ks
N

1=1/2,S=0

2
1
0
1
2
3
4
5
6
7
8
1

L L L L L r L L L
1300 1400 1500 1600 1700 000 1100 1200 1300

s™ (MeV)

5 L L
1000 1100 1200 1800

Fig. 2.

L
1400
s™ (MeV)

L L L L
1400 1500 1600 1700

s™ (MeV )

L L L -120 L L s
1500 1600 1700 1800 1000 1100 1200 1300 1800

Potentials of the pseudoscalar meson and baryon octet interaction as functions of the total energy of the system +/s in the sec-

tor of isospin 7 = 1/2 and strangeness S = 0. (left): s— channel. (middle): u— channel in the S-wave approximation. (right): The solid
lines denote the Weinberg-Tomozawa contact interaction, while the dashed lines stand for the total S-wave potential from Eq. (18).
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used in the calculation. The 39 sets of subtraction con-
stants are depicted in Fig. 3. It is found that the subtrac-
tion constant a,y changes from —-3.2 to —0.5 in success-
ive steps . Since the 7N threshold is far lower than the en-
ergy region where the N(1535) particle might be gener-
ated dynamically, it is understandable that the pole posi-
tion is not sensitive to the value of the subtraction con-
stant a,y. The changes of the other three subtraction con-
stants a,y, aga and ags are not so large. Especially, the
subtraction constant axs = —3.2 in 38 sets of parameters,
while for the eighth set it takes the value of —=2.9. The KA
threshold is close to the energy region we are interested
in, and as the subtraction constant ak, is stable, it plays

an important role in the generation of the N(1535) particle.

0.0

-0.3
-0.6
-0.9

-1.2

-1.5
-1.8 [
-21 I
24 I
-2.7 I
-3.0 [

-3.3

TP TR RN U TPU U PO P NS NS SRS TS TS TS AU B B B
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

-3.6

ith
Fig. 3. (color online) The subtraction constants axy, apv,
aga, axs With the regularization scale p =630 MeV in the

loop function in Eq. (24).

A pole is generated dynamically at 1518 —i46 MeV in
the complex energy plane of /s when the Bethe-Salpeter
equation is solved in the unitary coupled-channel approx-
imation with the 19th set of parameters, i.e. a,y = -2.0,
agpy =—1.7, aga =-3.2 and ags =-3.2. The amplitude

Table 3.

squared |T|?> as a function of the total energy +/s for dif-
ferent channels with isospin I = 1/2 and strangeness S =0
is depicted in Fig. 4. The real part of the pole position is
higher than the nN threshold, and is lower than the KA
threshold, so we assume that it might be a resonance state
corresponding to the N(1535) particle of the PDG review.

40000

30000 |-

o 20000 |-
(=1
10000
0 S —
1000 1100 1200 1300 1400 1500 1600 1700 1800
s (MeV)
Fig. 4. The amplitude squared |T|? as a function of the total

energy /s for different channels with isospin 7=1/2 and
strangeness S =0. The 7N, nN and k¥ channels are labeled
in the figure, while the kA channel is drawn with the
dashed line.

The couplings of the N(1535) resonance state to dif-
ferent channels are listed in Table 3. If different sets of
subtraction constants are used, the changes of couplings
are not significant, as shown in Table 3.

In Ref. [7], the N(1535) particle couples more
strongly to the K*A channel, which is different from the
results listed in Table 3. The different values of the coup-
ling constants might be relevant to the next-to-leading-or-
der chiral Lagrangian used in Ref. [7], while it is not in-
cluded in this work.

The subtraction constants an, ayn, dxa, dks, the pole positions in the complex energy plane of /s and the couplings of the resonance states

to different channels. The regularization scale is fixed to u = 630 MeV in the loop function in Eq. (24).

n anN agN aka ags  Pole posiionMeV)  €xN lgan &N g 8KA lgkAl 8Kz lgxsl
1 -3.2 -1.7 -32 -3.2 1518-461 =3+ 1i 4 —65+ 25i 70 41+ 01 41 94-271 98
2 3.2 -14 -3.2 3.2 1530-58i —4+ 1i 4 —66+ 28i 72 40+ 3i 40 95-27i 99
3 -2.9 -2.3 -32 -2.9 1520-41i =3+ 5i 7 —62+ 211 66 47+ 01 47 96-24i 99
4 2.9 -2.0 -3.2 2.9 1532-51i —4+ 5i 7 —64+ 22i 68 45+ 3i 45 97-24i 100
5 -2.9 -1.7 -32 -3.2 1518-461 =3+ 2i 4 —65+ 251 70 42+ 01 42 94-271 98
6 2.9 -1.4 -3.2 3.2 1530-58i —4+ 1i 4 —66+ 28i 72 40+ 4i 40 95-27i 99
7 -2.6 -2.3 -32 -2.9 1520-41i =2+ 61 7 —62+ 211 66 47+ 1i 47 96-24i 99
8 -2.6 -2.3 -2.9 2.9 1527-41i 2+ 4i 5 —60+ 19i 64 48+ 1i 48 95-21i 98
9 -2.6 -2.0 -32 -2.9 1532-51i =3+ 61 7 —64+ 22i 68 45+ 41 45 97-24i 100
10 -2.6 -1.7 -3.2 -3.2 1518-46i =3+ 2i 4 —65+ 25i 70 42+ 0i 42 94-27i 98
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Table 3-continued from previous page

n anN anN aKA agx  Poleposition(MeV)  gxN lganl 8nN gyl 8KA lgkAl 8Kz lgksl
11 26 -14 32 32 1530-59i —4+2i 5 —-67+281 73 40+ 4i 40 95-27i 99
12 -23 23 32 29 1520-41i  —2+7i 8 —-62+21i 66 47+ 1i 47 96-25i 99
13 23 20 32 29 1532-51i  —2+6i 8 —64+23i 68 45+ 4i 46 97-24i 100
14 23  -17 32 32 1518-46i  —2+3i 4 —65+251 70 2+ 1 4 94-27i 98
15 23 -14 32 32 1530-59i  —3+2i 5 —67+281 73 40+ 4i 40 95-27i 99
16 20 26 32 26 1535-47i 0+ 11i 12 -62+18i 65 51+ 5i 52 97-22i 100
17 20 23 32 29 1520-41i 0+7i —62+21i 66 48+ 1i 48 95-25i 99
18 20 20 32 29 1531-51i  —1+7i 8 -64+23i 68 46+ 4i 46 96-24i 100
19 20 -17 32 32 1518-46i  —2+3i 5 —65+251 70 42+ 1i 42 94-27i 98
20 20 -14 32 32 1530-59i  —3+3i 5 —-67+281 73 40+ 4i 40 95-27i 99
21 -7 26 32 26 1534471 —1-12i 12 —62+18i 65 52+ 5i 52 97-22i 100
22 -7 23 32 29 1519-41i -1-8i 8 —-62+21i 66 48+ 1i 48 95-25i 99
23 -7 20 32 29 1531-51i 0+7i 8 —64+231 69 46+ 4i 46 96-24i 99
24 -7 -17 32 32 1518-46i  —1+3i 5 —65+251 70 2+ 1 4 94-27i 98
25 -7 -14 32 32 1530-59i  —2+3i 5 —67+281 73 40+ 5i 41 95-27i 99
26 -14 26 32 26 1534-47i  —3-1li 11 —62+19i 65 53+ 4i 53 97-22i 99
27 -14 23 32 29 1519-41i -2-8i —62+21i 66 49+ 1i 49 95-25i 98
28 -14 20 32 29 1531-51i -1-8i 8 —64+231 69 47+ 4i 47 96-25i 99
29 -14  -14 32 32 1530-59i  —2+4i 5 —67+281 73 41+ 5i 41 95-28i 99
30 -1 26 32 26 1534-46i  —4-10i 11 —62+19i 65 53+ 4i 53 96-22i 99
31 -1 23 32 29 1519-41i -3-7i 8 —62+21i 66 49+ 0 49 95-25i 98
32 -1 =20 32 29 1531-51i -2-7i 7 —64+231 69 47+ 4i 47 96-25i 99
33 -1 -14 32 32 1530-59i  —1+4i 5 —67+281 73 41+ 5i 41 95-28i 99
34 -08 26 32 26 1533-46i -5 -9i 10 —62+19i 65 53+ 3i 53 96-22i 98
35 -08 20 32 29 1531-51i -2-7i 7 —64+231 69 47+ 3 48 95-24i 99
36 -08 -l14 32 32 1530-59i 0+3i 4 —67+281 73 41+ 5i 41 95-28i 99
37 -05 26 32 26 1533-46i —6-8i 10 —62+19i 65 54+ 3i 54 95-21i 98
38 -05 20 32 29 1531-51i -3 -6i 7 —64+23i 69 48+ 3i 48 95-24i 98
39 -05 -l4 32 32 1530-59i 0 -4i 4 -67+28i 73 41+ 4 42 94-28i 99
3 mozawa contact interaction between the pseudoscalar

5 I=§andS=0

The wave functions with isospin I = 3/2 and strange-
ness § =0 can be written as

31 2, \/T .

l”N’E’ 5)— \/;ﬂ ny+ 3|7r D), (31
31 (20 \/T —

Kz, 2>—\£|1<z>+ KT ()

From Eqs. (31) and (32), the coefficients C;; in the
isospin space can be calculated and are listed in Table 4.
Since the coefficients are all negative, the Weinberg-To-

and

meson and the baryon octet is repulsive for isospin
I=3/2 and strangeness S = 0. Even when the correction
from the s— channel and u— channel interaction is taken
into account, the total potential is still repulsive, as shown
in Fig. 5. Thus, no resonance state can be generated in the
S-wave approximation.

Table 4.

octet interaction with isospin / = % and strangeness S =0, Cj; = Cj;.

The coefficients C;; in the pseudoscalar meson and baryon

Cij N Kz
N -1 -1
KX -1
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Fig. 5. The potential of the pseudoscalar meson and baryon

octet interaction as a function of the total energy of the sys-
tem +/s in the sector of isospin /=3/2 and strangeness
S =0. The solid lines denote the contact interaction, while
the dashed lines stand for the total S-wave potential from
Eq. (18).

6 Summary

In this work, the interaction of the pseudoscalar

meson and the baryon octet was studied within a nonlin-
ear realized Lagrangian. The s—, u— channel potentials
and the Weinberg-Tomozawa contact interaction are ob-
tained when the three-momenta of the particles in the ini-
tial and final states are neglected in the S-wave approxim-
ation.

In the sector of isospin 7 = 1/2 and strangeness S =0,
a resonance state is generated dynamically by solving the
Bethe-Salpeter equation, which might be regarded as the
N(1535) particle listed in the PDG review. We find that
hidden strange channels, such as 7N, KA and K3, play an
important role in the generation of this resonance state
when the Bethe-Salpeter equation is solved in the unitary
coupled-channel approximation. The coupling constants
of this resonance state to different channels were calcu-
lated, and it was found that it couples strongly to the hid-
den strange channels.

Bao-Xi Sun would like to thank Han-Qing Zheng and
Yu-Fei Wang for useful discussions.

References

1 N. Kaiser, P. B. Siegel, and W. Weise, Phys. Lett. B, 362: 23
(1995)

T. Inoue, E. Oset and M. J. Vicente Vacas, Phys. Rev. C, 65:
035204 (2002)

E. J. Garzon and E. Oset, Phys. Rev. C, 91(2): 025201 (2015)

A. Ramos and E. Oset, Eur. Phys. J. A, 44: 445 (2010)

J. Nieves and E. Ruiz Arriola, Phys. Rev. D, 64: 116008 (2001)
M. Doring and K. Nakayama, Eur. Phys. J. A, 43: 83 (2010)

P. C. Bruns, M. Mai, and U. G. Meissner, Phys. Lett. B, 697: 254
(2011)

8 Z. W. Liu, W. Kamleh, D. B. Leinweber et al, Phys. Rev. Lett.,

NS}

~N N bW

116(8): 082004 (2016)
9 Y.F. Wang, D. L. Yao, and H. Q. Zheng, Eur. Phys. J. C, 78(7):

543 (2018)

10 T. Sekihara, T. Arai, J. Yamagata-Sekihara et al, Phys. Rev. C,
93(3): 035204 (2016)

11 F. Y. Dong, B. X. Sun, and J. L. Pang, Chin. Phys. C, 41(7):
074108 (2017)

12 C. Patrignani et al. [Particle Data Group], Chin. Phys. C, 40:
100001 (2016)

13 J. A. Oller and E. Oset, Nucl. Phys. A, 620: 438 (1997)

14 E. Oset and A. Ramos, Nucl. Phys. A, 635: 99 (1998)

15 J. A. Oller and U. G. Meissner, Phys. Lett. B, 500: 263 (2001)

064111-8


http://dx.doi.org/10.1016/0370-2693(95)01203-3
http://dx.doi.org/10.1103/PhysRevC.65.035204
http://dx.doi.org/10.1103/PhysRevC.91.025201
http://dx.doi.org/10.1140/epja/i2010-10957-3
http://dx.doi.org/10.1103/PhysRevD.64.116008
http://dx.doi.org/10.1140/epja/i2009-10892-4
http://dx.doi.org/10.1016/j.physletb.2011.02.008
http://dx.doi.org/10.1103/PhysRevLett.116.082004
http://dx.doi.org/10.1140/epjc/s10052-018-6024-5
http://dx.doi.org/10.1103/PhysRevC.93.035204
http://dx.doi.org/10.1088/1674-1137/41/7/074108
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1016/S0375-9474(97)00160-7
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1016/0370-2693(95)01203-3
http://dx.doi.org/10.1103/PhysRevC.65.035204
http://dx.doi.org/10.1103/PhysRevC.91.025201
http://dx.doi.org/10.1140/epja/i2010-10957-3
http://dx.doi.org/10.1103/PhysRevD.64.116008
http://dx.doi.org/10.1140/epja/i2009-10892-4
http://dx.doi.org/10.1016/j.physletb.2011.02.008
http://dx.doi.org/10.1103/PhysRevLett.116.082004
http://dx.doi.org/10.1140/epjc/s10052-018-6024-5
http://dx.doi.org/10.1103/PhysRevC.93.035204
http://dx.doi.org/10.1088/1674-1137/41/7/074108
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1016/S0375-9474(97)00160-7
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1016/0370-2693(95)01203-3
http://dx.doi.org/10.1103/PhysRevC.65.035204
http://dx.doi.org/10.1103/PhysRevC.91.025201
http://dx.doi.org/10.1140/epja/i2010-10957-3
http://dx.doi.org/10.1103/PhysRevD.64.116008
http://dx.doi.org/10.1140/epja/i2009-10892-4
http://dx.doi.org/10.1016/j.physletb.2011.02.008
http://dx.doi.org/10.1103/PhysRevLett.116.082004
http://dx.doi.org/10.1016/0370-2693(95)01203-3
http://dx.doi.org/10.1103/PhysRevC.65.035204
http://dx.doi.org/10.1103/PhysRevC.91.025201
http://dx.doi.org/10.1140/epja/i2010-10957-3
http://dx.doi.org/10.1103/PhysRevD.64.116008
http://dx.doi.org/10.1140/epja/i2009-10892-4
http://dx.doi.org/10.1016/j.physletb.2011.02.008
http://dx.doi.org/10.1103/PhysRevLett.116.082004
http://dx.doi.org/10.1140/epjc/s10052-018-6024-5
http://dx.doi.org/10.1103/PhysRevC.93.035204
http://dx.doi.org/10.1088/1674-1137/41/7/074108
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1016/S0375-9474(97)00160-7
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1140/epjc/s10052-018-6024-5
http://dx.doi.org/10.1103/PhysRevC.93.035204
http://dx.doi.org/10.1088/1674-1137/41/7/074108
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1016/S0375-9474(97)00160-7
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0370-2693(01)00078-8

